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Abstract—JavaScript is one of the most popular programming
languages. However, its dynamic nature poses several challenges
to automated testing techniques. In this paper, we propose an
approach and open-source tool support to enable white-box
testing of JavaScript applications using Search-Based Software
Testing techniques. We provide an automated approach to collect
search-based heuristics like the common Branch Distance. To
empirically evaluate our results, we integrated our technique into
the EVOMASTER test generation tool, and carried out analyses
on the automated system testing of RESTful APIs. Experiments
on 5 NodeJS APIs show that our technique leads to significantly
better results than existing black-box and grey-box testing tools
in terms of code coverage and fault detection.

Index Terms—JavaScript Instrumentation, NodeJS, white-box
test generation, SBST

I. INTRODUCTION

As of 2020, according to the official statistics of GitHub [1]
(the most popular hosting solution for open-source software),
JavaScript has been for several years the most common
programming language for its hosted repositories. JavaScript
has been mainly known for running code in the browser, but it
can also be used for server-side applications using NodelS [2],
as well as desktop applications (e.g., using Electron [3]) and
mobile apps (e.g., using lonic [4]).

JavaScript (more formally, ECMAScript [5]) is a weakly
and dynamically typed language. These language properties
differentiate JavaScript from other popular programming lan-
guages, such as Java, C# and C/C++. Unfortunately, the lack
of strong typing significantly complicates static and dynamic
analyses [6], including automated test generation.

In this paper, we show how Search-Based Software Testing
(SBST) [7]-[10] techniques can be used for JavaScript appli-
cations. We describe how common techniques in the literature
like the Branch Distance [11]-[13] can be used for JavaScript
source code. In particular, we deal with the issues of dynamic
types and exception handling in composed predicates and
short-circuit operations. To the best of our knowledge, this
is the first full solution for the handling of SBST heuristics
for JavaScript source code. We implemented our technique in
an open-source tool, as a fully automated plugin for Babel [14]
(which is a popular tool for JavaScript code transformations).
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Our instrumentation would enable the use of SBST tech-
niques in different testing contexts, like for example unit test-
ing. To empirically evaluate the effectiveness of our JavaScript
instrumentation, we integrated it into the EVOMASTER [15]
tool, which does automated system test generation for RESTful
APIs running on the JVM (e.g., compiled from programming
languages such as Java, Kotlin and Scala). EVOMASTER
uses evolutionary algorithms like MIO [16], based on fitness
functions that exploit SBST heuristics.

The empirical study was conducted on 5 different systems
under test (SUTs) running on NodeJS, in which we compared
our white-box SBST approach with grey-box random testing
(in which only coverage metrics are employed, and no SBST
heuristics is used), and three black-box approaches: the one
provided by EVOMASTER, RESTler [17] and RESTTEST-
GEN [18]. The results of our experiments show that EvO-
MASTER integrated with our SBST heuristics for JavaScript
achieves the best results, both in terms of code coverage and
fault finding. In particular for code coverage, compared with
the black-box techniques, the relative improvements are up to
+521.80% (increase from 15.1% to 92.4%) of line coverage
and +1842.22% (increase from 4.3% to 83.8%) of branch
coverage.

This paper provides the following contributions to the state-
of-the-art: 1) A full working approach to enable SBST for
JavaScript applications; 2) A novel algorithmic approach to
improve the branch distance computations in JavaScript appli-
cations; 3) An empirical study on the testing of RESTful APIs
showing the improvement of our approach compared to three
state-of-the-art tools; and 4) An open-source implementation
with replication package' for our novel techniques.

II. RELATED WORK

SBST [7]-[10] techniques have been successfully used for
more than three decades, in several different testing contexts.
Popular SBST examples are EvoSuite [19] for unit testing,
and Sapienz [20] for testing of mobile apps. Evolutionary
algorithms are driven by the provided fitness function. To
achieve better results, different heuristics are employed to
“smooth” the search landscape, providing “gradient” to the
search algorithm to reach an optimal solution. In the context
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of white-box testing, a popular technique introduced in the
90s by Korel [11] is the so called Branch Distance. It
was first introduced to handle predicates involving numerical
comparisons (e.g., a < b), and then later refined for logical
operators [12] (e.g., AND and OR) and string comparisons [13].

To the best of our knowledge, the only existing SBST work
that deal with JavaScript instrumentation is the JEDI tool [21],
which aims at unit testing of JavaScript code that interacts with
the DOM in the browser. However, such work does not specify
how the instrumentation was done, nor does it mention many
of the issues we solve in this paper. It was claimed that JEDI
is open-source [21], but its repository [22] on GitHub is empty
at the time of this writing. So it is not possible to verify if
such challenges were addressed.

SBST instrumentation poses quite a few challenges, e.g.,
when dealing with logic operators such as && and | |, and
exceptions during test evaluation. To compute the branch
distance, code needs to be manipulated, but still we need to
make sure that the semantics of the SUT is not changed. Tools
that work on the JVM (e.g., EvoSuite) have an advantage
here, as the bytecode instructions are significantly simplified
compared to their original source code. For example, in JVM
bytecode there is no logical AND/OR operators, as those are
compiled into a series of base predicates with jump instruc-
tions. However, in the past, in the literature of SBST there
has been work on instrumentation of source code, in particular
for the C programming language [23], [24]. However, no full
details were given on how the instrumentation was done. At
any rate, some of our techniques rely on specific properties of
JavaScript (e.g., closures), which would not be applicable to
other programming languages such as C.

Regarding dynamic analyses on JavaScript programs with
non-SBST techniques, we refer to the survey of Andreasen et
al. [6]. However, no technique has been proposed that aimed at
system test generation for web services (e.g., RESTful APIs)
written in JavaScript. Most of the work has been on unit testing
(e.g., the more recent [25], [26]). One of the main challenges
here is that the entry point of the SUTs are TCP sockets,
and this kind of applications often use databases. This is a
very different scenario compared to other kinds of applications
like parsers where there are no external dependencies. Other
testing techniques that are not able to handle networking and
databases cannot therefore be used in this testing context.

As far as we know, EVOMASTER [15] is currently the only
tool that does white-box system test generation for RESTful
APIs, where being able to deal with networking and databases
is a major requirement. All other techniques presented in the
literature are black-box using different variants of random
testing (e.g., [17], [18], [27]-[30]), and so would not be able
to exploit any source code instrumentation.

ITI. JAVASCRIPT INSTRUMENTATION

A. Tool Support

Although JavaScript code is not compiled, it is typical to
apply transformations (referred as transpilation) to the source
code. Examples are for minimizing the code size (e.g., by

removing unnecessary empty lines, line-return characters and
code comments) to make those source files faster to download
on the browser, and to support old browsers (e.g., new features
of JavaScript can be transpiled into the equivalent code in
older versions of JavaScript). Another example is to support
different languages, e.g., TypeScript and React JSX, to run
on the browser (which only supports JavaScript, and more
recently WebAssembly).

At the time of this writing, the most used JavaScript
transpiler is Babel [14], which can be easily integrated in
package managers such as NPM/YARN and bundlers like
WebPack. Babel provides a plugin system, in which different
transformations can be applied in sequence.

Our instrumentation for SBST has been implemented as
a plugin for Babel, written in TypeScript. When a SBST
technique is applied, Babel needs to be called (e.g., from
NPM/YARN) to create an instrumented version, which is the
one that is going to be used as SUT. Probes are added to the
source code of the SUT, where the instrumentation runtime
library is automatically added as a dependency.

Instrumentation itself is not enough though, as it needs
to be integrated with a SBST test generation tool. For our
experiments in this paper, we employed EVOMASTER, which
generates system-level test cases for RESTful APIs. EVOMAS-
TER has two main components: a core process and a driver
process that is responsible to start/stop/reset the SUT, plus
applying code instrumentation with SBST heuristics. The two
processes communicate via HTTP, where the driver process
exposes a series of functionality as a RESTful API (e.g.,
having HTTP endpoints to collect coverage information after
a test case has been executed by the core process as part of the
fitness function evaluation). To use EVOMASTER, we simply
implemented a new driver program written in JavaScript,
implementing the same APIs of the original JVM driver
in EVOMASTER. The only modification needed in the core
program (which is written in Kotlin) was to add a new kind
of test output to support JavaScript. Currently, EVOMASTER
can output test cases (which are sequences of HTTP calls)
as JUnit [31] test suite files, in either Java or Kotlin, using
the library RestAssured [32] for making the HTTP calls. We
simply implemented a further option to output the test cases
in JavaScript, as Jest [33] test suite files, using the library
SuperAgent [34] for making the HTTP calls.

B. Code Coverage

A JavaScript program will be composed of a series of source
files, each one having code lines with code statements. Each
of which will become a testing target, which we keep track
in our instrumentation when they get covered by any test case
execution. The goal of test generation tools like EVOMASTER
is to generate test cases that maximize the number of covered
targets.

For each statement in the program, we add a probe that, once
executed, tells our instrumentation runtime that the statement
has been covered. Consider this simple example of a variable
assignment in a test.ts example file:



1 let x = 0;

then, its instrumented version would be:

1 const __EM__ = require ("evomaster-client-7js").
InjectedFunctions ;

2 __EM__.registerTargets (["File test.ts", "Line_ test

.ts_00001", "Statement_test.ts_00001_0"]);
3 __EM__.enteringStatement("test.ts", 1, 0);
4 let x = 0;
5 __EM__.completedStatement("test.ts", 1, 0);

In the first line, we import the declaration of our runtime
probes, with a unique name (e.g., __EM__ ) to avoid clashes
with the existing variables of the SUT. Secondly, we mark all
the existing testing targets in this source file. This is needed
to know what has not been covered after a test execution (as
which probes are executed depends on the control flow of
the SUT). Each target gets a unique id, with a meaningful
name (which helps when debugging). In this case, there are
three targets: one for the file, one for the line, and one for the
statement in that line.

In this case, two probes are added to the code: before the
statement (i.e., enteringStatement), and after it (i.e.,
completedStatement). Those function takes as input info
to create the unique ids for the targets (e.g., the file name,
source line, and a unique counter value for each statement on
the same line).

For handling the SBST heuristic values, we use the same
approach as currently done in EVOMASTER. Each target will
have a heuristic value in the range h € [0,1], where 1
represents that the target is fully covered, and 0 represents
that the target is not even reached during a test case evaluation.
Values in between represent how heuristically close a test case
was to cover the target.

When enteringStatement is executed, the targets for
file and line are marked as covered, i.e., h = 1. The one
for the statement is marked as 0.5, though. The idea here
is that statements might throw exceptions, and only once a
statement is fully completed we can know that no exception
was thrown. This means that in completedStatement the
heuristic value is then increased to h = 1. It is important here
to stress out the importance of having two separated testing
targets for the line and the statement. Assume for example
a test case in which an exception is thrown in the statement
(e.g., inside a method call), and so hs = 0.5. If there was
no target for the line, then the test case would not end up in
the final output test suite of EVOMASTER, as it only outputs
test cases for targets that are fully covered [35]. On the other
hand, if we only reported the line target with h; = 1, then
the search would have no way to know that an exception was
thrown, and that there is still the need to do mutations to try
to find input data for which an exception is not thrown. Search
algorithms like MIO [16] keep on sampling and mutating test
cases for targets that are not fully covered (e.g., hs = 0.5),
whereas for their targets that are covered the test cases are
saved in an archive, and no longer used in the search (unless
there exist copies in the other populations for the non-covered
targets [16]). Note though that a value like Ay = 0.5 does not

really give gradient to find input data that lead to no exception.
It is used to mainly tell the search to still keep trying to mutate
that test case.

One problem though is that there are some cases in
which completedStatement cannot be used after a
statement. This happens for statements that exit the execu-
tion flow, like return, throw and break/continue.
In this case, we replace enteringStatement with
completedStatement before the statement. For example,
consider the following code snippet:

1 const x = function () {

2 return ;
3}
which would be instrumented into:
1 __EM__.enteringStatement("test.ts", 1, 0);
2 const x = function () {
3 __EM__.markStatementForCompletion("test.ts", 2,
1)
4 return;
5 }

6 __EM__.completedStatement("test.ts", 1, 0);

However, there can still be cases in which a return
statement could throw an exception, like for example when re-
turning the result of a function call, e.g., return foo (x) ;.
We still want the search to evolve at least one test case for
which no exception is thrown. In this case, the instrumentation
would look like:

1 __EM__.enteringStatement("test.ts", 1, 0);
2 return __EM__.completingStatement(foo(x), "test.ts
"1, 0);

Here, completingStatement would mark the state-
ment as covered (i.e., hy=1), and then return the value of
its first input (recall that the instrumentation should not
change the semantics of the SUT), which is the expression
foo (x). Note that, if foo (x) throws an exception, then
completingStatement would not be called, and the
heuristic value would remain the same as the one set in
enteringStatement, i.e., hy = 0.5.

Another simple transformation needed here is that, for if,
while and for statements, we need to add a code block
(i.e., curly braces {}) if they have only one inside statement.
For example, something like if (x) foo (y) needs to be
rewritten into if (x){foo (y)}. Otherwise, adding probes
(e.g., between the if and foo) would change the control
flow execution.

C. Branch Distance

The control flow of the SUT can depend on complex
predicates, e.g., conditions in if statements. The branch
distance [11] was introduced in the purpose of providing gra-
dients that evolve test inputs in order to solve those constraints.
For example, consider a statement like i f (x===42) . Here, if
the input x is taken at random, there would be only 1 out of 264
possibilities to make that predicate true (note that JavaScript
has no integer type, but rather it has number type, which
is a 64 bit double-precision floating-point number). However,



a value like x = 50 would be heuristically closer to solve
that constraint than something like z = 900. Here, a branch
distance would be defined as d(x) = |x — 42|, for any given
input x.

To compute those distances, we replace all occurrences of
these binary expression operators: ==, ===, | =, | ==, <,
<=, >, >=. Given a binary expression A op B, we replace
it with: cmp (A, "op", B, id). The function cmp will return
the same result of A op B. However, internally it will create
two new testing targets (based on the unique input id): one for
when the expression is evaluate as t rue, and one for when it
is evaluates as false. Note that this transformation is applied
anywhere in the code, and not just in the if statements. For
example, const x = y > 42 would be instrumented into
const x = cmp(y,">",42,0) (assuming ¢d = 0). This
also helps to deal with the so called flag problem [36].

For each of these new targets, an heuristics h € [0,1] is
computed, which is based on the branch distance (after a
remapping transformation). Note that, when cmp is called,
necessarily one of two conditions will hold: e.g., the predicate
is either true or false. So, one of the two targets will be
necessarily covered (i.e., h = 1). If either the evaluation of
A or B (which could be functions) throws an exception, then
cmp would not be called anyway.

One challenge here is that JavaScript is weakly typed. It
is perfectly valid JavaScript code to compare an array to an
object. For example, something like [] > {} does return
false, i.e., an empty array is not larger/bigger than an empty
object. However, a comparison like [] 0 does return
true, i.e., an empty array and the numeric constant O are
the same for JavaScript (there are plenty of these “oddities”
in the JavaScript language, besides these simple examples).
So, the function cmp can be called with any type of inputs
for A and B, and their type cannot be guaranteed to be known
at instrumentation time. This poses a challenge to determine
which branch distance to use (if any).

The solution here is to check the types at runtime, using
the JavaScript typeof operator. If both A and B are of type
number, then Korel’s branch distance [11] is used to compute
the h heuristics. If they are both of type string, then we
use the string distances defined in [13]. For all the other input
types, we simply use a binary flag: h = 1 for the target
that is covered (i.e., either the true or false condition),
and a value A < 1 for the other (e.g, h = 0.01). Note that
cmp will never assign a value h = 0 for any non-covered
target. The idea here is that the search should be able to
distinguish between a testing target that is not even reached
(e.g., inside a code block that is not executed) with a value
h = 0 which is always lower (e.g., compared to h = 0.01)
than the heuristics for a target that has been evaluated, even if
not covered, regardless of which kind of branch distance we
can use. This helps the search to keep on trying to solve that
predicate, possibly keeping mutating the current test case that
led to the execution of that binary expression operator.

A major challenge here is how to deal with AND/OR
operators. In the 90s, the branch distance for those operators

was defined [12] as:
d(A&&B) = d(A) + d(B)
d(A[|B) = min(d(A),d(B))

(D
2

However, when dealing with source code like JavaScript,
those equations cannot be directly applied, due to short-
circuited evaluations. For example, in A&&B, if A is false,
then B is not computed (recall it could be a function call that
returns a boolean). Computing B to derive its branch distance
can lead to breaking the SUT’s semantics if B has side-effects
(e.g., changing the value of some variables). But unfortunately
there are further problems: how to deal with the branch
distance values when there are chained logical operators (e.g.,
A||B||C||D) without breaking the SUT’s semantics, and how
to deal with exceptions. For example, if in A||B the second
clause B throws an exception, will still want to compute and
track the branch distance for A when it is false.

To address these issues, in this paper we provide a novel
algorithm that relies on the use JavaScript’s closure feature [5],
which allows access to an outer function’s scope from an inner
function. Each use of || and && gets replaced by a function
call (i.e., or () and and () ). However, the two operands A
and B get replaced with function call declarations, e.g., ()
=> A (note that the arrow operator => is used in JavaScript to
define new functions, with the left side being inputs, and right
side being the code of the function). Consider the following
code:

1 const x =y == 42 || foo.bar();
it will be replaced by:
const x = __ EM__.or(
() = _EM__.cmp(y, "==", 42, "test.ts", 1, 1),

1

2

3 () = foo.bar(),
4 "test.ts", 1, 0);

Writing something like () => foo.bar () declares a
new function with no inputs, which, once called, it executes the
function foo.bar () and returns its value. When the or ()
function is called, foo.bar () is not executed yet. Note the
importance of closures here, as inside or () we would still
need to be able to access to the variables y and foo (which
might be local to the function where const x is declared).

The importance of using function declarations is that, inside
the functions or () and and (), we can create two new testing
targets (for t rue and false results of the predicate), before
either A or B is executed (which could lead to exceptions).
Their execution can be done inside a try/catch, in which, if
an exception is thrown, all heuristics can be computed and
registered before re-throwing the exception (recall that the
semantics of the SUT have to be preserved).

Figure 1 shows our actual implementation of the or ()
function (written in TypeScript). We omit the implementation
of and () due to space constraints, and due to the fact that
it is quite similar to or (). At any rate, as our EVOMASTER
extension is released open-source, it is available online.

There are a few problems that need to be taken care of
here. First, there is the need to be able to access to the branch



1 or(left: () = any, right: () => any, fileName:
string , line: number, branchld: number): any {

HeuristicsForBooleans.lastEvaluation = null;
const base = 0.01;
const exception = 0.005;
let xT: Truthness;
let x: any; let xE: any = null;
try {
x = left();
XT = HeuristicsForBooleans.lastEvaluation ;

2

3

4

5

6

7

8

9

10 if (!xT) {

11 XT = new Truthness(x?1:base, x?base:1);
12 } else {xT = xT.rescaleFromMin(base);}

13 } catch (e) {

14 xT = new Truthness(exception, exception);
15

16

17

18

19

20

xE = e; }
const leftlsFalse = (!x & & XE === null);
let h: Truthness;
let y: any; let yE: any = null;
if (leftIsFalse) {
HeuristicsForBooleans .lastEvaluation = null;
21 let yT: Truthness;
22 try {
23 y = right();
24 yT = HeuristicsForBooleans.lastEvaluation;
25 if (1yT) {
26 yT = new Truthness(y?l:base, y?base:1);
27 } else {yT = yT.rescaleFromMin(base);}
28 } catch (e) {
29 yT = new Truthness(exception, exception);
30 yE = e;}
31 h = new Truthness(
32 Math . max (xT. getOfTrue (), yT.getOfTrue()),
33 (xT. getOfFalse () /2) + (yT.getOfFalse()/2));
34 } else {
35 h = new Truthness (xT.getOfTrue () ,xT. getOfFalse
0/2): }
36 ExecutionTracer.updateBranch (fileName , line ,
branchld ,h);
37 HeuristicsForBooleans.lastEvaluation = h;

38 if (xE) {throw xE;}
39 if (leftlIsFalse &% yE){throw yE;}
40 return x || y;

Fig. 1: Implementation for or ()

distance (if any) of the left and right operands. This is
done by a global variable lastEvaluation, which needs
to be updated inside the cmp function before it returns. Note
that, in JavaScript, there is no need to worry about concurrent
access to such a variable from different threads, as JavaScript
has no multi-threading with shared memory.

The class Truthness is just a utility, to store the two
heuristic values for the two new testing targets (i.e., both
possible boolean outcomes). Then, when left () is evalu-
ated at line 8, there are three possible outcomes that affect
the heuristics: an exception was thrown, the operand had a
computed heuristics, or none was computed (e.g., when it
was simply a boolean variable). In the first case, both the
true and false targets get the worst fitness (i.e., 0.005),
but still greater than O (line 14), to reward evaluating the
or () compared to not even executing it. If the operand had no
existing heuristics, then the two heuristic values will be 1 (for
the covered target), and 0.01 (i.e., base) for the other. This
depends on the outcome x of the 1eft () evaluation. If there

was an existing heuristic value, before we can use it, it needs
to be re-scaled to be not smaller than base (line 12), which
can be done with a simple function like d' = b+ (1 — b)d.

The right operand can be evaluated only if the left
one was evaluated as false, without throwing any exception.
Otherwise, unless right is a pure function (i.e., with no side-
effects), we cannot guarantee the behavior of the SUT would
not be changed by our instrumentation if we invoke right ().
The heuristic computation of right is the same as for left
(line 23).

The computation of the combination of the heuristics for
left and right (line 31) is inspired by the Equation 1
and 2, but adapted from branch distances to i € [0, 1]. On the
one hand, the outcome true is taken when either of the two
operands is true, so we can take the maximum between these
two values (line 32). On the other hand, the outcome false
happens when both operands are false, i.e., 7(AV B) = =AA
—B. So their heuristic values can be summed together (like in
Equation 1), but then need to be divided by 2 to still remain
in the [0, 1] range (line 33).

When the 1eft operand throws an exception, the heuristics
for the or is based only on the value of the 1eft (line 35).
However, an important detail here is that the heuristic value for
the outcome false still needs to be divided by 2. Otherwise,
if after a mutation the 1eft operand is no longer true (or no
longer throwing an exception), then the computation at line 33
could lead to a worse heuristic value when adding the value for
right, instead of being rewarded for making left evaluated
as false.

After the heuristics h are computed for both targets, their
values are saved (line 36), and lastEvaluation is updated
(line 37). Then, we need to make sure that we do not change
the behavior of the SUT. If any exception was thrown, we
re-throw it (lines 38-39). Otherwise, the original output of the
| | is returned.

The last piece of the puzzle is how to deal with the negation
I, for example in expressions like ! (x==42). As anyway we
create two testing targets for each boolean expression, there
is no need to define any new heuristics for the ! operator,
as no new gradient information can be provided to help the
search. However, we still instrument it, by replacing any
'A with a function call not (A). The reason is that the
lastEvaluation variable needs to be updated (if any),
by swapping the heuristic values of the true and false
outcomes.

IV. EMPIRICAL STUDY

In this paper, we conducted an empirical study to answer
the following research questions:

RQ1: Are our white-box SBST heuristics effective at guid-
ing the search for maximizing code coverage and
fault findings?

RQ2: How does our novel approach perform in terms of
code coverage and fault detection?



TABLE I: Experiment design

(a) descriptive statistics of the case studies

SUT #JS LOCs #Endpoints Database MTB®
cyclotron 25 5803 50 MongoDB  7.52m
disease-sh-api 57 3343 34 Redis 15.15m
realworld-api 37 1229 12 MySQL  66.07m
rest-ncs 8 775 6 - 3.97m
rest-scs 13 1046 11 - 3.80m
total 103 10987 101
(b) experiment settings for the selected techniques
Context Techniques Budget Metrics
. JS-MIO 100k

White-Box JS-Random 100k ZTIilirrgl:;(sz)(only for WB)

BB-EM BB;EM 00k o0 o)
Black-Box BB;-EM MTB® #"Fa s

RESTler (v8.0.0) 2 x MTB .

RESTESTGEN 30m

(1) MTB is the maximum time spent by white-box techniques, and m
presents minutes; (2) for white-box testing techniques, %Lines and
%Branches are line coverage and branch coverage collected by the final
generated output test files, whereas, for black-box testing techniques,
%Lines and %Branches are line coverage and branch coverage collected
during the whole search process.

RQ3: Compared with the selected baseline black-box tech-
niques, does our novel approach achieve any im-
provement? If yes, how much is such improvement?

A. Experiment Setup

In this empirical study, we employed 5 NodelS REST
APIs as case studies. Their detailed descriptive statistics with
the number of scripts, lines of codes and the number of
endpoints are reported in Table Ia. Two of the case studies
(i.e., rest-ncs and rest-scs) are artificial APIs from an existing
benchmark [37], used in our previous work when evaluating
EVOMASTER [35], [38], [39]. The other three are real REST
APIs selected from GitHub (a popular open-source repository).

Regarding the case studies, rest-ncs and rest-scs were previ-
ously implemented with Java, based on code that was designed
for studying unit testing approaches on solving numerical [40]
and string [41] problems. For this study, we re-implemented
them with JavaScript. cyclotron [42] is an application (with
currently 1.5k stars on the GitHub) for creating dashboards
using a REST API that interacts with MongoDB [43] for
persisting data. disease-sh-api [44] (currently with 2.2k stars
on GitHub) provides a set of APIs to get detailed statistics of
various viruses (e.g., infected cases with a specified country,
and status of vaccine), especially for COVID-19. The statistics
information is collected from various online sources (e.g.,
Worldometers, The New York Times), updated periodically by
a separate service, and then stored in Redis [45]. In the context
of RESTful API testing, this separated service is not part of
the testing. Thus, to test its REST API for retrieving data,
we initialized a fixed data sample! into the Redis database.
realworld-api [46] is a Nest]JS application (1.7k stars on the
GitHub) that follows a real-world API specification [47] which
has been implemented by over 100 different solutions. The
application also connects with a MySQL database built with
TypeORM/Prisma.

Table Ib shows the set of the selected techniques used
in our experiments. To study the effectiveness of our white-
box SBST heuristics, we integrated them into EVOMASTER,
then conducted a comparison between MIO [16] (i.e., the
default evolutionary algorithm with SBST heuristics, denoted
as JS-MIO) and the Random-Search algorithm (without SBST
heuristics, denoted as JS-Random) which can be considered
as grey-box testing (as it still keeps track of which targets
are covered, like line coverage, when outputting the final test
suites at the end of the search). Moreover, in the context of
white-box testing, to the best of our knowledge, there does not
exist any other available test generation approach for NodeJS
REST APIs.

To further investigate our approach, we chose a set of
state-of-the-art open-source black-box techniques as baseline
techniques in our experiments. Based on a recent empirical
study on existing black-box testing generation tools [48],
RESTIler [17], [49] and RESTTESTGEN [18], [50] were
evaluated as the most robust and the most effective black-
box technique, respectively, for REST APIs. Besides, we also
selected a black-box technique provided by EVOMASTER [38]
(denoted as BB), which was not evaluated in [48].

All of the selected techniques were applied on the 5 selected
case studies using their default settings. Experiments were
repeated 30 times to take into account the randomness of
these algorithms [51]. Regarding the search budget settings,
we set 100k HTTP calls for the white-box testing approaches,
i.e., MIO (JS-MIO) and Random (JS-Random). For black-box
EVOMASTER, we also set the same number of HTTP calls
(BB ). However, black-box EVOMASTER typically performs
faster than white-box EVOMASTER (as it does not collect
coverage information after each test execution). Therefore,
we also considered a further configuration (BB;) where we
employed the maximum time spent by the white-box EvVO-
MASTER (MTB) as a time budget for black-box EVOMASTER
(as stopping criterion, EVOMASTER allows to choose either
time or number of HTTP calls). For RESTler, it only allows
time budget. However, as RESTler seems much slower than
EVOMASTER (i.e., number of HTTP calls per second), to
avoid possible bias due to implementation details and choice
of programming language (i.e., F# and Python vs. Kotlin), for
the experiments we used twice the time budget for RESTler
(i.e., 2 x MTB). For RESTTESTGEN, the time budget is
not configurable with the current available version online [50].
Therefore, the default budget (i.e., 30 minutes as stated in [18])
is applied in these experiments. Note the the MTB of each case
study is shown in Table Ia.

Regarding the evaluation metrics, we selected covered test-
ing targets (#Targets), line coverage (%Lines), branch cov-
erage (%Branches) and the number of detected faults. The
testing target (#Target) is the default coverage criterion in
EVOMASTER. It comprises and aggregates different metrics,
such as code coverage, status code coverage and fault findings.
For the experiment evaluations, #Targets can be used only
by the techniques which integrate with our code instrumen-
tation, i.e. JS-MIO and JS-Random. To collect %Lines and



TABLE II: Average #Target and pairwise comparison between
JS-MIO and JS-Random using #Targets.

SUT JS-MIO JS-Random Alz p-value relative
cyclotron 730.7 719.8 091 <0.001 1.51%
disease-sh-api 917.3 831.6 1.00 <0.001 10.30%
realworld-app 606.6 583.7 1.00 <0.001 3.92%
rest-ncs 787.6 549.1 1.00 <0.001 43.45%
rest-scs 632.4 4723 1.00 <0.001 33.91%

Value in bold means that the JS-MIO is significantly better than Random,
i.e., p-value < 0.05 and A12 > 0.5.

%Branches, for white-box testing, we executed the output test
files (i.e., at the end of the search) against the SUTs. For
black-box testing, tests are typically generated by considering
the endpoint coverage (i.e., different achieved HTTP status
codes for each different endpoint in the API). Considering
code coverage metrics (such as %Lines and %Branches) are
not employed for their test generation, it might be not fair to
only use the generated test files to assess their coverage per-
formance. To avoid bias in the results, the test code coverage
of the black-box techniques are collected based on their whole
execution process using an external JavaScript instrumentation
tool, i.e., ¢8 [52]. For instance, results of %Lines by BBy
are the line coverage achieved by all executed HTTP calls
during the search, i.e., the whole 100k HTTP calls. To assess
the performance in fault detection, we also reported potential
faults for all of the selected techniques. In our context, the
faults are defined based on the HTTP status codes (i.e., 500)
and unexpected responses (based on the schema declarations).
All settings of the experiments (in Table Ib) were executed
on an HP Z6 G4 Workstation with a specification, i.e., Proces-
sor: Intel(R) Xeon(R) Gold 6240R CPU @2.40GHz 2.39GHz;
RAM: 192 GM; Operating System: 64-bit Windows 10.

B. Experiment Results

1) Results for RQI: To answer RQI, Table II reports the
average #Targets achieved by JS-MIO and JS-Random for each
of the case studies. Results show that JS-MIO consistently
achieves the best performance on average #Target for all
the case studies. In addition, based on an analysis of the
pairwise comparisons using Mann-Whitney-Wilcoxon U-tests
(p-value) and Vargha-Delaney effect sizes (12112), JS-MIO
significantly outperforms JS-Random, with a high effect size
(e, A1 > 0.91) and a low p-value (e, p < 0.001).
Regarding the relative improvement, JS-MIO achieves the
most on rest-ncs (i.e., +43.45%) and the least on cyclotron
(ie., +1.51%).

Moreover, we analyze performances of JS-MIO and JS-
Random in detail with plot-lines based on the number of
covered targets over the course of the search. For all of the
SUTs, JS-MIO consistently outperforms JS-Random by a clear
large margin throughout the whole process of the search which
further shows that our white-box SBST heuristics provide an
effective guide to the search for maximizing code coverage
and fault finding. Note that, due to space limitation, detailed
plot-lines can be found in our replicate package'.

RQ1: In terms of target coverage, our white-box approach
demonstrates a consistent and significant improvements (up
to 43.45%) compared with the grey-box random testing, for
all of the five case studies. This shows the effectiveness of
our approach to guide the SBST for maximizing the code
coverage and fault finding.

2) Results for RQ2: To answer RQ2, we report average
line coverage and branch coverage by JS-MIO in Table III
that were collected by executing the generated output tests on
the SUT with ¢8 in Table III (note that our instrumentation is
used only during the search; the generated output test files do
not use it, nor need it).

Based on the coverage results, for the artificial case studies,
JS-MIO achieves a high code coverage for both %Lines and
%Branches (i.e., %Lines € [75.8%, 94.2%] and %Branches €
[80.9%, 83.9%]) with a low time cost (i.e., less than 4 minutes
as MTB reported in Table Ia).

Regarding the real SUTs, for cyclotron, JS-MIO enables of
covering 49.1% of lines and 22.6% of branches. By further
checking the implementation, we found that there are four
script files which were never executed, i.e., api.analytics-
elasticsearch.js, api.analytics.js, api.statistics-elasticsearch.js,
and api.statistics.js. All of the scripts are related to analytics
endpoints that are needed to be enabled by manually editing
a script file, i.e., config.js, and the default configuration is
False. Since the four scripts take 24.9% of the total code
lines of the SUT, it might be the reason for the relatively lower
code coverage compared with the other SUTs. However, with
tests generated automatically within just 8 minutes, 49.1% line
coverage could be arguably a reasonable result. For disease-
sh-api, JS-MIO achieves average 61.8% of lines and 91.5%
of branches. Regarding this achieved high branch coverage,
we further investigated its source code. In this SUT, all of the
endpoints are to retrieve information (i.e., GET). There exist
only a few If (condition) branches per endpoint, and
most of the branches are to check the data from the database.
Thus, the data setup in the database might have a major impact
on the branch coverage. To test disease-sh-api, the data is
properly pre-set by taking a subset (around 4.7M with JSON
format) of the collected data by the external service. This pre-
set may provide the possibility of achieving the high branch
coverage. For system test generation, generating data directly
into the database as part of the test cases could be an important
step to achieve better results, and to reduce manual effort.
Although EVOMASTER has support for SQL databases [53],
we are aware of no work dealing with Redis. For realworld-
app, JS-MIO achieves a high code coverage on both lines and
branches (i.e., 87.0% of lines and 82.2% of branches). As
checked, this application is mainly to add, query or modify
the data, interacting with the MySQL database. In addition, the
application also has well-defined schema which clearly defines
the input data and hierarchical resources to be performed on.
Such schema would possibly enable a good starting point
for the search. Note that compared with other SUTs, this
applications took relatively longer time, i.e., 66.07 minutes for
100k HTTP actions, as shown in Table Ib. This is mainly due




TABLE III:

Average coverage (i.e., %Lines and %Branches) achieved by JS-MIO and the selected baselines with ranks.

SUT %Lines %Branches

JS-MIO BB BB: RESTler RESTTESTGEN JS-MIO BB BB: RESTler RESTTESTGEN
cyclotron 49.1% (1) 48.1% (3) 48.4% (2) - -1 226% (1) 21.6% 3) 21.9% (2) - -
disease-sh-api  61.8% (1) 60.8% (3) 61.0% (2) 60.0% (4) -1 91.5% (1) 829% (3) 84.1% (2) 55.1% (4) -
realworld-app  87.0% (3) 87.1% (2) 873% (1) 81.7% (4) 66.5% (5) | 82.2% (1) 79.3% (3) 79.6% (2) 65.0% (4) 29.4% (5)
rest-ncs 94.2% (1) 62.7% (3) 70.8% (2) 46.2% (4) 15.1% (5) | 83.8% (1) 54.4% (3) 60.6% (2) 14.4% (4) 4.3% (5)
rest-scs 758% (1) 642% (3) 64.9% (2) 61.1% (4) 32.1% (5) | 80.9% (1) 37.4% (3) 42.1% (2) 17.2% (4) 8.6% (5)
Average Rank 1.40 2.80 1.80 4.00 5.00 \ 1.00 3.00 2.00 4.00 5.00

Friedman test

x*=18.080, p-value=0.001 |

x2=20.000, p-value=<0.001

Rank value 1 indicates the highest achievement, and values in bold are the best among the techniques for a SUT. We also report p-value and x? of the
Friedman test based on the ranks, for variance analysis of technique performances on the SUTs.

TABLE 1IV: Average #Faults achieved by JS-MIO and the
selected baselines with ranks.

SUT #Faults

JS-MIO BB BB: RESTler RESTTESTGEN
cyclotron 5583 (1) 55.07 (3) 55.10 (2) - -
disease-sh-api  34.00 (1) 34.00 (1) 34.00 (1) 0.00 (4) -
realworld-app ~ 32.83 (1) 23.00 (2) 23.00 (2) 3.00 (4) 0.00 (5)
rest-ncs 6.00 (1) 6.00 (1) 6.00 (1) 0.00 (4 0.00 (4)
rest-scs 13.00 (1) 13.00 (1) 13.00 (1) 2.00 (4) 0.00 (5)
Average Rank 1.00 1.60 1.40 4.00 4.80

Friedman test X2:18.79 1, p-value=<0.001

to frequent interactions with the database. For the experiments
on realworld-app, the average computation time overhead by
our approach between tests is 0.35 millisecond.

In Table IV, we report the number of potential faults
identified by JS-MIO, which are due to 5xx status code and
unexpected responses. After a manual analyses of those found
faults, most of those are related to invalid input handling, i.e.,
lack of checks or constraint specifications on the parameters
of the requests. There also exist some faults due to improper
service configuration. For instance, there is a potential fault
(with 500 status) detected by the following generated test for
testing GET request on /ldap/search. By debugging the
SUT with the test, we found out that the problem can refer to
an empty check on a configuration file of the service. Thus,
the test would help setup a proper configuration for the SUT.
1 test("test_7_with500", async () => {

await superagent.get (baseUrlOfSut + "/ldap/
search?g=LHmM6EfXJDcSiyf") .set (' Accept’, "*/*"

) // src/middleware/cors.js_32_10;
3 Yy

Based on the above analysis, we can conclude that:

RQ2: Our novel approach enables the automated
generation of tests that can achieve up to 87.0% line
coverage for real APIs and up to 94.2% line coverage for
artificial APIs, and further detect 141.66 faults in total on

these five APIs.

3) Results for RQ3: To answer RQ3 for a comparison with
existing work, we conducted an analysis on the performances
in %Lines, %Branches and #Faults of JS-MIO and all selected
baseline techniques. Table III shows the average achievements
and their ranks, whereas Table V shows the pairwise compar-
ison results between JS-MIO and the baselines. Note that we
were not able to collect the results of RESTler for cyclotron,

and the results of RESTTESTGEN for cyclotron and disease-
sh-js due to failure when applying them on these SUTs. For
instance, RESTler fails to parse the schema (of cyclotron)
which does not fully follow the standard of OpenAPI, e.g.,
the error is reported due to lack of specifying a type for
Array, and RESTTESTGEN failed in a process of generating
client code with given schemas of the two REST APIs. In
addition, RESTTESTGEN is not open source [48], and options
we could configure for these experiments are limited. Based
on its outputs, we found that some requests get 404 status code
due to wrong handling of endpoint URLs, or show timeouts
that might lead to side-effects on its results.

Regarding code coverage (%Lines and %Branches), in four
out of the five case studies (cyclotron, disease-sh-api, rest-
ncs, and rest-scs), JS-MIO achieves a strong and significant
improvement over all of the black-box techniques. This is
demonstrated by (1) the average achievement (see Table III):
the best rank (i.e., 1) with the significant variance among
the techniques (i.e., p-value < 0.05 with Friedman test); and
(2) pairwise comparisons (see Table V): high effect size (i.e.,
12112 > 0.82) and low p-value (i.e., < 0.001).

For realworld-app, JS-MIO shows its advantage over
RESTIer and RESTTESTGEN. But regarding %Lines metric,
BB; performs better than JS-MIO. By further checking its
source code and coverage reports of the two techniques, we
found that JS-MIO fails to cover an else-condition shown at
line 2 in Figure 2a, but BB, did in some runs. The condition
is related to whether a requested user exists in the database.
If the user does not exist (i.e., else-condition), following lines
after it cannot be reached. This condition can be considered
as a flag, in which there is no straightforward way to provide
gradient to the search to find data for which such expression
evaluates as true. Then, covering it would typically happen by
chance. Comparing the number of executed HTTP calls, BB,
executed on average 284.07k calls, which is near 3 times the
number of calls (i.e., 100k) executed by JS-MIO. In addition,
based on one BB; coverage report representing the condition
is covered, the if-condition at line 2 is executed 14633 times,
and its else-condition is executed only 2 times. Considering
that the budget of JS-MIO is 100k, it might explain the failure
of covering the condition and the limited performance on the
line coverage. However, the difference of %Lines between
JS-MIO and BB; is modest, i.e., -0.30%, and JS-MIO has a
significantly better performance of %Branches with +3.31%



TABLE V: Pair comparison between JS-MIO and the selected black-box baselines, using %Lines, %Branches and #Faults

SUT JS-MIO %Lines %Branches #Faults
VS. /112 p-value relative A1 2 p-value relative Alz p-value relative
cyclotron BBy 0.95 <0.001 1.94% | 091 <0.001 4.73% | 0.76 <0.001 1.39%
BB: 0.83 <0.001 145% | 0.82 <0.001 3.25% | 0.74 <0.001 1.33%
RESTIer - - - - - - - - -
RESTTESTGEN - - - - - - - - -
disease-sh-api BBy 1.00 <0.001 1.60% | 1.00 <0.001 10.33% | 0.50 NaN 0.00%
BB: 1.00 <0.001 1.25% | 1.00 <0.001 8.81% | 0.50 NaN 0.00%
RESTler 1.00 <0.001 297% | 1.00 <0.001 66.14% | 1.00 <0.001 Inf
RESTTESTGEN - - - - - - - - -
realworld-app BBy 0.39 0.050 -0.15% | 0.96 <0.001 3.70% | 1.00 <0.001 42.75%
BB: 0.27  <0.001 -0.30% | 0.93 <0.001 331% | 1.00 <0.001 42.75%
RESTIer 1.00 <0.001 6.53% | 1.00 <0.001 26.46% | 1.00 <0.001 994.44%
RESTTESTGEN 1.00 <0.001 30.81% | 1.00 <0.001 179.92% | 1.00 <0.001 Inf
rest-ncs BBy 1.00 <0.001 50.07% | 1.00 <0.001 54.08% | 0.50 NaN 0.00%
BB: 0.99 <0.001 32.99% | 1.00 <0.001 38.46% | 0.50 NaN 0.00%
RESTler 1.00 <0.001 104.03% | 1.00 <0.001 482.67% | 1.00 <0.001 Inf
RESTTESTGEN 1.00 <0.001 521.80% | 1.00 <0.001 1842.22% | 1.00 <0.001 Inf
rest-scs BB, 1.00 <0.001 18.08% | 1.00 <0.001 116.28% | 0.50 NaN 0.00%
BB: 1.00 <0.001 16.88% | 1.00 <0.001 92.33% | 0.50 NaN 0.00%
RESTler 1.00 <0.001 24.14% | 1.00 <0.001 37091% | 1.00 <0.001 550.00%
RESTTESTGEN 1.00 <0.001 135.80% | 1.00 <0.001 841.82% | 1.00 <0.001 Inf

The analysis is conducted with Mann-Whitney-Wilcoxon U-tests (p-value), Vargha-Delaney effect sizes (A12) and relative improvement C’T_b. Values in
bold mean that JS-MIO is statistically significantly better than the baseline, whereas values in red means the baseline is statistically significantly better than
JS-MIO. Note that for p-value, NaN means that two samples are the same; for relative improvement “T’b, Inf means that b is 0.

1 const _profile = await this.userRepository.findOne (
{username: followingUsername});
if (! _profile) return;

let profile: ProfileData = {
username: _profile.username,
bio: _profile.bio,

NN kAW

image: _profile.image

(a) lines 31-39 of profile.service.ts

—_

if (followingUser.id followerId) {

2 throw new HttpException(’FollowerId and
FollowingId cannot be equal.’, HttpStatus.
BAD_REQUEST) ;

(b) lines 88-90 of profile.service.ts

Fig. 2: Snippet codes of realworld-app-js

relative improvement (see Table V). The improvement on
%Branches could demonstrate the effectiveness of JS-MIO for
solving conditions which have gradients, as an example shown
in Figure 2b which can be covered by JS-MIO sometimes but
never for BB;.

Regarding the performance in fault detection, Table III
shows the average number of identified faults by each of the
techniques, whereas Table V shows the pair comparison results
between JS-MIO and the baselines. Note that, in EVOMAS-
TER, faults are identified with 5xx status code and unexpected
responses, similarly to RESTler and RESTTESTGEN. In
terms of code coverage, compared with the four baseline
techniques, JS-MIO consistently has the most improvement
over RESTler and RESTTESTGEN. Based on the results on
faults, JS-MIO maintains such significant improvements, i.e.,
Ay =1.0 and p-value < 0.001. By comparing with BB; and

BB, JIS-MIO shows its advantage on cyclotron and realworld-
app, but not on disease-sh-api, rest-ncs and rest-scs. Whether
faults are found depends on whether there are faults in the first
place, and their complexity. If there are no faults, or faults are
simple missing input validations, then it is expected to not get
much better results compared to a naive random search. Future
work will be needed to study more complex injected faults,
e.g., using mutation testing analysis.
Based on the above analysis, we can conclude that:

RQ3: Compared with the four selected techniques, our
white-box SBST approach achieves the overall best
performance in code coverage and fault detection, i.e., the
relative improvements are up to 521.80% for line coverage,
up to 1842.22% for branch coverage and up to 994.44%
for fault detection.

4) Discussion: Based on our experiments, our white-box
technique shows its advantage over the black-box techniques in
code coverage and fault detection, especially in code coverage
on the case studies which have many branches to be optimized
involving numeric and string constraints. Regarding the fault
detection, most of the found faults are related to improper
input validation, before the business logic of the SUTs is
executed. So, even a naive random search can detect this
kind of faults. However, with code instrumentation, the white-
box technique can provide the potential location of the bug,
based on the last executed statement in the business logic. This
can help to distinguish among different bugs when there exist
multiple bugs in the same endpoint resulting to a 500 HTTP
server error status code.

Regarding the database handling, with black-box testing
techniques, there is a lack of control of the database. It means
that we cannot prevent the side-effects of previously executed




tests, e.g., the 100 000th request is executed with a state
of a SUT which depends on the executed 99 999 previous
requests. This is a major issue for debugging: if a test case
reveals a fault, re-executing such test case might not reveal it
again, if it depends on the state modified by all previous tests.
Making each test case independent is essential for debugging
purposes (e.g., as we do in our white-box technique when in
EVOMASTER the configuration drivers are implemented by
the user [38]). Furthermore, when we have a small optimized
test suite that can automatically start/stop/reset the SUT, such
generated tests can be used for regression testing (e.g., added
to the repository of the SUT, and run automatically as part of
a Continuous Integration server).

V. THREATS TO VALIDITY

Conclusion validity. Our experiments are in the context of
search-based software engineering, and the search algorithms
have a stochastic nature. To take into account such stochastic
behaviors, we repeated our experiments 30 times following the
guidelines from [S1]. Then, we performed further statistical
analyses on the results with these 30 runs. To demonstrate
the effectiveness of our approach, we employed widely used
metrics in the context of testing, i.e., line coverage, branch
coverage and the number of detected faults with their average
values. In the analysis of the comparisons with the baseline
techniques, we applied statistical methods and reported the
statistical results in detail, i.e., the Friedman test (X2 and p-
value) for variance analysis of techniques on the different case
studies, and the Mann-Whitney U-test (p-value) at significance
level a = 0.05 for pairwise difference analysis, along with
the Vargha-Delaney (Alg) effect size. Besides, we computed
relative improvement for further illustrating the improvement
over the baseline techniques.

Construct validity. First, for all of the employed techniques,
we used their default settings, which typically are the best
configurations of the technique chosen by their authors. All
experiments are conducted on the same machine to prevent
side-effects, related to hardware and operating system, on the
techniques and SUTs. The metrics we used such as %Lines
and %Branches are not direct outputs of the techniques. To
properly collect such information and make them comparable,
we employed the same external tool (i.e., c8,) for accessing
coverage reports achieved by all the different techniques.
Furthermore, for black-box techniques, there might lack some
code coverage with their outputs (i.e., executable output tests
which are composed of a sequence of HTTP requests). There-
fore, the code coverage for them are collected with all requests
executed during the whole process. Comparing different tools
is always a challenge. Ideally, one would want to compare
techniques and not actual tools, as the performance of these
latter can be strongly affected by accessible configuration and
low level code implementation details. An online version of
the tools might not be fully configurable, e.g., the version
of RESTTESTGEN we used in this study. In addition, for
RESTIer, from our experiments it would appear that the tool is
hundreds of times slower than EVOMASTER in terms of HTTP

calls made per second, which negatively impacts its results.
This could be due to technical details, or it could be the cost
of the employed advanced techniques (e.g., [27]) is very high.
So, when choosing the search budget (also referred as stopping
criterion) for our approach, we set the same or higher (e.g.,
twice as much for RESTler) budget for the baseline techniques
to prevent bias in the analysis of their outputs [10].

Internal validity. This is related to the threat on our im-
plementation used in the experiments. We have tested our
implementation with 491 test suites (including unit tests and
end-to-end tests) that achieve 63% line coverage reported by
codecov [54]. But, we cannot guarantee that it is free of bugs.
However, our implementation and case studies are open-source
and available online, which allows anyone to review them and
replicate the experiments.

External validity. The is related to the threat on how our
results can generalize to other case studies. In this study,
we conducted our experiments with five NodeJS REST APIs,
i.e., two of them are artificial that we re-implemented with
JavaScript, whereas the other three are open-source from
GitHub. It is a fact that REST APIs are widely used in industry,
but, fewer of them are open-source and available in open-
source repositories. Furthermore, experiments on systems test-
ing are expensive to run. This is a problem limiting how many
case studies can be used for experimentation.

VI. CONCLUSIONS

JavaScript is one of most widely used programming lan-
guage. However, testing applications written in JavaScript is
quite challenging due to its dynamic nature, especially for
white-box testing. To the best of our knowledge, there does
not exist any other white-box system-level test generation
for JavaScript web services. In this paper, we enable code
instrumentation for JavaScript, and further integrate it into
an open-source white-box testing tool, i.e., EVOMASTER.
Besides, we propose an automated approach to calculate
search-based heuristics like the common Branch Distance
that enables system test generation for JavaScript applications
using Search-Based Software Testing (SBST) techniques. To
evaluate our approach, we conducted an empirical experiment
on the automated system testing of RESTful APIs. In the
experiments, we compared our approach with four baseline
techniques (i.e., one grey-box testing technique and three
black-box testing techniques) on five NodeJS REST APIs, in
terms of code coverage and fault finding. Results show that
our technique leads to significantly better results than existing
black-box and grey-box testing tools.

For future work, it will be important to extend our JavaScript
instrumentation with Testability Transformations [55]-[57],
which will pose new challenges when dealing with a dynam-
ically and weakly typed language such as JavaScript.

To enable replicated studies, and to support new research
effort on the use of SBST techniques for JavaScript programs,
our Babel plugin for JavaScript instrumentation, and our
extension to the EVOMASTER tool, are released as open-
source. See www.evomaster.org.
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