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Abstract This paper introduces a secure and scalable intelligent transporta-
tion and human behavior system to accurately discover knowledge from urban
traffic data. The data is secured using blockchain learning technology, where
the scalability is ensured by a threaded GPU. In addition, different optimiza-
tions are provided to efficiently process data on the GPU. A reinforcement
deep learning algorithm is also established to merge local knowledge discov-
ered on each site into global knowledge. To demonstrate the applicability of
the proposed framework, intensive experiments have been carried out on well-
known intelligent transportation and human behavior data. Our results show
that our proposed framework outperforms the baseline solutions for the outlier
detection use case.

Keywords Blockchain Learning · Reinforcement Learning · Anomaly
Detection · GPU · Intelligent Transportation.

1 Introduction

Cities are rapidly growing as they strive to accommodate more than 2.5 billion
smart citizens by 2050. Understanding city dynamics is crucial to harmonizing
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internal conflicting demands in housing, business, leisure, mobility, energy, or
ecology, as well as managing external shocks. Heterogeneous data in smart
cities is rapidly growing in volume and types, which makes data mining play
an important role in smart-city modeling to improve city planning knowl-
edge. Intelligent transport plays an important role in smart city applications,
particularly in terms of the appearance of the Internet, which promotes new
intelligent devices and apps as ever before. The development of large amounts
of urban traffic data in time and space has resulted in the smart sensors offered
by IoT (Internet of Things) technologies [1]. A useful way to analyze urban
traffic data is by utilizing data mining and machine learning techniques [21,
31,43,46]. Urban traffic anomaly detection is one of the hot topics in urban
traffic analysis. The aim is to identify anomalous patterns from a set of urban
traffic data. LOF (Local Outlier Factor) [6] is one of the well-known anomaly
detection methods based on density computation. LOF has shown great suc-
cess in dealing with various industrial IoT applications such as manufacturing
[18], intelligent transportation [12], and among others. However, solutions to
urban traffic anomaly detection [23,36,44] are only able to identify local out-
liers, where global outliers may be identified from urban traffic data. These
solutions are also lacking privacy, where they do not provide a secure mech-
anism for the distributed analysis process. Additionally, these solutions have
high time consumption for dealing with large scale data.

Recently, Blockchain technology has demonstrated promising developments
as well as has gained a lot of academic and industry interest [26,48], where it
provides efficient cryptography tools for solving distributed problems. Coupled
with deep learning, blockchain technology has become a unique and power-
ful tool for handling distributed, and heterogeneous computing [29,47]. Par-
ticularly, the use of reinforcement learning with Blockchain has attracted a
lot attention in the last two years [10,29]. Some of these works developed a
reinforcement learning based on blockchain technology for securing the next-
generation wireless networks. Other works have adopted a reinforcement learn-
ing approach to provide a mechanism for evaluating the industrial internet of
things systems in terms of scalability, decentralization, latency, and security.

In other context, GPU (Graphical Processing Units) are graphic cards,
which have been recently used for solving complex problems [13,17,41,55].
The programming model for the GPU consists of several GPU threads that
are grouped logically into many thread blocks. Each thread in one block shares
a memory space in the same block with other threads. Every block also has
access to permanent constant and global memories. Threads are divided into
32 threads and 1024 threads in thread blocks. Several challenges should be
taking into account for designing GPU based solutions. One of the well-known
GPU challenges is threads divergence, where each thread of the same wrap
should execute the same portions of code [15,16].

To the best of our knowledge, current intelligent transport systems so-
lutions focus on discovering patterns of urban traffic information and neglect
security problems [9,37]; existing blockchain learning technologies are not ded-
icated to urban traffic data. In contrast, this paper introduces a secure and
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scalable intelligent transportation framework to identify global knowledge in
a distributed and heterogeneous environment. This paper includes the major
contributions as follows:

1. We proposed a new framework for detecting global knowledge in distributed
and heterogeneous urban traffic and human behavior data.

2. A LOF algorithm is then designed to identify local anomalous patterns in
each site of the distributed platform.

3. A new strategy based on blockchain technology and reinforcement learning
to merge the local anomalous patterns into global anomalous patterns is
then developed. Blockchain allows to secure the merging process, while the
reinforcement learning allows to accurately identify the global patterns.

4. We investigated a GPU based computing to boost the performance of the
proposed approach in dealing large urban traffic data. In addition, an op-
timization of our GPU-based solution is developed by minimizing threads
divergence among GPU blocks.

5. We finally analyzed the proposed framework on large intelligent trans-
portation and human behavior data. The results reveal the usefulness of
our framework compared to the baseline solutions.

The rest of this paper is organized as follows: Related work is summarized
in Section 2. The proposed framework and designed algorithm is discussed in
Section 3. We report our experimental results in Section 4. Section 5 discusses
the main funding of the application of the proposed framework in deriving
global knowledge in urban traffic and human behavior data, and draws direc-
tions for future works. Section 6 concludes the paper.

2 Related Work

In this section we briefly discuss two main bodies of related literature: one on
intelligent transportation systems and the other on blockchain learning.

2.1 Intelligent Transportation Systems

Zheng [53] provided different representations of trajectories including sequences,
matrices, graphs, and tensors, and different preprocessing tasks such as noise
filtering, map matching, and compression. The authors divided solutions to
trajectory outlier detection on anomalous trajectories and sub-trajectories,
finding noise points in the entire collection of trajectories and detecting anoma-
lous trajectory incidents. A general trajectory data mining architecture, em-
bedded in several layers, including preprocessing, data management, query
processing, trajectory data mining tasks, and privacy security, was proposed
by Feng et al. [22]. Their framework with different levels of abstraction helped
better understanding of the existing solutions of trajectory mining. Gupta et
al. [24] submitted an insightful survey describing the methods used to identify



4 Asma Belhadi et al.

temporal outliers. Their survey organized a discussion about different data
types, introduced different outlier concepts, and addressed different applica-
tions for which temporal outlier techniques (environmental sensor networks,
trajectory, biological, astronomy, and web data) have been successfully used.
A general urban computing system was proposed by Zheng et al. [54] con-
sisting of four steps including urban sensing, urban data management, data
analytics, and service providing. Urban sensing attempts to capture the mo-
bility of people using GPS sensors or their signals from cell phones. In order
to store the spatio-temporal information obtained in the first step, urban data
management employs powerful indexing structures. Data analytics are able to
define and derive useful trends benefiting from the indexing systems, such as
clusters and outliers. The purpose of the service providing is to analyze the
information gathered and to give it to the urban planner to distribute and
diagnose anomalies.

Kiran et al. [5] have categorized the current approaches to trajectory anal-
ysis according to the framework used during the processing phase such as
distance-based, density-based, and motifs-based. By evaluating a locality no-
tion proposed in [42], Djenouri et al. [19] outlined several existing outlier meth-
ods [4,14] of detect urban traffic flows, including various representations in-
cluding flow values, segment flow values, trajectory and sub-trajectory outliers.
The presented solutions were limited to intelligent transportation community.
Another work providing intensive comprehensive study of existing data mining
and machine learning solutions for intelligent transportation analysis could be
found in [2]. Meng et al. [34] analyze the existing urban traffic data regarding
two dimensions: The first dimension is the key features used to retrieve the
traffic patterns such as speed, direction, position, time. The second dimension
is the distance used to measure the divergence among urban traffic data. Al-
turi et al. [3] discussed different types of pattern and motifs for urban traffic
analysis on both spatial and temporal dimensions. Chandola et al. [8] provided
a comprehensive and structured overview of the existing solutions to solve the
sequence analysis problem and consider trajectories as a case study of their
study.

2.2 Blockchain Learning

Dai et al. [10] developed a reinforcement learning based on blockchain technol-
ogy for securing the next-generation wireless networks. The system maximized
utility, and accurately caching data sharing across the network. Weng et al.
[47] proposed a DeepChain framework proposed a distributed deep learning
framework to solve the federated learning issues, where the learners may be-
have incorrectly in parameter updating. It is based on a value-driven incentive
mechanism using blockchain technology to oblige the participants to behave
correctly. Liu et al. [29] deal with blockchain-enabled Industrial IoT issues, and
adopted a reinforcement learning approach to provide a mechanism for eval-
uating the industrial internet of things systems in terms of scalability, decen-
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tralization, latency, and security. Qui et al. [38] considered a joint optimization
problem, and Q-learning approach to describe, and solve the view change, ac-
cess selection, and computational resources allocation in a blockchain system.
Liu et al. [28] proposed a blockchain-enabled reinforcement learning approach
to create a safe environment, and maximize data collection in industrial Inter-
net of things systems. Dai et al. [11] considered the online offloading problem
as a Markov decision process. It integrated the blockchain mining, reinforce-
ment learning, and the genetic algorithm to maximize the long-term offloading
performance. Chai et al. [7] introduced a hierarchical federated learning for ve-
hicle knowledge sharing platforms. In the same context, Lu et al. [32] suggested
the blockchain empowered asynchronous federated learning based solution for
secure data sharing in Internet of vehicles. Qu et al. [39] introduced a new
federated learning strategy allowed by blockchain, enabling local learning up-
dates of terminal devices to exchange with a global learning model based on
blockchain. It also allowed autonomous machine learning to sustain the global
model without centralized authority. A blockchain-enabled distributed Inter-
net of Things technology was developed by Luo et al. [33] to synchronize local
views between different software-defined networking controllers and achieve
global view consensus. The approach reduced the computational resources,
while considering both the hidden features of the controllers and the resource
constraints of the environment.

2.3 Discussion

As seen in the above short review of literature, current intelligent transport
systems solutions focus on discovering patterns of urban traffic information
and neglect security problems [9,37]. As for the existing blockchain learning
technologies, they are not dedicated to urban traffic data. In contrast, in this
paper, we propose the first dedicated framework to deal with urban traffic data
in heterogeneous distributed environment using blockchain learning technol-
ogy.

3 SS-ITS: Secure and Scalable Intelligent Transportation Systems

Let us start by defining the SS-ITS main features (Secure and Scalable In-
telligent Transportation Systems). Generally speaking, our framework shown
builds upon data mining, deep learning learning and blockchain technology. In
particular, we use data mining represented by sklearn package to discover the
relevant patterns from urban traffic data. We also use deep learning in merging
the patterns retrieved at each site using the keras package. The whole process
is supervised by blockchain technology to ensure that security and privacy is-
sues in collecting heterogeneous and distributed urban traffic data from each
site. We will explain the specifics of SS-ITS components in the rest of this
section.
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3.1 Mining Process

Urban traffic analysis is a time-consuming process because scientists and en-
gineers have to consider large data coming form different sensors. Feature
extraction is needed to identify and extract meaningful features from urban
traffic data. The initial traffic data is divided into different windows, the values
of each window is processed, and only the mean, the maximum, the minimum,
and the median values are considered as features for the next processing. Dif-
ferent data mining techniques may be applied to this framework, however in
this research work, we focus on identifying local anomalous patterns from ur-
ban traffic. We used the LOF (Local Outlier Factor) [6] to identify anomalies
from urban traffic data, the set of features from the training traffic data are
extracted. Our adapted LOF besides using a slightly more complex density
estimation, compares the density estimate for each feature f with the density
estimates of the kNNs of f . The density estimate in LOF is the lrd (local
reachability density) as in Equation 1

lrd(f) = 1

/∑
p∈kNN(f) reach-distk(f, p)

|kNN(f)|
, (1)

where the reachability-distance (reach-dist) with parameter k is given by
Equation 2.

reach-distk(f, p) = max{kNNd(p), dist(f, p)} (2)

The reachability function can return the maximum value between the dis-
tance of the point p and its kth neighbors, and the distance of the point p and
the point f . In this work, we adopt the DTW (Dynamic Time Warping) to
determine the distance among the urban traffic features. DTW is capable of
handling transformations such as local warping and shifting, and even of com-
paring data of different lengths. More formally, the distance function between
two urban data features, fi, and fj is defined as in Equation 3.

D(fi, fj) =

0, if |fi| − 1 = |fj | − 1 = 0
∞, if |fi| − 1 = 0, or |fj | − 1 = 0
fio − fjo + σ, otherwise

(3)

where,

σ = min

D(fi/fiofj/fjo)
D(fi, fj/fjo)
D(fi/fio, fj)

(4)

We note here that fio, fjo are the current values of the urban traffic fi,
and fj . The final outlier score is then described as in Equation 5.
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LOF (f) =
1

|kNN(f)|
∑

p∈kNN(f)

lrd(p)

lrd(f)
(5)

The local density estimate for p (i.e., lrd(p)) is not equivalent to any other
local density estimates but only with its closest neighbors’ k density estimates.
The global ranking of all outliers according to their relative (estimated) den-
sity is based on the densities of the nearest neighboring k (Equation 5). This
relationship with the local data set characteristics results in the local process.
Features under 1 are called outlines and are not taken into account in the next
measures. As a result of this step, local anomalous patterns called Oi for each
site in the distributed environment.

3.2 Security

Our goal of this step is to learn the global patterns from the different patterns
discovered on each site. Our idea is based on reinforcement learning which
approximate a distribution over reward function. We first consider the reward
function as a function which evaluates the patterns candidates. A pattern
is retrieved if its score is greater than a minimum threshold. Therefore, the
reward function will be given for a given user threshold γ as in Equation 6

R(Ci|Θ) =

{
Ci ⊆ Oi

Score(Ci|Θ) ≥ γ, (6)

where,

Density(Ci|Θ) = Evaluate(Ci)× L(Θ) (7)

Note that Evaluate(Ci) is the function that the evaluate the pattern Ci,
which depends to the task used. For instance, if we are interested to the outlier
detection task, this function will be the quality of the outliers provided by
the pattern Ci. L(Θ) is the function based on Θ parameters which aims to
maximize the likelihood in the pattern candidate.

We sample a single reward function from its approximate posterior at the
beginning of each training iteration. In order to produce the pattern can-
didates, we then adopt a sample generation policy for the duration of the
iteration and strengthen the policy with respect to the sampled reward func-
tion. Then we estimate the gradient and update the reward function using the
generated patterns of candidates from the target site. This phase is repeated
until the progress achieves convergence. We use Ethereum as the necessary
data storage service to guarantee safe data sharing between sites and create a
private blockchain that includes all sites as Ethereum nodes. Indeed, both web-
sites are used to track and aggregate data-sharing transactions into blocks. All
sites receive and distribute requests for transactions exchanging data, where
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each site registers with the certificate authority and receives its public or pri-
vate keys to be a legal terminal identity. To ensure that the collected data is
valid and cannot be forged on the blockchain network, it must also first en-
crypt and then send data to the certificate authority, which will check whether
the data come from a legitimate site, and if it is real. After authentication,
the certificate authority signature and encrypted data are returned to the des-
ignated site and can be sent to the blockchain as storage requests from that
site.

3.3 Scalability

The aim of the designed model is to improve the overall performance by using
GPU architecture. In the following section, we illustrate how the proposed ap-
proach benefits from GPU threading to improve runtime performance of the
intelligent transportation system. The urban traffic data are first divided into
several sliding windows based on the number of GPU blocks used in mining.
This step is performed sequentially on CPU host. The sliding windows are
then sent to the GPU global memory thanks to the CPU/GPU communica-
tion channels. Each sliding window is transmitted to the shared memory of the
bloc bi, where the threads of the block bi are mapped to the urban traffic data
of ith sliding window. Therefore, the jth thread in bi, say thij , determines the
local patterns, and send it to the CPU host. From a theoretical standpoint,
this strategy improves the sequential version of the our algorithm by exploit-
ing the massively threaded computing of GPUs while discovering the patterns.
It minimizes the communication between CPU/GPU by specifying only two
CPU/GPU points. The first one takes at the beginning place when the urban
traffic data is loaded into the GPU, while the second one when the discov-
ered patterns are returned to the host memory. It decreases the divergence
of threads, which is a typical problem for GPU computing. The divergence
of threads only takes place when different numbers of urban traffic data are
processed by threads of different blocks. This problem, however, requires sev-
eral GPU synchronization points. This happens when the GPU blocks various
numbers of urban traffic data from process grids. This degrades the efficiency
of our solutions based on GPU. Various numbers of urban traffic data per
grid can be collected in actual scenarios. This depends on how data on urban
traffic is put on the map, the different grid sizes the higher the GPU-based
implementation synchronization costs.

In the following paragraphs, we propose a solution to minimize the num-
ber of threads divergence. The number of threads divergence should first be
determined. In the proposed GPU-based solution, every grid contains different
number of urban traffic data. To identify the patterns on GPU, each thread
compares urban traffic data to the grid it is mapped with. Thus, thread di-
vergence can be caused by two factors such as: Firstly, each thread handles
various data on urban traffic. There are threads in this case that end before
others. Second, since it does not find the patterns in the grid in which it is
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mapped, the comparison phase of a given thread is stopped. These two param-
eters influence the number of thread divergences (TD) that can be determined
using Eq. 8 based on the number of comparisons made by the various threads
as in Equation 8.

TD = max{max{|t(r∗w)+i| − |t(r∗w)+j |}/(i, j, r) ∈ [1...w]3}, (8)

where |t(r∗k)+i| is the size of the (r ∗ k) + ith urban traffic that is assigned

to the ith thread and allocated to the rth grid. Note that k is the number of
grids.

In addition, the divergence of threads can be determined according to the
distribution of grid urban traffic results. Consequently, distinguish the follow-
ing two cases can be distinguished:
Irregular Distribution of Urban Traffic Data: when the grids are highly
different in size. Threads divergence can be approximated in this case to the
maximal number of urban traffic data minus one as in Equation 9.

lim
k→+∞

TD(m) = m− 1. (9)

Regular Distribution of Urban Traffic Data: Unlike the first case,
this is when there is a slight difference between the size of grids in terms of
urban traffic data. Let us consider r1 the variation between grids. This yields
Equation 10.

lim
m→+∞

TD(m) = r1. (10)

In the following paragraphs, we propose a solution that minimizes threads
divergence while attempting to improve the assignment of the grids on different
blocks. The grids are allocated by the amount of urban traffic data in each
system, and the grids of i urban traffic data are assigned to the ith block. The
number of blocks is therefore equal to the number of urban traffic records.
This strategy minimizes the thread separation between threads of the same
grid because of the same number of grids on the threads of each block. However,
if many grids have the same number of urban traffic details, the load balance
between blocks is not considered. Some blocks actually handle multiple grids
and others handle few grids. This degrades the mining process efficiency of
GPU. In order to deal with this issue, we propose capturing grids which reduce
the load balance and sort the theme by the number of urban traffic data. Then
each grid is allocated to a single thread while the ith grid is handled by the
ith thread. Both blocks have the same number of grids, ensuring load balance
between blocks.

4 Experimental Results

In this section, we evaluate the proposed SS-ITS framework and its differ-
ent components. In particular, the ability in identifying patterns is analyzed
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using transportation data. Outlier detection task is considered in these experi-
ments. In addition, the scalability performance of SS-ITS is compared with the
state-of-the art intelligent transportation solutions for outlier detection. The
experimental evaluation of the implementation has been performed on a com-
puter with 64 bit core i7 processor running Windows 10 and 16 GB of RAM.
The CPU host is a 64-bit Intel Xeon E5520 Quad-core with 2.27 GHz clock
speed. The GPU is a 448 CUDA-core Nvidia Tesla C2075 (14 multi-processors
with 32 cores each) and 1.15 GHz clock speed. The GPU system has 2.8 GB
main memory, 49.15 KB shared memory, and 32 warp size. In single precision,
both the CPU and the GPU are used. In our implementation scenario, we
used the GPU blocks to simulate the distributed sites. Each site is allocated
to one GPU block, where the threads of this site share a local memory, and
the communication among sites is done using global and constant memories
of the GPU host. In general, a common problem of data mining techniques
is the evaluation procedure. This is particularly the case for new applications
such as related to intelligent transportation, where a ground truth is typically
unknown. To facilitate a quantitative evaluation, in this research study, we
adapt the process of Zhang et al. [52] to inject synthetic ground truths from
urban traffic data. In particular, if we consider outlier detection task:

– Injecting local patterns: the noise information is then added several
times with a certain probability p ∼ U(0.8, 1.0) and a given threshold µ
that can be used to generate the local patterns.

– Injecting global patterns: To the local patterns, we again add noise but
now only a few times with a certain probability p ∼ U(0.0, 1.0) and a given
µ.

For both injections, each point pil in the time series TSi is changed as
follows in Equation 11.

pil =

{
pil + n ∼ N (0, 1) if p ≥ µ
pil otherwise.

(11)

The assessment is carried out using ROCAUC, which is a standard measure
for the assessment of anomaly detection [6].

4.1 Data Description

In our experimental evaluation, the well-known urban traffic data is then used
as follows:

1. ECML PKDD 2015 database competition: This dataset is retrieved from
the 1. It is a time-series database consisting real trajectories that is obtained
from 01/07/2013 to 30/06/2014 of 442 by 442 taxis in Porto, Portugal.
This allows more than 3 GB data contained in one single CSV file to

1 http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
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be retrieved. Each row contains one-trip information, including TripID,
CallType and TaxiID. A list of GPS coordinates is found in the last part
of the row. This list contains one pair of coordinates for each trip of 15
seconds. The last item in the list corresponds to the destination of the
journey, while the first item represents the start.

2. HUMBI dataset: It is a large corpus of high fidelity models of behavioral sig-
nals in 3D from a diverse population measured by a massive multi-camera
system [50]. The dataset contains human behavior from 164 subjects across
gender, ethnicity, age, and physical condition at a public venue. High mod-
els of five elementary parts are designed including: gaze, face, hands, body,
and cloth. As a byproduct, the 3D model provides geometrically consistent
image annotation via 2D projection, e.g., body part segmentation.

4.2 Performance against State-of-the-art Anomaly Detection Solutions

The first part of our experiments focuses on comparing SS-ITS against the
baseline anomaly detection solutions: DILOF (Density summarizing Incre-
mental Local Outlier Factor) [35], and MSCRED (Multi-Scale Convolutional
Recurrent Encoder-Decode) [51]. These solutions are chosen because they are
based on deep learning and they outperform the state-of-the-art anomaly de-
tection solutions. As shown in Fig. 1, several tests have been performed by
varying the number of injected anomalous patterns from 1 to 5 million. SS-
ITS outperforms the two other baseline solutions in terms of ROCAUC. This
comes from the fact that the SS-ITS is able to identify anomalous patterns
in heterogeneous sources as the case of intelligent transportation and human
behavior data. This is due to the efficient combination between the local out-
lier factor, and the reinforcement learning in dealing with anomaly detection,
which is missing in the state-of-the-art solutions.

4.3 Performance against State-of-the-art IT Solutions

The second part of our experiments focuses on comparing SS-ITS against the
baseline blockchain learning solutions: DRL (Deep Reinforcement Learning)
[10], and DuelingDQL (Dueling Deep Q-Learning) [38]. These solutions are
chosen because they are based on deep learning and they outperform the
state-of-the-art blockchain solutions. As shown in Fig. 2, several tests have
been performed by varying the data size from 1 to 5 GB. SS-ITS is faster than
the two baseline blockchain learning solutions. This comes from the fact that
the SS-ITS is able to identify anomalous patterns in heterogeneous sources as
the case of urban traffic and human behavior data. These results are reached
thanks to hybrid model during the learning process, where the simple local
anomalous patterns are identified using the local outlier factor, and then from
the anomalous patterns. Using this two stage based strategy, a searching space
is highly reduced, which in finding the global anomalous patters, only the local
anomalous patterns are used.
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Fig. 1 SS-ITS Vs.State-of-the-art Anomaly Detection Solutions

4.4 Performance against State-of-the-art High Performance Computing

The third part of our experiments focuses on comparing SS-ITS against the
baseline high performance computing solutions: LoTAD (Long-term Traffic
Anomaly Detection) [25], and FUAD (Fast Unsupervised Anomaly Detection)
[20]. As shown in Fig. 3, several tests have been performed by varying the data
size from 1 to 5 GB. SS-ITS is faster than the two baseline high performance
computing solutions. This comes from the fact that the SS-ITS provides an
efficient mapping among GPU blocks, where different optimization are tak-
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Fig. 2 SS-ITS Vs.State-of-the-art blockchain learning Solutions

ing into account, for instance, thread divergence issue is deeply analyzed and
optimized.

5 Discussions and Future Perspectives

An interesting finding of this study is that the efficient combination of several
concepts come from different fields in detecting anomalous patterns from urban
traffic and human behavior data compared to the baseline intelligent trans-
portation and human behavior solutions. We obtained this result by explor-
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Fig. 3 SS-ITS Vs.State-of-the-art High Performance Computing Solutions

ing data mining (nearest neighbors, and density computation), deep learning
(reinforcement learning), high performance computing, as well as blockchain
technology. From the perspective of data mining and deep learning, our sys-
tem is an example of adapting generalized algorithms to a particular urban
traffic and human behavior analysis context. As in many other real cases,
the translation into a certain application domain of pure data mine and deep
learning techniques involves methodological refinement and adaptation [27].
This adaptation is applied in our particular context by implementing a new
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model capable of detecting both local and global anomalous patterns of urban
traffic data.

From a blockchain perspective, our framework is an example of application
of blockchain technologies in securing the learning process from heterogeneous,
and distributed systems. Much efforts should be considered in this area to
reach full securing platforms, particularly for identifying anomalous patterns.
This work is only the tip of the iceberg, while much investigation by the data
mining, the deep learning, and the blockchain communities is required. This
allows to provide good and mature solutions that could be exploited by the
different actors of the smart city environment. The directions of future work
include:

1. More sophisticated techniques can be developed for deriving both local, and
global anomalous patterns from urban traffic and human behavior data.
For instance, other data mining techniques may be adopted such as prin-
ciple component analysis [49], and support vector machines [40], or more
advanced deep learning solutions such as active learning [30], and transfer
learning [45].

2. New visualization techniques can be developed, in order to present in an
accessible way the anomalous patterns to the city planners. In this context,
more effort is needed to investigating and targeting new applications of
local and global anomalous patterns from traffic and human behavior data.

6 Conclusion

This paper proposed a secure and scalable framework based on reinforcement
blockchain GPU-based learning for identifying knowledge from distributed and
heterogeneous urban traffic data. The local knowledge is first extracted in each
site. A reinforcement blockchain learning is then performed to merge local
knowledge into global updates. GPU computing is also performed to ensure
the scalability of the framework in dealing millions of urban traffic and human
behavior data. Intensive experiments have been carried out on well-known
competition data for intelligent transportation and human behavior systems.
Results showed that our proposed framework outperforms the baseline solu-
tions, and able to secure the learning process, and quickly derive knowledge
for the outlier detection use case.
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