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Abstract. In this paper, we consider the stability property of the class of generalized subexponential
distributions with respect to product-convolution. Assuming that the primary distribution is in the
class of generalized subexponential distributions, we find conditions for the second distribution in
order that their product-convolution belongs to the class of generalized subexponential distributions
as well. The similar problem for the class of generalized subexponential positively decreasing-tailed
distributions is considered.
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1 Introduction and preliminaries

This paper deals with the O-generalization of the standard class of subexponential distri-
butions. Recall that distribution function (d.f.) F , satisfying F (0−) = 0, belongs to the
subexponential class of distributions, denoted S, if the following relation holds:

lim
x→∞

F ∗2(x)

F (x)
= 2, (1)
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where F = 1−F denotes the tail of the d.f. F , and F ∗2 = F ∗F denotes the 2-fold con-
volution of d.f. F . In the general case, when d.f. F not necessarily satisfies F (0−) = 0,
we say that F is subexponential, written as F ∈ S, if F+ ∈ S, where F+(x) :=
F (x)1[0,∞)(x). The concept of subexponentiality was introduced by Chistyakov [11].
Later on, the subexponential distributions found numerous applications in applied prob-
ability including actuarial science, financial mathematics, risk management, branching
processes, queueing theory, etc.; see, for instance, [2–4, 16, 20, 29, 31, 32, 43, 47] and
references therein. For the authoritative review of theoretical properties of subexponential
distributions, see Section 3 of Foss et al. [18].

It is well known that class S represents a subset of the class of long-tailed distribu-
tions L. Recall that a d.f. F is said to be long-tailed, written as F ∈ L, if for any y > 0,

lim
x→∞

F (x− y)
F (x)

= 1.

Note that for any F ∈ L, there exists a function a : [0,∞) → (0,∞) such that, for
x→∞,

(a) a(x)↗∞,
(b) a(x)/x↘ 0,
(c) F (x− a(x)) ∼ F (x),

where and elsewhere the notations↗ and↘ denote monotonic increase and monotonic
decrease, respectively.

One can check that F ∈ S if and only if (1) holds and F ∈ L.
Another important class of heavy-tailed distributions, called a class of dominatedly

varying distributions, is defined by the following property:

lim inf
x→∞

F (yx)

F (x)
> 0.

This class was introduced in [17]. We denote this class of distributions by D. Note that
D is not contained in S, but D ∩ L = D ∩ S ⊂ S.

The following class, in some sense symmetric to the class D, was introduced in [8].
A d.f. F is said positively decreasing-tailed, written as F ∈ PD, if for any y > 1
(equivalently for some y > 1), it holds

lim sup
x→∞

F (yx)

F (x)
< 1.

Importantly, the class of positively decreasing-tailed distributions contains heavy-tailed,
such as Pareto, as well as light-tailed distributions, such as exponential distributions or
distributions with the tail

F (x) ∼
x→∞

c e−γxx−α, c > 0, γ > 0, α > 1, (2)

which belong to the class of convolution-equivalent distributions S(γ); see, e.g., [23].
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More details on the class PD, including some closure properties, can be found in [6].
Denote by A := PD ∩ S the subexponential part of this class. The class A has some
useful properties and was considered in the papers [9,22,25,26,35,40]. We note only that
regularly varying (but not slowly varying) distributions are in A.

The following two indices, called the upper and lower Matuszewska indices of d.f. F ,
respectively, were introduced in [30]:

J+
F : = − lim

y→∞

log lim supx→∞(F (y x)/F (x))

log y
,

J−F : = − lim
y→∞

log lim infx→∞(F (y x)/F (x))

log y
.

Obviously, 0 6 J−F 6 J+
F 6∞. By definition, F ∈ D if and only if J+

F <∞. Similarly,
F ∈ PD if and only if J−F > 0. More details on the Matuszewska indices can be found
in Section 2 of [8]. In particular, Proposition 2.2.1 of [8] (see also Lemma 4.1 in [34] or
Lemma 3.5 in [38]) implies the following relations:

F ∈ D =⇒ x−α = o
(
F (x)

)
for α > J+

F ;

F ∈ PD =⇒ F (x) = o
(
x−β

)
for 0 < β < J−F .

In this paper, we consider the distribution of the product of two independent random
variables (r.v.s). If X and Y are two real-valued independent r.v.s with d.f.s F (x) =
P(X 6 x) and G(x) = P(Y 6 x), then d.f. of the product XY is

F ⊗G(x) := P(XY 6 x) =

∫
(−∞,0)

(
1− F

(
x

y
−
))

dG(y)

+

∫
(0,∞)

F

(
x

y

)
dG(y) +

(
G(0)−G(0−)

)
1[0,∞)(x);

see, e.g., Section 1.2 of [19]. We call F ⊗ G a product-convolution of F and G. In the
case of nonnegative r.v. Y , the formula above becomes

F ⊗G(x) =
∫

(0,∞)

F

(
x

y

)
dG(y) +G(0)1[0,∞)(x).

The following result on subexponentiality of the d.f. F ⊗G was proved in [13]:

Theorem 1. Assume that F is a distribution on R and G(0−) = 0, G(0) < 1. If F ∈ S
and there exists a function a : [0,∞)→ [0,∞) such that, for x→∞,

(i) a(x)↗∞,
(ii) a(x)

x ↘ 0,
(iii) G(a(x)) = o(F ⊗G(x)),
(iv) F (x− a(x))∼F (x),

then F ⊗G ∈ S.
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The similar result for the class A was proved in [36, Thm. 2.1].

Theorem 2. Assume that F is distribution on R and G(0−) = 0, G(0) < 1. If F ∈ A
and

G(yx) = o
(
F ⊗G(x)

)
for any y > 0, (3)

then F ⊗G ∈ A.

Note that condition (3) is equivalent to the existence of function a satisfying condi-
tions (i)–(iii) from Theorem 1; see Lemma 3.2 in [36]. We mention also the paper by
Xu et al. [45], where necessary and sufficient conditions for the subexponentiality of the
product-convolution were presented.

The aim of the present paper is to prove similar closure properties for the class of gen-
eralized subexponential distributions. In Section 2, we introduce the class of generalized
subexponential distributions and formulate the main results of the paper. In Section 3, we
prove the results. Some corollaries and examples are provided in Section 4.

2 Product-convolution properties for generalized subexponential
distributions

Klüppelberg [24] proposed the following natural generalization of the class of subexpo-
nential distributions. A d.f. F is said to be generalized subexponential (orO-subexponen-
tial), denoted by F ∈ OS, if

lim sup
x→∞

F ∗ F (x)
F (x)

<∞.

Later, this class was studied in the papers [5, 10, 28, 33, 42, 44].
As in the case of class OS, one can introduce the O-version of class L as follows

(see [33]): a distribution F on R is said to belong to the class OL of generalized long-
tailed distributions if for any (or some) y > 0,

lim sup
x→∞

F (x− y)
F (x)

<∞.

Similarly to inclusion S ⊂ L, it holds that OS ⊂ OL (see, e.g., Proposition 2.1(ii)
of [33]). Examples of d.f.s F ∈ OL \ OS can be found in [14, 46], some useful charac-
terizations of class OL are given in [1].

The class of generalized subexponential distributions forms a wide class of distribu-
tions. BothOS andOL admit some light-tailed distributions. Presented definitions imply
that:

A ⊂ S ⊂ L ∩OS, D ⊂ OS.
Lin and Wang [28], Wang et al. [41] provided examples showing that L ∩ OS \ S is
nonempty.

Next, we formulate the main results of the paper. Theorem 3 is analogous to Theo-
rem 1. Theorem 4 is analogous to Theorem 2.
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Theorem 3. Assume that F is distribution on R and G(0−) = 0, G(0) < 1. If F ∈ OS
and

sup
y>0

lim sup
x→∞

G(yx)

F ⊗G(x)
<∞, (4)

then F ⊗G ∈ OS .

As in the case of condition (3), we show in Lemma 2 below that (4) can be equivalently
characterized in terms of corresponding increasing function a(x). Some examples will be
constructed in Section 4 to illustrate condition (4). In relation to the results of [14], we
have that if F ∈ L ∩ OS , G ∈ L satisfies (4), then F ⊗ G ∈ L ∩ OS . We also remind
that the class L is closed under product convolution; see Tang [37].

Now introduce the generalization of class A:

OA := PD ∩OS.

Theorem 4. Assume that F is distribution on R and G(0−) = 0, G(0) < 1. If F ∈ OA
and condition (3) holds, then F ⊗G ∈ OA.

Note that both theorems are rather substantial extensions of Theorems 1 and 2, as they
allow to consider such (heavy-tailed) subclass of OS as D, as well as some light-tailed
distributions (see examples in Section 4).

3 Proof of Theorems 3 and 4

In order to prove the theorems, we need two auxiliary lemmas. The first lemma deals with
the bound of probability P(qX+rY > x), 0 < r 6 q, in the case where d.f. ofX belongs
to class OS. A similar result in the case of the class S was proved in [39, Lemma 5.1].

Lemma 1. Suppose that X and Y are two independent r.v.s with corresponding distribu-
tions F and G. If F ∈ OS and G(x) = O(F (x)), then

sup
x>0

sup
{r,q: 0<r6q}

P(qX + rY > x)

F (x/q) +G(x/r)
<∞. (5)

Proof. For 0 < r 6 q and x > 0, we have

P(qX + rY > x) =

( ∫
(−∞,0]

+

∫
(0, x/q]

+

∫
(x/q,∞)

)
G

(
x− qy
r

)
dF (y)

=: J1 + J2 + J3. (6)

Obviously,

J1

G(x/r)
=

∫
(−∞,0]

G((x− qy)/r)
G(x/r)

dF (y) 6 F (0). (7)
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To estimate J2, observe that

J2

F (x/q)
6

1

F (x/q)

∫
(0, x/q]

G

(
x

q
− y
)
dF (y)

6 sup
z>0

G(z)

F (z)

1

F (x/q)

∫
(0, x/q]

F

(
x

q
− y
)
dF (y)

= sup
z>0

G(z)

F (z)

1

F (x/q)
P

(
X1 +X2 >

x

q
, 0 < X2 6

x

q

)
,

where X1, X2 are independent copies of X . Hence, by F ∈ OS and G(x) = O(F (x)),

J2

F (x/q)
6 sup

z>0

G(z)

F (z)
sup
u∈R

F ∗ F (u)
F (u)

6 C (8)

for some positive constant C. Obviously,

J3 6 F

(
x

q

)
. (9)

The estimates (7)–(9) and (6) imply that

sup
0<r6q

P(qX + rY > x)

F (x/q) +G(x/r)
6 sup

0<r6q

(
J1

G(x/r)
+

J2

F (x/q)
+

J3

F (x/q)

)
6 F (0) + C + 1,

that is the estimate (5). Lemma is proved.

The following lemma is similar to Lemma 3.2 in [36].

Lemma 2. Assume that F is distribution on R andG(0−) = 0,G(0) < 1. Then (4) holds
if and only if there exists a positive function a(x) satisfying conditions

(i) a(x)↗∞,
(ii) a(x)/x↘ 0,

(iii) G(a(x)) = O(F ⊗G(x)).

Proof. We begin with the sufficiency. Since

G
(
a(x)

)
= O

(
F ⊗G(x)

)
,

it follows that there is finite constant M such that

lim sup
x→∞

G(a(x))

F ⊗G(x)
=M.
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Thus,
G
(
a(x)

)
6 (M + 1)F ⊗G(x), x > xM ,

for some positive xM . The property a(x)/x ↘ 0 implies that for any y > 0, there exists
large enough xy such that a(x) 6 yx for any x > xy . Hence, for any x > xM ∨ xy ,
inequality G(yx)) 6 G(a(x)) holds, so that

lim sup
x→∞

G(yx)

F ⊗G(x)
6 lim sup

x→∞

G(a(x))

F ⊗G(x)
6M + 1,

which implies condition (4).
Let us prove the necessity. Condition (4) implies

sup
n∈N

lim sup
x→∞

G(x/n)

F ⊗G(x)
6M∗

for some positive constant M∗ <∞. Hence,

lim sup
x→∞

G(x/n)

F ⊗G(x)
6M∗

for an arbitrary n ∈ N. Now we can construct the sequence x1, x2, . . . such that x1 = 1,
xn > 2xn−1 (n > 2), and

G(x/n)

F ⊗G(x)
6M∗ + 1, x > xn. (10)

Denote x∗n = (n/(n− 1))xn and define the function a : [0,∞)→ (0,∞):

a(x) = x21[0,x2)(x) +

∞∑
n=2

(
xn
n− 1

1[xn,x∗
n)
(x) +

x

n
1[x∗

n,xn+1)(x)

)
.

Function a(x) is increasing to infinity. Also, for x ∈ [xn, xn+1), n > 2, we have

a(x)

x
=

{
xn

(n−1)x 6 1
n−1 if x ∈ [xn, x

∗
n),

1
n if x ∈ [x∗n, xn+1).

Hence, a(x)/x tends to zero for x→∞.
Further, for x ∈ [xn, x

∗
n), n > 2, we have

G(a(x))

F ⊗G(x)
=
G(xn/(n− 1))

F ⊗G(x)
6

G(x∗n/n)

F ⊗G(x∗n)
6M∗ + 1

due to (10) because x∗n > xn. Similarly, for x ∈ [x∗n, xn+1), n > 2, by (10) we have

G(a(x))

F ⊗G(x)
=

G(x/n)

F ⊗G(x)
6M∗ + 1,

Nonlinear Anal. Model. Control, 27(Online First):1–14, 2022
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and we obtain that for all x > x2,

G(a(x))

F ⊗G(x)
6M∗ + 1,

implying G(a(x)) = O(F ⊗G(x)).

Proof of Theorem 3. Introduce r.v.s X1, X2, Y1, Y2 such that {X,X1, X2, Y, Y1, Y2}
are independent with X1, X2 identically distributed to X , having d.f. F , and Y1, Y2
identically distributed to Y , having d.f. G. According to Lemma 2, there exists a function
a(x) satisfying conditions (i)–(iii) of the lemma. Then for this function a(x) and for
x > 0, we have

P(X1Y1 +X2Y2 > x) = P
(
X1Y1 +X2Y2 > x,

{
Y1 > a(x)

}
∪
{
Y2 > a(x)

})
+P

(
X1Y1 +X2Y2 > x, Y2 6 Y1 6 a(x)

)
+P

(
X1Y1 +X2Y2 > x, Y1 < Y2 6 a(x)

)
=: K1 +K2 +K3. (11)

Clearly, K1 6 2G(a(x)). For the second term, using Lemma 1, we obtain

K2 = P
(
X1Y1 > x, 0 < Y1 6 a(x)

)
P(Y2 = 0)

+

∫
(0,a(x)]

( ∫
[y2,a(x)]

P(X1y1 +X2y2 > x) dG(y1)

)
dG(y2)

6 P(X1Y1 > x) +

[
sup
x>0

sup
{y1,y2: 0<y26y1}

P(X1y1 +X2y2 > x)

P(X1y1 > x) +P(X2y2 > x)

]
×

∫
(0,a(x)]

( ∫
[y2,a(x)]

(
P(X1y1 > x) +P(X2y2 > x)

)
dG(y1)

)
dG(y2)

= P(X1Y1 > x) + C
(
P
(
X1Y1 > x, 0 < Y2 6 Y1 6 a(x)

)
+P

(
X2Y2 > x, 0 < Y2 6 Y1 6 a(x)

))
6 (1 + 2C)P(XY > x)

with finite positive constant C. By symmetry, K3 6 (1 + 2C)P(XY > x).
Substituting the obtained estimates for K1, K2, K3 to (11), we get

P(X1Y1 +X2Y2 > x) 6 2G
(
a(x)

)
+ 2(1 + 2C)P(XY > x) (12)

for x > 0. Now applying property (iii) of function a(x), we get from (12) that

lim sup
x→∞

P(X1Y1 +X2Y2 > x)

P(XY > x)
<∞,

i.e., F ⊗G ∈ OS. Theorem is proved.
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Proof of Theorem 4. According to Theorem 3 and Lemma 2, it holds that F ⊗G ∈ OS .
It suffices to prove that F ⊗G ∈ PD. Since F ∈ PD, it holds that

lim sup
x→∞

F (y∗x)

F (x)
< 1

for some y∗ > 1. For this constant y∗ and function a(x) defined in (i)–(iii) of Theorem 2,
along the lines of considerations on p. 238 of [36], we get

lim sup
x→∞

F ⊗G(y∗x)
F ⊗G(x)

= lim sup
x→∞

(
∫
(0,a(x)]

+
∫
(a(x),∞)

)F (y∗x/z) dG(z)

F ⊗G(x)

6 lim sup
x→∞

sup
0<z6a(x)

F (y∗x/z)

F (x/z)
+ lim sup

x→∞

G(a(x))

F ⊗G(x)

= lim sup
x→∞

F (y∗x)

F (x)
+ lim sup

x→∞

G(a(x))

F ⊗G(x)
.

This estimate and conditions of the theorem imply that

lim sup
x→∞

F ⊗G(y∗x)
F ⊗G(x)

< 1,

i.e., F ⊗G ∈ PD. Theorem is proved.

4 Corollaries and examples

In this section, we present some corollaries and examples to illustrate the main results of
the paper. In the corollaries below, we provide several simple criteria for the validity of
conditions of Theorems 3 and 4.

Corollary 1. If F ∈ OS , G is d.f. of nonnegative, nondegenerate at zero, and bounded
r.v., then F ⊗G ∈ OS.

Example 1. Using the distribution in (2) as a benchmark, one can construct (light-tailed)
distributions from OS as in [14]. For example, distribution F with the tail

F (x) = 1(−∞,0)(x) +
e−x

(1 + x)3

(
1 +

sinx

a

)
1[0,∞)(x),

where a > 2, is in OS and, moreover, is light-tailed; see Example 2 in [14]. Further, by
Corollary 1, any product-convolution of F with G having bounded support is still in OS.
In this way, one construct a rich enough class of distributions in OS. If, for instance, G
is discrete uniform distribution at the points 1, . . . , N with masses 1/N , then

F ⊗G(x) = 1(−∞,0)(x) +
1

N

N∑
k=1

e−x/k

(1 + x/k)3

(
1 +

sin(x/k)

a

)
1[0,∞)(x)

and F ⊗G ∈ OS.

Nonlinear Anal. Model. Control, 27(Online First):1–14, 2022
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Assume now that G has unbounded support. The next corollary is an O-version of
Corollary 2.1 in [36].

Corollary 2. Suppose F is distribution on R, G(0−) = 0 andG has unbounded support.

(i) If F ∈ OS (F ∈ OA) and G(y∗x) = o(F (x)) for some y∗ > 0, then F ⊗G ∈
OS (F ⊗G ∈ OA, respectively).

(ii) If F ∈ OS (F ∈ OA) and G(y∗x) = o(G(x)) for some y∗ > 1, then F ⊗G ∈
OS (F ⊗G ∈ OA, respectively).

(iii) If F ∈ OS (F ∈ OA), J−G > 0 and
∫
[0,∞)

xp dF (x) = ∞ for some p ∈
(0, J−G ), then F ⊗G ∈ OS (F ⊗G ∈ OA, respectively).

Proof. (i) For any y > 0, x > 0 and for given y∗ > 0, we have

F ⊗G(x) > G

(
y∗

y

)
F

(
yx

y∗

)
.

Hence,

lim sup
x→∞

G(yx)

F ⊗G(x)
6

1

G(y/y∗)
lim sup
x→∞

G(yx)

F (yx/y∗)
= 0,

and the assertion follows from Theorems 3 and 4, respectively.

(ii) For any y > 0, x > 0, we have F ⊗G(x) > F (y∗/y)G(yx/y∗). Therefore, the
statement follows from

lim sup
x→∞

G(yx)

F ⊗G(x)
6

1

F (y∗/y)
lim sup
x→∞

G(yx)

G(yx/y∗)
= 0

and Theorems 3, 4.

(iii) follows from Corollary 2.1(3) in [36].

Example 2. Let F be the generalized Peter and Paul distributionPP{a,b} with parameters
b > 1, a > 0:

F (x) = 1(−∞,0)(x) +
(
ba − 1

)
1[0,∞)(x)

∑
k∈N: bk>x

b−ka

= 1(−∞,b)(x) + b−ablogb xc1[b,∞)(x).

See, for instance, [7, 15, 21, 27].
It is easy to check that F ∈ OA. Indeed, F ∈ D with J+

F = J−F = a. Also, for
x > b,

F (yx)

F (x)
=

bablogb xc

bablogb x+logb yc
6

(
b

y

)a
< 1 if y > b > 1.

Hence, F ∈ D∩PD ⊂ OA. As F (x) > x−a for x > b, by Corollary 2(i), F ⊗G ∈ OA
for any d.f. G satisfying G(x) = o(x−a).
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In the corollaries and examples above, condition (4) was implied by

lim sup
x→∞

G(yx)

F ⊗G(x)
= 0 for any y > 0.

Next corollary considers the case where

lim sup
x→∞

G(yx)

F ⊗G(x)
6 C <∞

uniformly in y > 0. Recall that d.f. G on R+ is slowly varying, denoted G ∈ R0, if
limx→∞G(yx)/G(x) = 1 for any y > 0.

Corollary 3. If F ∈ OS and G ∈ R0, then F ⊗G ∈ OS.

Proof. Take κ > 0 such that F (κ) > 0. For this κ and for any x > 0, y > 0, we have

G(yx)

F ⊗G(x)
6
G
(
yκ(x/κ)

)
G(x/κ)F (κ)

.

Thus, as G ∈ R0, we obtain that for any y > 0,

lim sup
x→∞

G(yx)

F ⊗G(x)
6

1

F (κ)
,

and the assertion of the corollary follows from Theorem 3.

Example 3. Let us consider d.f. F with tail satisfying asymptotic relation (2) It is well
known (see, e.g., [12]) that such d.f. F belongs to OS (and PD). Thus, by Corollary 3,
F ⊗G ∈ OS for any slowly varying d.f. G. Take, for example,

F (x) = 1(−∞,1)(x) + e1−xx−21[1,∞)(x),

G(x) = 1(−∞,1)(x) +
1

1 + blog xc
1[1,∞)(x).

Distribution G has mass points ek with G({ek}) := G(ek−1) − G(ek) = 1/(k(k + 1)),
k = 1, 2, . . . . Thus,

F ⊗G(x) =
∞∑
k=1

F

(
x

ek

)
G
({

ek
})

= 1(−∞,e)(x) +

(
1

x2

blog xc∑
k=1

e2k+1−xe−k

k(k + 1)
+

1

1 + blog xc

)
1[e,∞)(x)

and F ⊗G ∈ OS.

Nonlinear Anal. Model. Control, 27(Online First):1–14, 2022
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