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Abstract: The development of any fault-tolerant control solution is based on the strong
assumption that fault situations can be accommodated. This paper provides a survey of
four reachable set techniques to assess the fault recoverability property for constrained linear
time invariant (LTI) systems by means of ellipsoid, zonotope, polytope and support function
representations. These techniques are next applied to an angular velocity spacecraft model. A

discussion is finally made to assess the computational complexity for the four algorithms.
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1. INTRODUCTION

According to the studies by Tafazoli (2009); Henry et al.
(2015), thruster failures in satellite and spacecraft account
for more than 10 % of attitude and orbit control faults. In
most situations, it can be shown that the consequences of
faults could be avoided, or at least mitigated, by the use
of Fault-Tolerant Control (FTC) solutions, see for instance
Henry et al. (2015). Obviously, this promising feature is only
true if the fault is labeled as recoverable (Staroswiecki and
Berdjag, 2010), i.e. the ability of remaining plant resources
permits to accommodate the considered fault situation
and preserve the mission objectives. In this context, the
development of tools able to characterize, from the first
design phase, the plant fault tolerance properties are of
great interest, especially to optimize the number and
positioning of actuators on the satellite structure.

In spite of its practical importance, the assessment of
plant fault-tolerant capabilities has received relatively little
attention from the research community. The first works
which have formulated this property in FTC community
are Wu et al. (2000); Wu (2004) where a measure is given to
quantify the level of redundancy of LTI models. A similar
idea has been proposed in Yang et al. (2012) to switched
system. More recently, it is proposed to use a controllability
criterion in Yoshimura and Kojima (2018) to determine
the optimal thruster location. In Gonzalez-Contreras et al.
(2009), an index based on reconfigurability is derived from
an online computed controllability Gramian. Optimal piezo-
electric actuator placement on plant structure is also done
by optimizing a criteria based on controllability Gramian
or energy consumption, see Frecker (2003). Unfortunately,
the weakness of these techniques lies on the omission of
actuator saturation, which can arise in case of faults. To
overcome this issue, Chamseddine et al. (2015); Torres et al.
(2017) and Sanjuan et al. (2019) propose to use attainable

control set and one technique of reachable set to assess
the fault reconfigurability property for a spacecraft and
Unmanned Aerial Vehicles (UAV).

Based on these promising results, one contribution of this
work is to provide a survey on four reachable set techniques
and their computational complexity. Another contribution
is to show how these methods can be used in the assessment
of fault reconfigurability with a volume-based criterion.

This paper is organized as follows : section 2 introduces
the reachability theory, section 3 describes the main set
representation methods, section 4 is next devoted to
computational aspects and section 5 presents the main
methods with a simple satellite angular velocity model.

2. REACHABLE SETS

Reachable sets have been widely studied in control theory.
Theoretical background is based on Hamilton-Jacobi (HJ)
equations, leading to the level sets method (Mitchell, 2002).
Other computation techniques involve the need of a set
representation to allow set computations. Popular set
representations are ellipsoids (Kurzhanski and Varaiya,
2010), zonotopes (Combastel, 2003), polytopes (Hwang
et al., 2005) and support functions (Guernic and Girard,
2010). Having in mind this introduction, let the following
time invariant dynamical system be considered

z = f(z,u) zeR"™, ueR™ (1)

where & and u are the state and control input vectors
respectively.

Given compact sets Xy, C R"™ and U(t) C R™, Vt €
[to,tf], to < ty, the forward reachable set R, (X}, ) is the
set of all states x(ty) that can be reached at time t; by
the system (1) starting from time to, with x(t9) € X, and
for all u(t) € U(t).
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The forward reachability tube Ry, ;;)(X%,) is defined as
the set of states attainable by the system (1) during the
interval [to,ty]:

R[toytf](‘)(to) = U Rt(Xto) (2)

tEfto,ts]

By defining a value function v(t, x) such that x €
Ri(Xy,) < v(t, ) < 0, it can be shown using the dy-
namic programming principle that the forward reachability
problem can be solved by the Hamilton-Jacobi-Bellman
(HJIB) partial derivative equation (PDE) (Kurzhanski and
Varaiya, 2001)

H(z, p) = Jun p" fz, u)]
ov ov
0 = (t @)+ H (az 5.t :1:)) 3)

’U(to, w(ﬁo)) <0 Vw(to) S Xto

where H(x, p) is the Hamiltonian function. The equation
(3) offers unfortunately no practical way to compute the
reachable sets. In practice, we restrict the sets X' and U
to belong to a certain class, which allows the use of sets
operators. In this framework, reachability computation of
discrete time invariant systems

Tpt1 = Ag T + Bg up (4)
is straightforward using linear mapping operator (L-)
LS={Lx:xcS}
and Minkowski sum (- @ )
S10S={x+y: xS, yecs}

S, 81 and Sy compact sets in R", L € RP*", p € N:

Xy =Ag Xp_1D By Up_4 (5)
Time discretization is mandatory for numerical computa-

tions, hence reachable sets for a continuous time invariant
system

t=Ax+Bu (6)
can not be computed exactly. Discretization with sampling
rate T of LTI systems can be obtained with:

T
Ag=exp(AT,) By= / exp ((Ts — s)A) Bds
0

3. SET REPRESENTATIONS

Equation (5) is used to compute reachable sets for discrete-
time linear systems when A and Uj belong to a set
class that is closed under Minkowski sum and linear
mapping. In this section, we present some popular set
representations, emphasizing on some useful set operations
for our application:

e Linear mapping (L-) and Minkowski sum (- & -): these
tools are necessary for computing the reachable set.

e Volume (vol(+)): used to compute the compensability
criterion.

e Intersection (- N -): can be used to compute the
reachable set volume of union of sets. For example,
given two sets X7 and X5, the volume of their union
is vol X1 4 vol Xy — vol (X1 N Ay).

3.1 Ellipsoids

Ellipsoids of dimension n are affine transformations of an
unit n-dimensional hyper-sphere

E={ctWe:lgl,<1} Eer

where ¢ € R"™ is the center of the ellipsoid and W € R™"*"
is the transformation. When W is invertible, they can be
represented by the equation

Ez{m:(mfc)TQfl(mfc)gl} zeR"”

={c, @}

with @ = WWT the shape matrix. To have a non-
degenerate ellipsoid, Q must be definite positive Q > 0.
Ellipsoids are closed under linear mapping;:

LE={Lc, LQL"}
However, ellipsoids are not closed under Minkowski sum
and intersection. In order to perform reachability com-
putations, a minimum volume outer ellipsoidal (MVOE)
approximation of the Minkowski sum can be performed.
This approximation can be constructed with the algorithm
from Halder (2018) presented here:

Proposition 1. (MVOE approximation (Halder, 2018)).
{Ca Q} = {Cl, Ql} ® {027 QQ}
c=ctcy

Q=Q+;)@+u+mo2

The new shape matrix @Q is parametrized by a scalar .
Its optimal value is found using the following recursive
equation which is always convergent

1
i1 TEB

n Y
Zi:l 1+Br i
where n is the dimension of the ellipsoid, and A;, i =
1,...,n are the eigenvalues of Qleg.

Br+1 =

Volume of an ellipsoid is computed with the formula
2 \/detQ (7)

vol(€) =

where T is the standard gamma function (Halder, 2018).

3.2 Polytopes

Polytopes are bounded convex polyhedron which are the
intersection of a finite number of half-spaces. A polytope
P in dimension n has two equivalent representations:

e 7{-representation where the polytope is represented
by its m half-spaces using linear inequalities:

P={x:Hx<b} zecR" HeR™"

e )V-representation where the polytope is represented by
the convex hull of its p vertices V'

P = conv(V) V e RP*"

Finding the V-representation of a polytope given the H-
representation is called the vertex enumeration problem,
and finding the H-representation with the V-representation
is the facet enumeration problem. By geometric duality,
these two problems are equivalent. Polytopes are closed
under linear mapping, Minkowski sum and intersection.
Linear mapping and intersection can be computed easily
in H-representation:
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LP={x: HL 'z <b} (8)

H, b,
N = : <

Minkowski sum is harder to compute and usually require
two steps (Kvasnica, 2005):
H2 —Hg_ X < bg
0 H1 1 o b1

_ (9)
proj is the projection along the dimensions of x. This
projection can easily be done in V-representation:

P1 & Py = proj {:BER”:

proj P = conv (Vi) (10)

The volume of a polytope can be calculated exactly from
both of the representations (Lawrence, 1991).

3.3 Zonotopes

Zonotopes are symmetric polytopes. A zonotope Z of
dimension n with p generators can be formed by the affine
transformation of a unit hypercube (Scott et al., 2016)
Z={c+GE: [l <1} €€k’
= {67 G}
where ¢ € R™ is the center of the zonotope and G € R™*? is

the generator matrix. Equivalently, it is also the Minkowski
sum of the generators

p
Z=c+Pac
=1

where G* represents the ith generator (i.e. the ith column
of G). Zonotopes are closed under linear mapping and
Minkowski sum:

LZ ={Le, LG}
2105 ={ete, |GG}

However, zonotopes are not closed under intersection. The
volume of a zonotope is

vol(Z) =2"
1<j1<...<jn<p
J1s--.,Jn represents n columns chosen among the p

columns of G. The sum is performed over the (Z ) combi-
nations (Gover and Krikorian, 2010).

|det (Gi1++n)

When using zonotopes for reachability computations, the
number of generators of the computed zonotope increases
steadily because of the Minkowski sum. To limit this
growth, several zonotopes reduction techniques have been
developed, see Combastel (2003); Scott et al. (2016).

3.4 Support functions

Support functions are used to represent convex sets. A
support function p(l) representing the convex set S in
dimension n is defined as Girard and Guernic (2008):

p: R" =R

I— maxlTz
xES

Several convex sets can be easily represented as support
functions:

Ellipsoids € = {¢, Q}:

pe(l) =1"c+
Zonotopes Z = {¢, G}:

P
pz(l) =1"c+ ) |I"G’|
i=1
Polytopes in H-representation P = {x : Hx < b}:

1TQl

pp(l) = maxiTz under constraints Hx < b
T

Polytopes in V-representation P = conv(V):

pp(l) = max (VI)
where V is the matrix of the vertices, and max selects
the maximum element in the column vector.

Polytopes can be seen as “sampled” support functions. With

a finite number of direction vectors {l Lo, lp}, it follows
that
(1)
T
;c:[ll...lp} x < :
p(I")

is a polytope that over approximates the support function
p(l). Support functions are closed under linear mapping,
Minkowski sum and intersection:

Lp(l) = p(L"1)
PS1®8; (l) = PS; (l) + ps, (l)
Intersection of support functions can be computed with:

psins, (1) = min (ps, (1), ps, (1)) (11)

Unfortunately, the equation (11) does not belong to the
support function class due to redundancy. However, an
exact solution can be computed using the polar duality = :
p*(l) = ﬁ (Ghosh and Kumar, 1998):

psins, (1) = (max (p%, (1), p5,(1))"

Volume of a support function can be computed by sampling
it and using a H-representation method.

4. COMPUTATIONAL ASPECTS

In this section, it is firstly proposed to assess the algo-
rithmic computational complexity for the aforementioned
set operations to evaluate a volume of reachable sets. The
second subsection will introduce in a general context the
proposed fault recoverability criterion.

4.1 Computational issues

Table 1 summarize the algorithmic computational com-
plexity for the set operations. It is assumed that any
operation over a scalar is O (1) (.i.e done in constant time),
and n X n matrix multiplication is O (n3) Any matrix
concatenation is O (1). n denotes the dimension of the
set, p the number of elements (i.e. the numbers of half-
spaces for H-representation, of vertices for V-representation,
of generators for zonotope and the number of direction
vectors for support functions). S denotes the computational
complexity of evaluation of p(l) where l is a direction vector.

Linear mapping for H-representation is computed with
equation (8). Minkowski sum for polytope is computed
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Table 1. Computational complexity O (-) for set

operations
Rep L. -D - SN vol(-)
Ellipsoid 2n3 - - n3
H-rep pn? +n? | (p1+p2)" 1 p"
V-rep pn? (1+p2)" | (p1+p2)2 | p?
Zonotope pn? 1 - (5) n3
Supp. func. | pn2 + pS p+2pS 4p + 2pS p"

with equations (9)-(10). Facets or vertices enumeration
problems are computed with the software cdd (Fukuda,
2019) or toolbox MPT3 (Herceg et al., 2013), computational
complexity is assumed to be O (p%) Volume for H-
representation polytope is computed with the revisited
Lasserre algorithm, implemented in VINCI (Biieler and Enge,
2003) software.

4.2 Fault recoverability criterion

The fault recoverability criterion J is computed as the
relative difference between the volumes of the fault-free
reachable set R and the faulty reachable set R at time
ts (Chamseddine et al., 2015; Torres et al., 2017). By this
definition, the (normalized) criterion is defined by:

volR — vol R

J= vol R

(12)

5. NUMERICAL ILLUSTRATION

The introduced reachable set methods are now tested
on a standard satellite angular velocity model. The first
objective is to select the most suitable one in terms of
computational complexity and conservatism to integrate it
in the fault recoverability assessment. The selected method
is finally applied to faulty satellite to highlight the lost
domains in fault situations.

5.1 Angular velocity model of a satellite

Satellite rotational motion can be modeled in the body-
fixed frame of the satellite R;, (whose origin is the center
of mass of the satellite) using second law of Euler

W= J*lsz —J'wx Jw
k

(13)

where w = [p ¢ ] is the angular velocity vector, J € R3*3
is the inertia matrix, Y, T} € R3 is the sum of externally
applied torques and x denotes the cross product. The
satellite uses twelve thrusters, which are normalized to take
inputs between 0 (thruster fully closed) and 1 (thruster fully
open), collected in the command vector w. In this study
case, disturbances are not considered. Hence, thrusters are
the only source of torques

Z T, = M, u

k
with My, € R3*12 denotes the thruster configuration
matrix which projects the thrusters’ space in the moments’
space. The non-linear obtained model can be put in state-
space form then linearized around the equilibrium point

(14)

Admissible control region

["1Zonotope
50 Ellipsoid

uy [Nm]

Fig. 1. Exact zonotope command set, and its MVOE
enclosure

w = 0 and discretized with Ts; = 0.1s, which yields to the
following discrete LTI model:

Tpt1 = Iz + BgMyp,uy (15)

with I,, the identity matrix of dimension n.

5.2 Computation of reachability set volume in fault-free
case

The initial state x( is fixed at the origin &y, = 0. The
control input u can be anywhere inside the possible control
set which is the 12-hypercube. By definition, the command
set can thus be a zonotope U = %Mthr {112,112}, where
115 is a twelve dimensional column vector of ones. Note
that thruster inputs are normalized to be between 0 and 1,
not -1 and 1, hence the factor % This zonotope is plotted
on figure 1. It is proposed now to compute the reachable
set for the next five steps, i.e the simulation is run for 0.5s.

Ellipsoid  The command set is transformed into an
ellipsoid using a minimum volume outer approximation.
The center ¢ of the ellipsoid is the same as the center of the
zonotope ; the shape matrix @ is found with the following
optimization program which uses the V-representation of
U (Gotoh and Konno, 2006)

Q = argminlog (det Q)
Q

(v—0)'Q 7 (v—rc)
Q>0
with Vi, that corresponds to the vertices of U.

. Y V;
under constraints { vEWu

The volume computed with equation (7) is reported in
table 2.

Polytope  H-representation of the command set can be
obtained using the algorithm presented in Althoff et al.
(2010). Based on the model (15), the results of polytope
computations are given in table 2. From these results, it
can be seen that there is some numerical problem leading
to an overestimated set volume.

Polytope Bg  To overcome the numerical computation
issue, let the model

Tp41 = Agzy +UB,
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Zonotope reachability of a satellite pgr mode(l) .
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Fig. 2. Zonotopes reachability of the satellite pgr model

be considered. Up, is the command polytope obtained from
the zonotope %BthhT {112,1;2}. Polytope simulations are
implemented using the MPT3 Toolbox (Herceg et al., 2013).
Results are reported in table 2.

Zonotope The command set being a zonotope, compu-
tation is straightforward using model (15) and equation

(5).

Support function 400 vectors are chosen to linearly span
all the directions. The command support function is then
computed by over-approximating the H-representation of
the command polytope set. The results are inserted in table
2.

Support function with integrator model ~ The model (15) is
an integrator. To take advantage of this feature, proposition
2 is considered to exactly compute the reachable set.

Proposition 2. Given Xy = 0 the initial state and U =
{x: Hyx < by} = € R" the command set, the support
function reachable sets with an integrator model can be
computed exactly with the equation

px,(Hu) = px,,_, (Hu) + pu(Huy)
Results are reported in table 2.

Selection of the most efficient reachable set tool Table 2
summaries the results of the simulation. The polytope By,
zonotope and support function integrator are expected to
give the exact solution. The other methods give conserva-
tive approximations. In regard to the desired properties,
zonotope and support function (integrator) give the best
trade-offs. Zonotopes allow fast and exact computations.
However, they can only represent symmetric convex sets
and intersection computations are not possible, which can
further complicate their use with more complex sets for
volume computation. On the other hand, support function
integrator are flexible tool and can represent any convex
set. In this context, the intersection computation can easily
be extended to non-convex sets for volume computation.
If support functions only provide over-approximations,
the tightness is completely tunable through the choice
of the direction vectors. Based on this analysis, the volume
involved in the fault recoverability criterion will be obtained
by support function for integrator system.

Table 2. Simulation results for the different
reachability methods

Method Set volume Simulation time
Polytopes 2.8970 x 107° 3m
Ellipsoids 2.3247 x 107% | 5.4440 x 10~ 3s

Support functions | 1.4514 x 10—° 5.9447s
Polytopes By 1.2800 x 105 | 7.1847 x 10~ s
S.F. Integrator 1.2614 x 10~% | 1.8200 x 10~ 35

Zonotopes 1.2562 x 107% | 8.5230 x 10~ 3s

Angular velocity lost domains (THR4 closed)

Lost domains

0.04

0.02
0

-0.02

z3 0 7 [rads™!

-0.04

-0.01

0.02

z1 @ p [rads™!]

29 ¢ q [rads™!]

Fig. 3. Reachable set at time t; computed with support
functions in the fault-free case (red), and with thruster
4 closed (blue)

5.8 Computation of fault recoverability criterion

We now consider the case of one thruster failure in model
(15). The faults considered are: the thruster is blocked in
closed position, its command is always 0; or the thruster is
blocked in open position, its command is always 1. We make
the assumption that two faults cannot occur simultaneously.
The faulty command set can still be represented by a
zonotope

1
U = §Bthhr {C, G}

with ¢ a twelve dimensional column vector of ones except
on the row of the faulty thruster which is zero when the
thruster is closed and two when the thruster is open. G is
a twelve dimensional diagonal matrix of ones except on the
index of the faulty thruster which is zero (for both faults).

The simulations are run using support functions and the
direction vectors are chosen to be the normal of the facets
of Y. Since the model (15) is an integrator, this results in
exact computations. The obtained values of the criteria
J are presented in table 3. These results are the same as
those obtained in Torres et al. (2017). Figure 3 shows the
difference between the fault-free case and the case with
thruster 4 closed. Results show that the loss of control
authority is the same for opened and closed faults, which is
coherent given that the corresponding command zonotopes
have the same generator matrix.

6. CONCLUSION / FUTURE WORKS

In this paper, an overview of four reachable set computation
methods are firstly presented. Among the tested methods,
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Table 3. Loss of control authority (value of J) in % for all considered faults

Fault THR1 | THR2 | THR3 | THR4 | THR5 | THR6 | THR7 | THR8 | THR9 | THR10 | THR11 | THR12
Closed 34.15 34.25 6.98 34.14 33.77 6.71 34.25 34.15 6.98 33.77 34.14 6.71
Opened | 34.15 34.25 6.98 34.14 33.77 6.71 34.25 34.15 6.98 33.77 34.14 6.71

277

two seems particularly suitable: zonotopes with the advan-
tages of fast and exact computation, but the drawbacks
that zonotopes can only represent symmetric convex sets ;
and support functions which are very flexible and quite fast
to compute, even if results are often over-approximations.
The computed reachable set can then be used to form a
fault recoverability criterion. Relative difference between
the nominal case and thruster failures cases can be used
to quantify the loss of control authority. In future works,
the test of the inclusion of the reference trajectory in the
faulty reachability tube will be used to determine if a fault
is recoverable. In addition, it will be welcome to provide
tools able to take into account the effect of disturbances
and model parametric uncertainties. This is the topic of
our future works.
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