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TWO-POINTS BOUNDARY VALUE PROBLEMS FOR
CARATHÉODORY SECOND ORDER EQUATIONS

Valentina Taddei

Abstract. Using a suitable version of Mawhin’s continuation principle, we
obtain an existence result for the Floquet boundary value problem for second
order Carathéodory differential equations by means of strictly localized C2

bounding functions.

1. Introduction

This paper deals with the second order problem

(P)


x′′ = f(t, x, x′), t ∈ [0, 1]
x(1) = Ax(0)
x′(1) = Bx′(0)

where A and B are m×m real matrices, with A non-singular, and f : [0, 1]×R2m →
Rm satisfies the Carathéodory conditions, i.e.

1) f(t, ·, ·) is continuous for a.e. t ∈ [0, 1];
2) f(·, x, y) is measurable for every (x, y) ∈ R2m;
3) for every r > 0 there exists gr ∈ L1([0, 1],R2m) such that

∣∣f(t, x, y)
∣∣ ≤ gr(t)

for every |x| ≤ r, |y| ≤ r and a.e. t ∈ [0, 1].
By solution of (P) we mean a classical one, i.e. a function x : [0, 1] → Rm twice
differentiable almost everywhere in [0, 1] with x′′ ∈ L1([0, 1],Rm

)
and satisfying

(P) almost everywhere.
In [14], an existence result for problem (P) is given when the right hand side

is continuous (see Theorem 1). It makes use of a suitable version of Mawhin’s
continuation principle (see [10]) and requires the fulfillment of a transversality
condition on the boundary of a suitable open and bounded subset K of Rm. This
delicate point is overcome by assuming that K is a bound set defined as the
intersection of sub-level sets of certain scalar functions.
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2 V. TADDEI

The theory of the bound set was introduced by Gaines and Mawhin in [5] for
first order as well as for second order equations and by Mawhin in [8] for periodic
second order problems.

For a periodic boundary value problem associated to second order differential
equations, e.g. when A = B = I in (P), a great deal of existence results was obtained
with similar techniques. We remind to [14] for a detailed list of references on this
subject. Erbe-Palamides [3] and Erbe-Schmitt [4] applied analogous approaches to
the investigation of problem (P) when both A and B are non-singular and satisfy
a further assumption.

For natural reasons, when the vector field is of Carathéodory type, in the
literature the transversality condition is usually required to be satisfied in a whole
neighbourhood of the boundary. In this paper we shall prove that also in this case
it is possible to localize the transversality condition on the boundary, extending
the results in [14] to the case when the vector field is of Carathéodory type instead
that continuous. We will do this following the approach used in Mawhin-Thompson
[11] for periodic solutions of first order equations, which makes use of a suitable
modification of a Luzin approximation result (see also Scorza Dragoni [13]) given
by Thompson [15].

We also assume usual Nagumo growth conditions on the vector field to guarantee
the existence of an a priori bound on the first derivative of the possible solutions
of problem (P).

As usual 〈·, ·〉 and | · | respectively denote the inner product and the norm
of Rm, while | · |0 and | · |1 denotes the norm respectively of C

(
[0, 1],Rm

)
and

L1([0, 1],Rm
)
. Given δ > 0 and x ∈ Rm, let Bδx =

{
y ∈ Rm : |y − x| ≤ δ

}
. For

A ⊂ Rm, let diamA = supx∈A |x|, χA be the characteristic function of A and λ(A)
the Lebesgue measure of A. Given V : Rm → Rm continuous and A ⊂ Rm, let
V −1(A) =

{
x ∈ Rm : V (x) ∈ A

}
.

2. Main results

In [14] (see Theorem 1) the authors proved the following continuation theorem
for problem (P), which is a suitable version of Mawhin’s continuation principle (cf.
[10]).
Theorem 1. Let f : [0, 1]× R2m → Rm be a Carathéodory function and A and B
a couple of m×m real matrices. Suppose that G ⊂ Rm is an open, bounded and
non-empty set such that

(BS) there is no solution x(·) for some λ ∈ (0, 1) to

(Pλ)


x′′ = λf(t, x, x′) , t ∈ [0, 1]
x(1) = Ax(0)
x′(1) = Bx′(0)

such that x(t) ∈ G, for all t ∈ [0, 1] and x(t̃) ∈ ∂G for some t̃ ∈ [0, 1];
(NC) there is K > 0 such that

|x′|∞ < K
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for each solution x(·) to (Pλ) for some λ ∈ (0, 1) such that x(t) ∈ G, for all
t ∈ [0, 1].

Assume further
ker(I −B) ∩ Im(I −A) = {0}

and
d
[
(I − PB)f̄ , G ∩ ker(I −A), 0

]
6= 0 ,

where d is the Brouwer degree, PB is the continuous projections of Rm onto
Im(I −B) and

f̄(a) :=
∫ 1

0
f(s, a, 0) ds .

Then,

(P)


x′′ = f(t, x, x′) , t ∈ [0, 1]
x(1) = Ax(0)
x′(1) = Bx′(0)

has at least one solution x with x(t) ∈ Ḡ, for all t ∈ [0, 1].

Remark 1. Like it is known, when the set ker(I −A) is invariant for the map f̄
and

ker(I −A) ∩ Im(I −B) = {0} ,
then ∣∣d[(I − PB)f̄ , G ∩ ker(I −A), 0

]∣∣ =
∣∣d[f̄ , G ∩ ker(I −A), 0

]∣∣ .
We now reformulate the transversality condition (BS) and the boundedness

condition (NC) in order to translate them in more convenient ways, i.e. more easily
verifiable in the applications.

Remark 2. When f is independent of the first derivative, the boundedness
condition (NC) is trivially satisfied. In fact, let x be a solution of x′′ = f(t, x) such
that x(t) ∈ G for all t ∈ [0, 1] and denote R = diamG. By Taylor’s formula with
rest in integral form it holds, for every i = 1, . . . ,m and t0, t ∈ [0, 1],

xi(t) = xi(t0) + x′i(t0)(t− t0) +
∫ t

t0

(t− s)x′′i (s) ds ,

i.e.

|t− t0|
∣∣x′i(t0)

∣∣ ≤ ∣∣xi(t)∣∣+
∣∣xi(t0)

∣∣+
∫ 1

0
|t− s|

∣∣f(s, x(s)
)∣∣ ds ≤ 2R+ |gR|1 .

Since for all t0 ∈ [0, 1] there exists t ∈ [0, 1] with |t− t0| ≥ 1
2 , we get that∣∣x′i(t0)

∣∣ ≤ 2
(
2R+ |gR|1

)
,

i.e. that
|x′|0 ≤ 2

√
m
(
2R+ |gR|1

)
.
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In the general case, a classical hypothesis, known as Nagumo-Hartman growth
condition, is known in literature to guarantee (NC). We recall it in the lemma
below, because in the following we need a precise estimation of the constant K
in (NC), and we remind to Lemma 5.2 in [6] for the proof. Even if it is given for
continuous right hand side, indeed it holds also for Carathéodory ones (see [9], p.
728).

Lemma 1. If there exist a continuous function ϕ : [0,+∞)→ (0,+∞), with∫ +∞ u

ϕ(u) du =∞ ,

and α, β ≥ 0 such that for each (t, x, y) ∈ [0, 1]×G× Rm∣∣f(t, x, y)
∣∣ ≤ ϕ(|y|)

and ∣∣f(t, x, y)
∣∣ ≤ 2α

[
〈x, f(t, x, y)〉+ |y|2

]
+ β ,

then for each λ ∈ (0, 1) and each solution of (Pλ) such that x(t) ∈ G, for all
t ∈ [0, 1],

|x′|0 < φ−1
[
φ
(

4R+ 4αR2 + β

4

)
+ 2R+ 4αR2 + β

8

]
,

where φ(u) =
∫ u

0
s

ϕ(s) ds and R = diamG.

Remark 3. According to Lemma 5.1 of [6], the second inequality of Lemma 1 is
not necessary in the scalar case, i.e. when m = 1. In this case

|x′|0 < φ−1[φ(2R) + 2R
]
.

In next theorem we give an existence result for (P), reformulating the transversal-
ity condition (BS) in terms of the so called bound set for a boundary value problem,
which is an open, bounded and non-empty subset of Rm having the property that
no solution of the problem completely laying in its closure can touch its boundary.
Like usually in the literature, we consider bound sets defined as the intersection of
sublevel sets of scalar functions said bounding functions. Assumptions (H1)–(H4)
of Theorem 2 read as the ones corresponding to (BS).

Before going on, we recall the definition of subset having the boundary invariant
with respect to the subgroup generated by a non-singular matrix.

Definition 1. An open and bounded subset G ⊂ Rm is said to have the boundary
invariant with respect to the subgroup of GLN (R) generated by a non-singular
m×m real matrix A if

(IC) Au ∈ ∂G⇔ u ∈ G .

Theorem 2. Let f : [0, 1]× R2m → Rm be a Carathéodory function and A and B
a couple of m ×m real matrices, with A non-singular. Let G ⊂ Rm be an open,
bounded and non-empty set whose boundary is invariant with respect to the subgroup
generated by A.
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Suppose that there exist a continuous function ϕ : [0,+∞) → (0,+∞), with∫ +∞ u
ϕ(u) du = ∞, and α, β ≥ 0 such that

∣∣f(t, x, y)
∣∣ ≤ ϕ

(
|y|
)

and
∣∣f(t, x, y)

∣∣ ≤
2α
[
〈x, f(t, x, y)〉+ |y|2

]
+ β in [0, 1]×G× Rm.

Denoted now K = φ−1[φ(4R+4αR2+ β
4
)
+2R+4αR2+ β

8
]
, where φ(u) =

∫ u
0

s
ϕ(s) ds

and R = diamG, assume further that for each u ∈ ∂G there exist Vu : Rm → R of
class C2, au ∈

[
0, π

2

4
)

and ku > 0 such that
(H1) Vu/G ≤ 0;
(H2) Vu(u) = 0;
(H3) ∀λ ∈ (0, 1), ∀t ∈ [0, 1], ∀x ∈ G : Vu(x) > −ku, ∀v ∈ BK0

〈HVu(x)v, v〉+ λ〈∇Vu(x), f(t, x, v)〉 ≥ −au
[
Vu(x) + ku

]
;

(H4) ∀v ∈ BK0 : 〈∇Vu(u), v〉 ≤ 0 ≤ 〈∇VAu(Au), Bv〉
〈∇Vu(u), v〉 = 0 and 〈∇VAu(Au), Bv〉 = 0 .

Suppose finally that ker(I −B) ∩ Im(I −A) = {0} and d
[
(I − PB)f̄ , G ∩ ker(I −

A), 0
]
6= 0, where PB is the continuous projections of Rm onto Im(I − B) and

f̄(a) :=
∫ 1

0 f(s, a, 0) ds. Then, (P) has at least one solution x with x(t) ∈ Ḡ, for
all t ∈ [0, 1].

For the proof of Theorem 2 we refer to Theorem 6 in [14], which contains the
same result as the previous one for continuous right hand sides. In the quoted
theorem assumptions (H3) and (H4) are required to be satisfied for all v in Rm
instead that only in a ball. They are used to avoid that a solution of (Pλ) completely
laying in the closure of G reaches its boundary. Like pointed out in [14], at this
aim, the vector v is not an arbitrary point of Rm, but, in fact, plays the role of the
first derivative of the solution. We point out that, according to Lemma 1, for every
λ ∈ (0, 1),K is a bound for the first derivative of each solution of (Pλ), completely
contained in the closure of G. Hence (H3) and (H4) are sufficient to guarantee that
such solution does not touch the boundary of G and it is easy to verify that the
same proof given in [14], Theorem 6 holds true also for Carathéodory right hand
sides.

We now restrict ourselves to consider candidate bound sets defined as the sublevel
sets of one only scalar function, called guiding function, which is equivalent to
consider all the bounding functions equal among them.

Corollary 1. Let f : [0, 1]×R2m → Rm be a Carathéodory function and A and B
a couple of m×m real matrices, with A non-singular.
Suppose that there exist a function V : Rm → R of class C2 and k > 0 such that

i) V −1(−∞, 0) is non-empty and bounded;
ii) V −1(0) is invariant with respect to the subgroup generated by A;
iii) ∀x ∈ V −1(0)∇V (x) 6= 0;
iv) ∀x ∈ V −1(−k, 0]HV (x) is positive semidefinite.

Assume also that there exist a continuous function ϕ : [0,+∞) → (0,+∞), with∫ +∞ u
ϕ(u) du = ∞, and α, β ≥ 0 such that |f(t, x, y)| ≤ ϕ

(
|y|
)

and |f(t, x, y)| ≤
2α
[
〈x, f(t, x, y)〉+ |y|2

]
+ β in (t, x, y) ∈ [0, 1]× V −1(−∞, 0]× Rm.
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Denoted now K = φ−1[φ(4R+4αR2+ β
4
)
+2R+4αR2+ β

8
]
, where φ(u) =

∫ u
0

s
ϕ(s) ds

and R = diamV −1(−∞, 0), suppose further that
v) ∀(t, x, v) ∈ [0, 1]× V −1(−k, 0]×BK0

〈∇V (x), f(t, x, v)〉 ≥ 0 ,
vi) ∀x ∈ V −1(0), ∀v ∈ BK0 : 〈∇V (x), v〉 ≤ 0 ≤ 〈∇V (Ax), Bv〉

〈∇V (x), v〉 = 0 and 〈∇V (Ax), Bv〉 = 0 .
Assume finally

(K1) ker(I −A) invariant for f̄ ,
(K2) ker(I −B) ∩ Im(I −A) = ker(I −A) ∩ Im(I −B) = {0},
(K3) d

[
∇V, V −1(−∞, 0) ∩ ker(I −A), 0

]
6= 0.

Then, (P) has at least one solution x with V
(
x(t)

)
≤ 0, for all t ∈ [0, 1].

Proof. The assumptions on V imply that G := V −1(−∞, 0) is an open, bounded
and non-empty subset whose boundary ∂G = V −1(0) is invariant with respect
to the subgroup generated by A. For every u ∈ V −1(0) set Vu = V , au = 0 and
ku = k. iv) and v) imply then that

〈HV (x)v, v〉+ λ〈∇V (x), f(t, x, v)〉 ≥ 0
for all λ ∈ (0, 1) and (t, x, v) ∈ [0, 1]× V −1(−k, 0]×BK0 .
By (K1) and (K2), according to Remark 1, we obtain that∣∣d[(I − PB)f̄ , V −1(−∞, 0)∩ ker(I −A), 0

]∣∣ =
∣∣d[f̄ , V −1(−∞, 0)∩ ker(I −A), 0

]∣∣ .
Moreover for each x ∈ V −1(0)

〈∇V (x), f̄(x)〉 =
∫ 1

0
〈∇V (x), f(s, x, 0)〉ds ≥ 0 ,

because of v).
Applying now Poincaré-Bohl theorem (see [7], Theorem 2.1.5) we get

d
[
f̄ , V −1(−∞, 0) ∩ ker(I −A), 0

]
= d
[
∇V, V −1(−∞, 0) ∩ ker(I −A), 0

]
and the thesis follows by (K3) and Theorem 2. �

Now consider again Theorem 2. When the vector field f is continuous, in [14]
(see Theorem 5 and Corollary 1) an existence result for (P) was obtained requiring,
instead of (H3), the following assumption:

(H3’) ∀λ ∈ (0, 1), ∀t ∈ (0, 1), ∀v ∈ Rm : 〈∇Vu(u), v〉 = 0
〈HVu(u)v, v〉+ λ〈∇Vu(u), f(t, u, v)〉 > 0 .

Like pointed out in the quoted paper, (H3), when localized at u, is weaker than
(H3’). On the other hand, (H3) must be satisfied in a whole neighbourhood of the
point, while (H3’) is required to be satisfied only at u. When the vector field is of
Carathéodory type, for natural reasons usually in the literature the hypothesis is
assumed in a neighbourhood of the boundary of the candidate bound set. In the
next corollary we shall prove that Corollary 1 holds also when assuming condition
v) satisfied only in the boundary of the bound set, instead of in a neighbourhood of
it. We will do this making use of a suitable modification of a Luzin approximation
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result (see also Scorza Dragoni [13]) given by Thompson [15]. On this subject we
remind to Mawhin-Thompson [11], where this technique was employed to generalize
the existence results for periodic solutions of a first order differential equation in
Mawhin-Ward [12]. We also recall Andres-Malaguti-Taddei [2], where the same
technique allowed to generalize the results in [1] for solutions of a Floquet problem
associated with an inclusion.

Corollary 2. Let f : [0, 1]×R2m → Rm be a Carathéodory function and A and B
a couple of m×m real matrices, with A non-singular.
Suppose that there exists a function V : Rm → R of class C2 such that V −1(−∞, 0)
is bounded and non-empty, V −1(0) is invariant with respect to the subgroup gener-
ated by A, 〈x,∇V (x)〉 > 0 for every x ∈ V −1(0), HV (x) is positive semidefinite in
V −1(−h, 0] for some h > 0.
Assume also that there exist a continuous function ϕ : [0,+∞) → (0,+∞), with∫ +∞ u

ϕ(u) du = ∞, and α, β ≥ 0 such that
∣∣f(t, x, y)

∣∣ ≤ ϕ
(
|y|
)

and
∣∣f(t, x, y)

∣∣ ≤
2α
[
〈x, f(t, x, y)〉+ |y|2

]
+ β in (t, x, y) ∈ [0, 1]× V −1(−∞, 0]× Rm.

Denoted now K = φ−1[φ(4R+ 12αR2 + 3
4β
)

+ 2R+ 12αR2 + 3
8β
]
, where φ(u) =

1
3
∫ u

0
s

ϕ(s) ds and R = diamV −1(−∞, 0), suppose further that
i) ∀(t, x, v) ∈ [0, 1]× V −1(0)×BK0

〈∇V (x), f(t, x, v)〉 > 0 ;

ii) ∀x ∈ V −1(0), ∀v ∈ BK0 : 〈∇V (x), v〉 ≤ 0 ≤ 〈∇V (Ax), Bv〉

〈∇V (x), v〉 = 0 and 〈∇V (Ax), Bv〉 = 0 .

Assume finally ker(I −A) invariant for f̄ and for ∇V , ker(I −B) ∩ Im(I −A) =
ker(I −A) ∩ Im(I −B) = {0} and d

[
∇V, V −1(−∞, 0) ∩ ker(I −A), 0

]
6= 0.

Then, (P) has at least one solution x with V
(
x(t)

)
≤ 0, for all t ∈ [0, 1].

Proof. Since V ∈ C2(Rm) and V −1(−∞, 0) is bounded, then V −1(0) is com-
pact. By the hypothesis on V we then get that there exist k ∈ (0, h] such that
〈x,∇V (x)〉 > 0 for every x ∈ V −1(−k, k). Let now µ ∈ C

(
Rm, [0, 1]

)
be such that

µ ≡ 1 in V −1(− k
2 ,

k
2
)

and µ ≡ 0 in Rm\V −1(−k, k).
Take {εn}n monotone decreasing to zero. Since f is a Carathéodory function, then
Theorem 2.3 in [11] implies that there exists a monotone decreasing sequence {θn}n
of open subsets of [0, 1] such that λ(θn) ≤ εn and f ∈ C

((
[0, 1]\θn

)
× R2m) for

every n ∈ N. Obviously ∩∞n=1θn has null Lebesgue measure and limn→∞ χθn(t) = 0
for every t /∈ ∩∞n=1θn.
Define now for each n ∈ N and (t, x, y) ∈ [0, 1]× R2m,

fn(t, x, y) = f(t, x, y) + µ(x)g(t, x, y)χθn(t) ∇V (x)
|∇V (x)|

where
g(t, x, y) = 2 min

{
ϕ(|y|), 2α[〈x, f(t, x, y)〉+ |y|2] + β

}
.

Since ∣∣fn(t, x, y)− f(t, x, y)
∣∣ = µ(x)g(t, x, y)χθn(t) = 0
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when x ∈ Rm\V −1(−k, k) and ∇V (x) 6= 0 when x ∈ V −1(−k, k), it follows that fn
is well defined. Since f is a Carathéodory function and µ, ϕ and ∇V are continuous,
fn is a Carathéodory function.
Let us now prove that each problem

(Pn)


x′′ = fn(t, x, x′) , t ∈ [0, 1]
x(1) = Ax(0)
x′(1) = Bx′(0) ,

satisfies the assumptions of Theorem 1.
First notice that g is positive in [0, 1]× V −1(−∞, 0]× Rm. In fact, by hypothesis,

g(t, x, y) ≥ 2
∣∣f(t, x, y)

∣∣ ≥ 0 .

If g(t, x, y) = 0, then
∣∣f(t, x, y)

∣∣ = 0, which implies that

g(t, x, y) = 2 min
{
ϕ
(
|y|
)
, 2α|y|2 + β

}
> 0 ,

because α and β are positive constants, and ϕ is a positive function.
The Nagumo growth condition on f , imply that, for all (t, x, y) ∈ [0, 1]×V −1(−∞, 0]
× Rm, ∣∣fn(t, x, y)

∣∣ ≤ ∣∣f(t, x, y)
∣∣+ g(t, x, y) ≤ 3ϕ

(
|y|
)

and

6α
[
〈x, fn(t, x, y)〉+ |y|2

]
+ 3β

=6α
{
〈x, f(t, x, y)〉+

µ(x)χθn(t)g(t, x, y)
|∇V (x)| 〈x,∇V (x)〉+ |y|2

}
+ 3β

≥6α
[
〈x, f(t, x, y)〉+ |y|2

]
+ 3β

≥
∣∣f(t, x, y)

∣∣+ g(t, x, y) ≥
∣∣fn(t, x, y)

∣∣ ,
because µ ≡ 0 in Rm\V −1(−k, k) and 〈x,∇V (x)〉 > 0 for all x ∈ V −1(−k, k).
Hence the conditions of Lemma 1 are satisfied by the positive continuous function
3ϕ and the positive constants 3α and 3β. According to the quoted lemma, for all x
solution of (Pn) with x(t) ∈ G for all t it holds ‖x′‖0 ≤ K.
Moreover, since

fn(a) = f(a) +
µ(a)

∫
θn
g(s, a, 0) ds

|∇V (a)| ∇V (a) ,

it follows that ker(I −A) is invariant for fn, because it is invariant both for f and
∇V and it is a linear subspace.
To apply the continuation principle it remains to prove condition (BS) of Theorem 1.
Suppose by contradiction that there exist λ ∈ (0, 1), x solution of

x′′ = λfn(t, x, x′) , t ∈ [0, 1]
x(1) = Ax(0)
x′(1) = Bx′(0) ,
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and t0 ∈ [0, 1] such that x(t) ∈ V −1(−∞, 0] for all t and x(t0) ∈ V −1(0). According
to the invariance of V −1(0) with respect to the subgroup generated by A, t0 ∈]0, 1[
or both x(0) and x(1) ∈ V −1(0).
Let us consider the function v(t) = V

(
x(t)

)
. Since V ∈ C2(Rm) and fn is a

Carathéodory function, v is of class C1 and v′ is absolutely continuous in [0, 1].
Trivially, t0 is a local maximum point for v. If t0 ∈]0, 1[, then v′(t0) = 0. If
t0 ∈ {0, 1}, it holds 〈

∇V
(
x(0)

)
, x′(0)

〉
= v′(0) ≤ 0

and
0 ≤ v′(1) =

〈
∇V

(
x(1)

)
, x′(1)

〉
=
〈
∇V

(
Ax(0)

)
, Bx′(0)

〉
.

Thus ii) implies that v′(0) = v′(1) = 0.
Moreover, for a.a. t ∈ [0, 1],

v′′(t) =
〈
HV

(
x(t)

)
x′(t), x′(t)

〉
+ λ
〈
∇V

(
x(t)

)
, fn
(
t, x(t), x′(t)

)〉
=
〈
HV

(
x(t)

)
x′(t), x′(t)

〉
+ λ
[〈
∇V

(
x(t)

)
, f
(
t, x(t), x′(t)

)〉
+ µ

(
x(t)

)
g
(
t, x(t), x′(t)

)
χθn(t)

∣∣∇V (x(t)
)∣∣] .

If t0 ∈ [0, 1]\θn, since f is continuous in
(
[0, 1]\θn

)
× R2m, v is twice differentiable

in t0. Thus v′′(t0) ≥ 0, because t0 is a local maximum point for v and v′(t0) = 0.
On the other hand i) implies that

v′′(t0) =
〈
HV

(
x(t0)

)
x′(t0), x′(t0)

〉
+ λ
〈
∇V

(
x(t0)

)
, f
(
t0, x(t0), x′(t0)

)〉
> 0 ,

because HV is positive semi definite in V −1(−k, 0], and we get a contradiction.
If t0 ∈ θn, according to the invariance condition (IC), we do not lose in generality
assuming that t0 < 1. Since θn is an open set and x is a continuous function, there
exists t1 > t0 such that [t0, t1] ⊂ θn, x(t) ∈ V −1(− k

2 , 0
]

for all t ∈ [t0, t1] and v(t1)
is the minimum of v in [t0, t1]. Then

0 ≥v′(t1) =
∫ t1

t0

v′′(s) ds

=
∫ t1

t0

[〈
HV

(
x(s)

)
x′(s), x′(s)

〉
+ λ
〈
∇V

(
x(s)

)
, f
(
s, x(s), x′(s)

)〉
+ g
(
s, x(s), x′(s)

)∣∣∇V (x(s)
)∣∣] ds

≥λ
∫ t1

t0

[
−
∣∣f(s, x(s), x′(s)

)∣∣+ g
(
s, x(s), x′(s)

)]∣∣∇V (x(s)
)∣∣ ds

≥λ2

∫ t1

t0

g
(
s, x(s), x′(s)

)∣∣∇V (x(s)
)∣∣] ds > 0 ,

because in V −1(− k
2 , 0
]
, µ ≡ 1, HV is positive semi definite, ∇V is different from

zero and g(t, x, y) ≥ 2
∣∣f(t, x, y)

∣∣ and positive for all (t, x, y) ∈ [0, 1]×V −1(− k
2 , 0
]
×

Rm. Therefore we get again a contradiction and also (BS) is proved.
Applying Theorem 1 we obtain that for every n ∈ N there exists xn solution of
(Pn) such that xn(t) ∈ V −1(−∞, 0] and

∣∣x′n(t)
∣∣ ≤ K for each t ∈ [0, 1]. Since
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fn is of Carathéodory type and V −1(−∞, 0)] is bounded, Ascoli-Arzelá theorem
implies that {xn}n → x uniformily in C1([0, 1]

)
. Moreover {fn}n → f a.e., because

limn→∞ χθn(t) = 0 for every t /∈ ∩∞n=1θn and λ(∩∞n=1θn) = 0. Finally, for every
n ∈ N and a.e. t ∈ [0, 1],

∣∣fn(t, xn(t), x′n(t)
)∣∣ ≤ 3 supBK0 ϕ, and we can conclude by

Lebesgue’s dominated convergence theorem that x is a solution of (P). �

Remark 4. With respect to Corollary 1, in Corollary 2 we assume the stronger
conditions that 〈x,∇V (x)〉 > 0 for every x ∈ V −1(0) and that ker(I−A) is invariant
for ∇V . However those assumption are not restrictive. In fact, in literature, V
is often defined as V (x) = |x|2 − R2 for some R > 0. In this case ∇V = 2I and
V −1(0) =

{
x ∈ Rm : |x| = R

}
. Thus both the conditions are satisfied.

Remark 5. According respectively to Remark 3 and 2, when m = 1 or the
vector field f is independent from the first derivative, Corollary 2 can be proved
without assuming the condition on the positive constants α and β and, in the
second case, neither the condition on the positive function ϕ. It is then sufficient
to define g(t, x, y) respectively equal to 2ϕ

(
|y|
)

and 2gR, K respectively equal to
φ−1[φ(2R) + 2R

]
and 2

√
m
(
2R+ 3|gR|1

)
and reason as above.
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helpful suggestions.
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