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Abstract. Aberrant crypt foci (ACF) have been identi®ed on the colonic mucosal

surface of rodents treated with colon carcinogens and of humans after methylene-

blue staining and observation under a light microscope. Several lines of evidence

strongly suggest that ACF with certain morphological, histological, cell kinetics,

and genetic features are precursor lesions of colon cancer both in rodents and in

humans. Thus, ACF represent the earliest step in colorectal carcinogenesis. This

paper has the main purpose of reviewing the evidence supporting this view, with

particular emphasis on cell and crypt dynamics in ACF. ACF have been used as

intermediate biomarkers of cancer development in animal studies aimed at the

identi®cation of colon carcinogens and chemopreventive agents. Recently, evidence

has also shown that ACF can be effectively employed in chemopreventive studies

also in humans.

INTRODUCTION

Colorectal carcinogenesis is a stepwise process, which leads from normal mucosa to the

development of carcinoma, through a series of genetic alterations (Vogelstein et al. 1988),

although some of these may be effects rather than causes of the neoplastic transformation

(Prehn 1994). The process of carcinogenesis is usually very long, taking many years, if not

decades, to reach the invasive stage, and is the result of the effects of environmental or

genetic injuries and of the adaptive responses of the host (Farber & Rubin 1991). Thus, there

should be time to take adequate measures to prevent the onset of cancer. Unfortunately,

however, at the present time colorectal cancer remains a major cause of death in most

developed countries.

One of the earliest events in colorectal carcinogenesis is the alteration of the proliferative

pattern of epithelial cells in the colonic crypts (Lipkin 1988). In addition, evidence has been

provided on the impairment of the control of programmed cell death in the colonic

epithelium of patients at risk of colon cancer (Bedi et al. 1995), suggesting that malfunction

of the mechanisms controlling cell kinetics underlies the ®rst steps of colorectal

Cell Prolif. 2000, 33, 1±18

q2000 Blackwell Science Ltd. 1

Correspondence: Dr L. Roncucci, Department of Internal Medicine, University of Modena, Via Del
Pozzo, 71 41100 Modena, Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio...

https://core.ac.uk/display/53979221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


carcinogenesis. The result is the growth of polyps, which can be observed and removed

during colonoscopic examination of the mucosal surface of the large bowel. It is widely

accepted that dysplastic polyps, i.e. adenomas, are precursors of colorectal cancer (Muto,

Bussey & Morson 1975).

However, the earlier morphological steps of colorectal tumour formation are not yet

known. Most information on this topic comes from experimental carcinogenesis and from

human pathological studies. Histological changes in normal-appearing colonic mucosa far

from the tumour were previously observed both in animals treated with colon carcinogens

(Deschner 1974), and in humans with colon cancer (Shamsuddin et al. 1981). However, in

the mid-1980s, Ranjana Bird examining the methylene-blue-stained mucosal surface of

azoxymethane-treated mice under the light microscope, for the ®rst time described crypts

which appeared larger, thicker, and darker than normal (Bird 1987). They were referred to

as aberrant crypts, and considered putative precursors of experimental colon cancer. They

tend to cluster in aggregates, called aberrant crypt foci (ACF) (Tudek, Bird & Bruce 1989),

which increase in size with time. Indeed, aberrant crypts undergo a replication process, as

normal crypts (Chang 1984), which starts at the bottom with budding and then branching

until the generation of two new crypts (McLellan, Medline & Bird 1991a, Fujimitsu et al.

1996).

ACF have been described also in the human colon (Roncucci et al. 1991a, Pretlow et al.

1991)(Figure 1). They have features resembling those of rodents. Aberrant crypts are larger

and darker than normal after methylene-blue staining, and they cluster in foci which are

slightly bulging on the normal mucosal surface. Also, human ACF increase in size by a

mechanism of crypt ®ssion as in normal mucosa (Cheng et al. 1986). Thus, it seems evident

that colonic epithelial cell and crypt kinetics are crucial for the development of focal

lesions in the colon.

This paper reviews the evidence supporting the contention that ACF are precursors of

colon cancer in rodents and in humans with particular emphasis on cell and crypt dynamics.

Firstly, cell proliferation and apoptosis will be described brie¯y in normal colonic mucosa

along with the known mechanisms of genetic control, and then the morphological,

histological, biochemical, cell kinetics and genetic alterations in experimental and human

aberrant crypt foci will be discussed.

Figure 1. An aberrant crypt focus is evident in the centre of the ®gure. Crypts are larger and darker
than normal after staining with methylene-blue and observation under a light microscope at 40�.
Luminal openings of aberrant crypts are larger than normal, and the shape is irregular.
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CELL KINETICS OF NORMAL COLORECTAL MUCOSA

Intestinal crypts are invaginations of the surface epithelium, creating structures which

resemble test tubes. In sections taken perpendicular to the surface they are lined up in parallel

with the mouth open to the intestinal lumen (Levine & Haggitt 1989).

Studies in animals and humans have shown that cells proliferate at the bottom of colonic

crypts (Lipkin & Quastler 1962, Lipkin, Sherlock & Bell 1963), they differentiate while

migrating up along the crypt axis, losing their ability to divide, and once they reach the

surface, they die and are extruded into the intestinal lumen. In normal conditions the

proliferative zone of crypts is limited to the lower two thirds with the major zone of

proliferation located in the lower third, along the longitudinal axis of the crypt (Cole &

McKalen 1961, Deschner 1980, Potten et al. 1992a). The cell population of normal crypts

arises from single stem cells located at the very bottom of colonic crypts (Potten 1992), as

con®rmed by the demonstration of monoclonality of colonic crypts both in mice (Ponder et

al. 1985, Grif®ths et al. 1988) and in humans (Endo, Sugimura & Kino 1995).

The normal proliferative status of the colorectal mucosa has a circadian cicle (Kennedy et

al. 1985, Buchi et al. 1991) and is modulated by several factors, including age (Roncucci et al.

1988), dietary factors (Stadler et al. 1988), hormones (Tutton & Barkla 1987, 1988), drugs

such as laxatives (Lehy, Abitbol & Mignon 1984, Kleibeuker et al. 1995), and other factors

not thoroughly known.

Altered proliferative activity in colonic epithelial cells has been described in animals treated

with colon carcinogens (Thurnherr et al. 1973), along with cytological and histological

changes (Chang 1984). Initially, there is an expansion of the proliferative zone to the whole

crypt, including the upper, super®cial compartments, and even the surface epithelium of the

colon; in this phase the main zone of DNA synthesis is still limited to the lower third. Then,

in a further development, the major zone of proliferation shifts to the upper portions of the

crypt. This is in line with an overall increase in the fraction of replicative cells over total

epithelial cells of the crypt (labelling index, as measured with [3H]thymidine incorporation

into DNA, or other compounds which identify S phase or cycling cells).

Cell proliferation of ¯at colorectal mucosa is altered also in patients with colonic tumours

and in patients at a genetic or environmental risk of cancer of the large bowel (Deschner,

Lewis & Lipkin 1963, Deschner & Raicht 1981, Lipkin et al. 1983, Biasco et al. 1984,

Terpstra et al. 1987, Ponz de Leon et al. 1988, Scalmati et al. 1990, Anti et al. 1993, Risio et

al. 1995, Cats et al. 1996). Indeed, patients with adenoma or cancer have an increased total

labelling index. Furthermore, the longitudinal distribution of replicative cells along the crypt

is also altered. In fact, the proliferative zone of the crypt is expanded toward the lumen, thus

encompassing the whole crypt (Maskens & Deschner 1977) and, in some cases, it is even

limited only to the upper portions of the crypt.

Apoptosis, a form of programmed cell death, was ®rstly de®ned on morphological

grounds, using transmission electron microscopy (Kerr, Wyllie & Currie 1972), which remains

the gold standard method for the identi®cation of the phenomenon (Payne et al. 1995). Cell

death in colonic crypts is still largely obscure. It is known that a low level of apoptosis

normally occurs in cells located at the bottom of crypts (Potten 1992) and at the luminal

surface (StraÈ ter et al. 1995). The background level of apoptosis can be modulated by physical

(Potten 1977, 1992) and chemical (Piazza et al. 1995, Barnes et al. 1998) agents, and even by

dietary factors (Risio et al. 1996, Caderni et al. 1998, Premoselli et al. 1998). This process is

important to remove cells carrying mutations in genes involved in colon carcinogenesis.

However, at variance with the small intestine, it seems that apoptosis does not occur in the
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stem cell regions of colonic crypts (Potten et al. 1992b), suggesting that this protective

mechanism does not work in the colon. This fact can contribute to explanation of why small

intestinal tumours are so rare in humans. Moreover, in colonic adenomas and carcinomas the

level of apoptosis is reduced, and can not balance the increased proliferation that occurs in

tumours. Indeed, apoptosis is also involved also in the growth of adenomas, thus

contributing to the development of cancer (Arai & Kino 1995). It has been reported that

goblet cells of normal colorectal mucosa of patients with colon cancer have reduced bile acid-

induced apoptosis as compared with non-cancer patients (Garewal et al. 1996). This

observation suggests that resistance to apoptosis may have a role in colon carcinogenesis.

Cell proliferation and apoptosis are regulated by several genes that have been intensively

studied in recent years. It is not the purpose of this review to analyse in detail these genes,

but some time should be spent on the adenomatous polyposis coli (APC) tumour suppressor

gene, whose constitutional mutations cause familial adenomatous polyposis (FAP) (Groden

et al. 1991, Nishisho et al. 1991), a genetic disease inherited as a dominant trait. In this

disease, the colon is carpeted by hundreds of adenomas which, if not removed

prophylactically, give rise to colon cancer. APC should be considered a key gene, because it

controls colonic cell kinetics, and thus seems to be involved in the ®rst steps of colon

carcinogenesis (Powell et al. 1992), in particular in the transition from normal to

hyperproliferative mucosa (Kinzler & Vogelstein 1996). Recent data are in line with the

hypothesis of a role of the APC gene in regulating apoptosis (Morin, Vogelstein & Kinzler

1996, Polyak et al. 1996). The gene is very long and complex, and is located on the long arm

of chromosome 5 (Bodmer et al. 1987, Kinzler et al. 1991). APC somatic mutations have

been shown also in sporadic (non-familial) colonic tumours, probably as early genetic

alterations in the development of cancer. Most APC mutations (mainly clustered in the long

exon 15) produce a truncated malfunctioning protein. The functions of the normal APC

protein are only partially known. It is expressed mostly in the upper, more super®cial

portions of normal colonic crypts where cell proliferation is low or absent (Smith et al. 1993).

This fact suggests that the protein slows down or blocks cell proliferation. Indeed, the APC

protein binds catenins and other proteins (Rubinfeld et al. 1993, Su, Vogelstein & Kinzler

1993), and in particular b-catenin. b-catenin is a component of cell±cell adherent junctions

(Gumbiner 1996), which, if not down-regulated by the APC protein in epithelial cells (Senda

et al. 1996), accumulates, activating a positive signal to proliferation, essential for polyp

growth. Mutations of the b-catenin gene itself can probably produce the same effect on cell

proliferation (Morin et al. 1997, Sparks et al. 1998).

On the other hand, it has been recently reported that the APC protein also binds to

microtubules (Munemitsu et al. 1994, Nathke et al. 1996), offering new insights into other

roles for APC, including apoptosis and cell migration. Indeed, apoptotic cells in culture lose

the normal 300 kDa APC protein acquiring a particular shorter 90 kDa protein (Browne et

al. 1994). Interestingly, a recent report suggests that also the c-myc oncogene, which controls

cell proliferation, may be regulated by APC (He et al. 1998). Indeed, c-myc can trigger an

apoptotic signal at least in T cell hybridomas (Shi et al. 1992).

It is intriguing that other genes that have functions related to the control of cell

proliferation have been shown to be involved in the control of apoptosis too, supporting the

view that these two phenomena are two sides of the same coin. The prototype of these genes

is the p53 tumour-suppressor gene which is frequently inactivated in colorectal carcinomas

(Fearon & Vogelstein 1990), although less frequently in earlier lesions. The control of

apoptosis seems in part to be mediated through the p21WAF1/CIP1 protein, a cyclin-dependent

kinase inhibitor (El-Deiry et al. 1993).
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Other genes playing a role in the control of programmed cell death in the colon are bcl-2

and related genes. bcl-2 is a negative regulator (Hockenbery et al. 1990), whereas bax and bcl-

xS are inducers of apoptosis. In the normal colorectal mucosa, bcl-2 is expressed in the basal

epithelial cells of the crypts (Sinicrope et al. 1995). Adenomas and carcinomas show a high

percentage of bcl-2-positive cells negatively correlated with the apoptotic index, indicating an

enhanced inhibition of apoptosis in colorectal tumorigenesis.

EXPERIMENTAL ABERRANT CRYPT FOCI

Since Bird's observation, several animal experiments have been undertaken in order to ®nd

evidence of the preneoplastic nature of aberrant crypts. First, ACF were induced by

carcinogen treatment only, in a dose and time-dependent manner (McLellan & Bird 1988a,b).

Several agents known to be colon carcinogens were able to induce ACF in experimental

animals (Bird, McLellan & Bruce 1989), including carcinogens associated with foods (Tudek

et al. 1989). ACF induction in rodents is also in¯uenced by genetic factors (Moen et al. 1996,

Feng et al. 1997, Papanikolaou et al. 1998). Furthermore, agents known to inhibit

dimethylhydrazine (DMH) or azoxymethane (AOM)-induced colon cancer can also inhibit

ACF induction (McLellan & Bird 1991). The serial histological evaluation of experimental

ACF showed different grades of alterations, ranging from mild cellular atypia to overt

dysplasia (McLellan et al. 1991a). It is not known whether these grades are progressive steps

of the same process. ACF with clear dysplasia is probably the immediate precursor of

adenoma. Those with mild alterations can progress toward ACF with more severe

histological changes, although they may also regress (Shpitz et al. 1996).

From a biochemical point of view, ACF show a wide range of enzymatic alterations. They

have decreased diaminopeptidase IV, succinate dehydrogenase, and b-galactosidase activities,

as measured spectrophotometrically (Sandforth et al. 1988). Moreover rodent ACF shows

reduced hexosaminidase, N-acetyl-b-d-glucosaminidase, and a-naphthyl butyrate esterase

activities (Barrow et al. 1990, Pretlow et al. 1990) and increased g-glutamyl transpeptidase in

the stroma (Barrow et al. 1990). The pattern of mucin expression is also altered in ACF.

Caderni et al. (1995) using the high iron diamine±Alcian blue technique found that

sialomucins increase in larger ACF and demonstrated that large ACF are correlated to

tumour incidence in a rat model.

The proliferative status of aberrant crypts as determined by autoradiography was shown to

be heterogeneous by Bird et al. (1989), although no quantitative data were reported. In a

further study, aberrant crypts had more cells and a higher total labelling index (LI) than

normal surrounding crypts. However, the distribution of S phase cells was similar to normal

crypts (McLellan, Medline & Bird 1991b). Later, an increase in the mean proliferative activity

of aberrant crypts as compared with normal was shown in F344 rats treated with AOM and

injected with 5-bromo-2-deoxyuridine (BrdUrd) before killing (Pretlow, Cheyer & O'Riordan

1994a). However, in this study, the distribution of labelled cells along the longitudinal axis of

crypts could not be evaluated. Cell proliferative activity in small ACF (consisting of 2 or 4

crypts) from F344 rats was higher than that of normal crypts both in animals treated with

AOM and in controls (Yamashita et al. 1994). In this study, the proliferative status was

measured with the mitotic index, the proliferating cell nuclear antigen-labelling index (PCNA-

LI), and the BrdUrd-labelling index (BrdUrd-LI). Further, PCNA-labelled cells were

observed in the upper compartments of aberrant crypts, suggesting that an altered pattern of

cell proliferation occurred. In a further study, in Sprague±Dawley rats fed different diets,

aberrant crypts were found to be higher than normal, to have higher BrdUrd-LI and mitotic
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index, and a shifted proliferative zone toward the lumen (Corpet, TacheÁ & Peiffer 1997).

Interestingly, the transforming growth factor beta-1 (TGFb1), a cytokine which inhibits

epithelial cell proliferation in rodents and humans, was found to be effective in reducing

induction and growth of ACF in DMH-treated rats (Mikhailowski et al. 1998).

Apoptosis is far less de®ned in experimental ACF. The number of apoptotic bodies was

lower in aberrant than in normal crypts of rats treated with AOM (Magnuson, Shirtliff &

Bird 1994). Cholic acid feeding induced resistance to apoptosis both in normal and aberrant

crypts. On the other hand, Corpet et al. (1997) reported no difference in the number of cells

in apoptosis, identi®ed after staining of apoptotic bodies with the Feulgen-fast green method,

between normal and aberrant crypts in rats, and diets did not seem to affect the number of

apoptotic cells both in aberrant and normal crypts.

ACF grow by a mechanism of crypt ®ssion. Indeed, the number of branching crypts is

higher than in normal mucosa. The process can easily be seen also with scanning electron

microscopy at the surface of the mucosa (Paulsen et al. 1994). The number and size of ACF

(number of crypts per focus, also called `crypt multiplicity') can be modulated by dietary

manipulation, enabling the identi®cation of initiators and promotors of experimental colon

cancer (Bruce et al. 1993). So far the ACF assay has become a useful tool to detect colon

carcinogens in the diet (Corpet et al. 1990, Caderni et al. 1991, Zhang et al. 1992, Yang et al.

1998), or other risk factors (Koohestani et al. 1997), and to identify possible chemopreventive

agents (Stamp et al. 1993, Takahashi et al. 1993, Jenab & Thompson 1998, Rao, Newmark &

Reddy 1998). However, no correlation between the number of ACF and the incidence of

carcinomas in rats was found (Hardman et al. 1991, Magnuson, Carr & Bird 1993), or it was

found only in the left colon (Park, Goodlad & Wright 1997). Furthermore there was no

relationship between the distribution of ACF and tumours along the large bowel of mice. On

the other hand, crypt multiplicity in ACF, i.e. the number of crypts per focus, was a predictor

of tumour incidence (Magnuson et al. 1993, Caderni et al. 1995, Davies & Rumsby 1998).

The explanation of this apparent discrepancy is that most ACF regress, and only larger foci

progress toward cancer.

Several genetic alterations have been reported in experimental ACF. Most of them are

crucial in the control of cell proliferation and cell death. Using in situ hybridization and

immunohistochemistry in a rat model, Stopera and coworkers found increased expression of

mRNA and proteins of the oncogenes c-fos and c-ras in ACF (Stopera, Davie & Bird 1992a,

Stopera & Bird 1992). c-fos mRNA is mostly located in the lower, proliferative compartment

of crypts. The c-fos protein controls cell proliferation forming complexes with the c-jun

protein (Halazonetis et al. 1988). The level of c-fos expression can be upregulated by all-

trans-retinoic acid (Stopera & Bird 1993a). Moreover K-ras codon 12 point mutations were

found in 7±37% of ACF examined (Stopera, Murphy & Bird 1992b, Vivona et al. 1993,

Shivapurkar et al. 1994, Tochino et al. 1995), although Davies & Rumsby (1998) found no K-

ras mutation in ACF from rats treated with AOM. Point mutations lead to inactivation of

the K-ras oncogene, an event that is common in colorectal tumorigenesis (for review see Bos

1989). Interestingly, both ACF and K-ras mutations in transgenic mice can be prevented by

enhanced expression of the MGMT gene, which encodes the O6-alkylguanine-DNA

alkyltransferase protein, a key enzyme in the mechanism of protection of DNA from

methylating agents (Zaidi et al. 1995). However, it is not known whether or not K-ras

mutations are pathogenetic for ACF in rodents.

Mutant p53 protein expression was immunohistochemically detected in rodent ACF

(Stopera & Bird 1993b), though the speci®city of monoclonal antibodies for the mutant p53

gene product is questionable. Twenty-seven of 65 ACF (42%) expressed a `mutated' p53
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protein, mainly in the cytoplasm of epithelial cells of aberrant crypts. The wild-type p53

protein inhibits cell proliferation, and it is also involved in the control of cell death. Thus it is

possible that mutated p53 protein contributes to the induction of transforming phenotype in

experimental ACF (expecially when dysplasia is evident). However, at present mutations in

the p53 gene have not been observed in experimental ACF (Davies & Rumsby 1998).

Moreover, mutations in the p53 tumour suppressor gene are events which occur relatively late

in colon carcinogenesis (Vogelstein et al. 1988).

No mutation in the exon 15 of the APC gene in ACF of F344 rats was found using an in

vitro synthezised protein assay (IVSP) (De Filippo et al. 1998). In this study however, no data

on the histological features of the ACF examined were reported. The same result was

obtained by Davies & Rumsby (1998) in Sprague±Dawley rats, although they found

correlation of ACF multiplicity with carcinoma. Interestingly, however, MIN mice,

heterozygous for a germline mutation of APC, when crossed with mice de®cient of the MSH2

mismatch repair gene, developed many ACF, more rapidly growing adenomas, and had

reduced survival, suggesting that somatic inactivation of the wild-type APC allele results in a

faster progression of colonic carcinogenesis (Reitmar et al. 1996). Constitutional mutations in

mismatch repair genes (Leach et al. 1993, Nicolaides et al. 1994, Papadopoulos et al. 1994)

cause the Lynch syndrome (hereditary non-polyposis colorectal carcinoma (HNPCC)), which

is associated with DNA instability at short (mono or polinucleotide) repeated sequences

called microsatellites (Aaltonen et al. 1993, Ionov et al. 1993), which can be identi®ed in

tumours from affected individuals (for review see Marra & Boland 1995). Microsatellite

instability (MSI) has been observed also in 10±15% of sporadic colorectal carcinomas

(Aaltonen et al. 1993).

Overexpression of CD44, a class of cell surface glycoproteins, was found in dysplastic ACF

of APC mutant mice and of patients with FAP, suggesting that CD44 is involved in the

control of colonic epithelial cell dynamics (Wielenga et al. 1999). Finally, Kurimasa et al.

(1999) have recently shown that DNA-dependent protein kinase (DNA-PK) may have a role

in colorectal carcinogenesis. In fact null mice for the gene that encodes the catalytic subunit

of DNA-PK develop ACF in their colon.

In conclusion, there is still uncertainty on the role played by oncogenes and tumour-

suppressor genes in the induction and growth of experimental ACF.

HUMAN ABERRANT CRYPT FOCI

ACF in humans were ®rstly observed on the ¯at colonic mucosa of patients operated on for

FAP, cancer or benign diseases of the large bowel (Pretlow et al. 1991, Roncucci et al.

1991a). Later, ACF were observed on the unsectioned mucosa using a dissecting microscope

(Roncucci, Medline & Bruce 1991b). Topologically, the lumens of aberrant crypts showed

various shapes which could be grouped into three categories (round, serrated, elongated),

each predicting histological alterations (Roncucci et al. 1991b). The same features could be

observed in vivo using a magnifying colonoscope (Takayama et al. 1998). The number of

ACF per square cm of colonic mucosal surface is higher in patients with FAP. In these

patients the ACF examined showed de®nite dysplasia at histology in 75±100% of cases

(Roncucci et al. 1991a, Nucci et al. 1997), and could be appropriately referred to as

microadenomas. They stain with Dolichus bi¯orus agglutinin and express the sialyl Lewis-a

antigen at higher frequency than ACF from patients with cancer or benign diseases of the

large bowel (Nucci et al. 1997). Microadenomas were identi®ed also in random biopsies taken
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during retrograde endoscopy from the distal ileum of patients with FAP who underwent total

colectomy (Bertoni et al. 1995), although in this case the lesions were not evident during the

endoscopic examination of the mucosa. On the other hand, ACF were identi®ed in vivo, but

using a mignifying colonoscope and after staining with methylene-blue, during endoscopy in

patients with colonic tumours or with normal colon (Dolara et al. 1997, Takayama et al.

1998). The density of ACF is lower in patients with cancer and benign diseases of the large

bowel (i.e. diverticular disease) as compared with patients with FAP. The density of ACF in

patients with colorectal cancer is higher in the left colon and rectum than in the right colon

(Roncucci et al. 1991b, Yamashita et al. 1995, Siu et al. 1997, Roncucci et al. 1998, Shpitz et

al. 1998), although in the right colon they tend to be larger (Roncucci et al. 1998). ACF

density does not seem to be related to sex. Older individuals harbour a slightly higher number

of ACF in their colon. Moreover, patients with colon cancer resident in regions with high

incidence rates of colorectal cancer have higher density of ACF in the colonic mucosa than

patients from low incidence regions (Roncucci et al. 1998). All these data are in agreement

with the anatomical distribution and some epidemiological characteristics of colorectal cancer

in humans.

Histologically ACF are rather heterogeneous in patients with cancer or benign diseases of

the colon. They may be normal (i.e. no cell or tissue abnormalities are evident) or show

various alterations, from hyperplasia to severe dysplasia. Only a minor fraction of the ACF

examined were de®ned as dysplastic, although in the literature a wide range of ®gures have

been reported (5±54%) (Roncucci et al. 1991a, Jen et al. 1994, Otori et al. 1995, Yamashita et

al. 1995, Di Gregorio et al. 1997, Nucci et al. 1997, Siu et al. 1997, Otori et al. 1998,

Roncucci et al. 1998, Shpitz et al. 1998, Takayama et al. 1998, Bouzourene et al. 1999). The

reasons of these differences are the following: the de®nition of dysplasia in colorectal

pathology is not easy (Riddell et al. 1983); dysplasia may be focal in an aberrant crypt focus

(Di Gregorio et al. 1997), and even in a single aberrant crypt (Siu et al. 1997), suggesting that

a transition from hyperplasia to dysplasia in aberrant crypts is possible, maybe through cell

proliferative alterations (Otori et al. 1995, Otori et al. 1998). It is noteworthy that an ACF

with carcinoma in situ was also reported in a patient with colon carcinoma (Konstantakos et

al. 1996). Dysplasia seems more frequent in larger ACF (Yamashita et al. 1995, Siu et al.

1997), although others found the opposite (Roncucci et al. 1998). The density of dysplastic

foci was higher in the colon, expecially the right colon, whereas hyperplastic foci were more

frequent in the rectum (Roncucci et al. 1998).

Scanning electron microscopy allowed a better de®nition of the surface features of human

ACF (Vaccina et al. 1998). In particular the luminal openings of aberrant crypts on the

mucosal surface are larger than normal (Figures 2a,b). The mucosal surface among aberrant

crypts was ¯attened with loss of microvilli (Figures 3a,b), evident also with transmission

electron microscopy (Figures 3c,d), indicating alterations at the cell surface of aberrant

crypts.

At variance with rodents, human ACF have normal levels of hexosaminidase activity or

even decreased levels (Pretlow et al. 1991). On the other hand, the expression of

carcinoembryonic antigen (CEA) is enhanced (Pretlow et al. 1994b).

Human ACF have a hyperproliferative epithelium (Roncucci et al. 1993). Patients prior to

an operation for colorectal cancer were given BrdUrd intravenously. The ACF harvested and

examined after operation showed an increase of the total LI, though the proliferative

compartment of aberrant crypts remained con®ned to the lower two thirds of the crypt. It is

of note however, that all ACF examined were hyperplastic and not dysplastic on histological

examination. Increased proliferative activity was found also by Otori et al. (1995). In that
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Figure 2. Scanning electron micrographs of the surface of normal colonic mucosa (a), and of aberrant
crypts (b) at the same magni®cation (� 410). Arrows: luminal openings of crypts.
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Figure 3. Scanning electron micrographs (a,b: magni®cation � 4000), and transmission electron
micrographs (c,d: magni®cation � 24 000) of human colonic mucosal surface. (a,c) Normal mucosa
covered by numerous, well developed microvilli. (b,d) The surface of aberrant crypts is smoother owing
to the presence of sparce and short microvilli.
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work, a group of large ACF, called `stage I abnormality crypts' which showed extension of

the proliferative zone to the whole crypt, evaluated with immunohistochemical PCNA

labelling, and were considered a transition from hyperplastic to dysplastic crypts. Also Shpitz

et al. (1997), using the same method, found expansion of the proliferative compartment to the

upper portion of aberrant crypts. This was true for hyperplastic and dysplastic crypts, though

more evident for the latter.

The ®rst genetic alterations reported in human ACF were mutations in K-ras (Pretlow et

al. 1993, Smith et al. 1994, Losi et al. 1996). These mutations seem limited to hyperplastic

ACF (Jen et al. 1994, Yamashita et al. 1995, Nucci et al. 1997), although Takayama et al.

(1998) found K-ras mutations in more than 50% of dysplastic ACF examined. A weak

correlation between ACF and carcinoma in the same patient was found for the presence, and

for the type, of K-ras mutations (Losi et al. 1996) whereas others reported a stronger

correlation (Shivapurkar et al. 1997). On the other hand, APC mutations are present only in

dysplastic ACF, both in patients with FAP and colon cancer (Jen et al. 1994, Smith et al.

1994, Otori et al. 1998), although the frequency is low, suggesting that other genetic events

may be involved in the ®rst steps of tumour development.

Interestingly, dysplastic crypts in patients with FAP (with APC mutations) divide faster

than normal crypts (Bjerknes et al. 1997). p53 protein accumulation and p53 gene mutations

were not found in ACF (Yamashita et al. 1995, Losi et al. 1996), with only one exception

(Shivapurkar et al. 1997). However, a decreased and altered expression of p21WAF1/CIP1

(whose transcription is regulated by p53) has been reported in dysplastic ACF from FAP

patients, con®rming an altered regulation of cell cycle control in human ACF (Polyak et al.

1996).

Moreover, microsatellite instability has been shown in a low fraction of human `sporadic'

ACF (Augenlicht et al. 1996, Heinen et al. 1996), suggesting that MSI can be an early event

in tumour development. Finally, ACF, like many human tumours and at variance with

normal mucosa, were shown to be monoclonal, by determining the pattern of chromosome X

inactivation (Siu et al. 1999).

As mentioned above, a very important step toward the use of ACF as an early biomarker

of susceptibility to colon cancer in humans has been the in vivo identi®cation of foci during

endoscopy, using a magnifying colonoscope (Dolara et al. 1997, Yokota et al. 1997).

Takayama et al. (1998) demonstrated that it is also possible to test putative chemopreventive

agents of colon cancer with ACF as early markers of increased risk.

CONCLUSIONS

The large body of work of the past decade has provided evidence that ACF are precursor

lesions of both experimental and human colon cancer. Only a minor fraction of ACF will

become cancer. It seems that larger ACF, with altered morphology (slit-like or elongated

lumens at topology), dysplastic at histology, with altered cell kinetics, and with mutations in

some genes involved in colorectal carcinogenesis are the most probable candidates for

progression to carcinoma. Despite this, from a practical point of view, it is evident that ACF

have most of the requisites needed by early biomarkers of cancer risk to be used in

experimental and human intervention studies aimed at identifying agents able to reduce the

incidence of colorectal carcinoma. Thus it is useful to look for ACF in rodent and human

colons, in order to shed some light on the earliest events of colon carcinogenesis and to test

measures to prevent colorectal cancer.
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