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The relation between implied and realised volatility:  

are call options more informative than put options? 

evidence from the DAX index options market 

 

S. Muzzioli♥1 

 

Abstract 

 

The aim of this paper is to investigate the relation between implied volatility, historical 

volatility and realised volatility in the Dax index options market. Since implied volatility varies 

across option type (call versus put) we run a horse race of different implied volatility estimates: 

implied call, implied put and average implied that is a weighted average of call and put implied 

volatility with weights proportional to traded volume. Two hypotheses are tested in the Dax 

index options market: unbiasedness and efficiency of the different volatility forecasts. Our 

results suggest that all the three implied volatility forecasts are unbiased (after a constant 

adjustment) and efficient forecasts of future realised volatility in that they subsume all the 

information contained in historical volatility.  

 

Keywords: Implied Volatility, Volatility Forecasting, Option type, trading volume. 

JEL classification: G13, G14.  

 

 

1. Introduction. 

 

Volatility is a key variable in option pricing models and risk management techniques and 

has drawn the attention of many theoretical and empirical studies aimed at assessing the best way 

in order to forecast it. Among the various models proposed in the literature in order to forecast 

volatility, we distinguish between option based volatility forecasts that use prices of traded 

options in order to unlock volatility expectations and time series volatility models that use 

historical information in order to predict future volatility (following Poon and Granger (2003), in 

                                                
♥ Department of Economics and CEFIN, University of Modena and Reggio Emilia, Viale Berengario 51, 41100 Modena (I), Tel. +390592056771 
Fax +390592056947, e-mail: silvia.muzzioli@unimore.it 
 
1 The author wish to thank Marianna Brunetti, Mario Forni and Giuseppe Marotta for helpful comments and 
suggestions and Giulio Fedele for research assistance. The author gratefully acknowledge financial support from 
MIUR. 

mailto:silvia.muzzioli@unimore.it


 2 

this set we group predictions based on past standard deviation, ARCH conditional volatility 

models and stochastic volatility models). Many empirical studies have tested the forecasting 

power of implied volatility versus a time series volatility model. 

Some early contributions find evidence that implied volatility is a biased and\or 

inefficient forecast of future realised volatility. Canina and Figlewski (1993) use a data set of 

daily closing prices of options on the S&P 100 from March 1983 to March 1987 and find a poor 

relationship between implied and realised volatility. In the same market, Day and Lewis (1992) 

examine the predictive power of implied volatility over a longer time period, from 1983 to 1989, 

and find that it is not better than standard time series models such as GARCH and EGARCH. 

Jorion (1995) uses data on currency options and finds that implied volatility is a biased but 

efficient predictor of future realised volatility. Lamourex and Lastrapes (1993) examine the 

information content of implied volatility extracted from options on ten stocks from 1982 to 1984 

and find that implied volatility is biased and inefficient. Although the results of some of these 

studies (e.g. Day and Lewis (1992), Lamourex and Lastrapes (1993)) are affected by overlapping 

samples, as recalled by Christensen, Hansen and Prabhala (2001), or mismatching maturities 

between the option and the volatility forecast horizon, they constitute early evidence against the 

unbiasedness and information efficiency of implied volatility.  

More recently, numerous papers analyse the empirical performance of implied volatility 

in various option markets, ranging from indexes, futures or individual stocks and find that 

implied volatility is an unbiased and\or efficient forecast of future realised volatility. In the index 

options market, Christensen and Prabhala (1998) examine the relation between implied and 

realized volatility using S&P100 options, over the time period 1983-1995. They look for a 

possible regime shift around October 1987 and use non-overlapping samples and instrumental 

variables in order to account for possible errors in variables. They found that implied volatility is 

a good predictor of future realized volatility. Ederington and Guan (2002) analyse the S&P 500 

futures options market and find that implied volatility is an efficient forecast of future realised 

volatility. Christensen, Hansen and Prabhala (2001) use options on the S&P 100 and non 

overlapping samples and find evidence for the efficiency of implied volatility as a predictor of 

future realised volatility. In the futures options market Szakmary et al. (2003) consider options 

on 35 different Futures contracts on a variety of asset class. They find that implied volatility, 

while not a completely unbiased estimate of future realised volatility, has more informative 

power than past realised volatility. In the stock options market, Godbey and Mahar (2005) 

analyse the information content of implied call and put volatility extracted from options on 460 

stocks that compose the S&P500 index. They find that implied volatility contains some 
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information on future realised volatility that is superior both to past realised volatility and to a 

GARCH(1,1) estimate. Moreover they highlight that the information content of implied volatility 

decreases as option volumes decrease.  

Other papers analyse the performance of the VIX volatility index, that measures the 

implied volatility of a basket of options on the S&P500 (prior to 2003 the S&P100 was used). 

Among them, Blair, Poon and Taylor (2001b) find that the VIX index is an unbiased estimator of 

future realized volatility. Bandi and Perron (2006) investigate the long-run relation between 

implied and realised volatility in the VIX index over the period 1988-2003. They obtain that 

implied volatility is an unbiased estimate of future realised volatility. 

As option implied volatility differs depending on strike price of the option (the so-called 

smile effect), time to maturity of the option (term structure of volatility) and option type (call 

versus put) which option class yields implied volatilities that are most representative of the 

markets’ volatility expectations is still an open debate. As for the moneyness dimension, most of 

the studies use at the money options (or close to the money options) since they are the most 

heavily traded and thus the most liquid. As for the time to maturity dimension, the majority of 

the studies use options with time to maturity one month in order to make it coincide with the 

sampling frequency and the estimation horizon of realised volatility. As for the option type, call 

options are more used than put options. 

As far as we know, little is the evidence about the different information content of call or 

put prices. Fleming (1998) investigates the implied-realised volatility relation in the S&P100 

options market and finds that call implied volatility has slightly more predictive power than put 

implied volatility. In the same market, Christensen and Hansen (2002) find that both call and put 

implied volatilities are informative of future realized volatility, even if call implied volatility 

performs slightly better than put implied volatility. All these studies use American type options 

and do not explicitly take into account the dividend payments. These two variables influence in a 

different manner call and put option prices, and may have altered the comparison if not properly 

addressed.  

  Moreover, given that option prices are observed with measurement errors (stemming 

from finite quote precision, bid-ask spreads, non-synchronous observations and other 

measurement errors) small errors in any of the input may produce large errors in the implied 

volatility (see e.g. Hentshle (2003)). As noted in Moriggia, Muzzioli and Torricelli (2007) the 

use of both call and put options in the volatility estimation, highly improves the pricing 

performance of option pricing models based on implied binomial trees. 
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The aim of the paper is twofold. In the first place we explore the relation between call 

and put implied volatilities in the Dax index option market. The market is chosen for two main 

reasons: First the options are European, therefore the estimation of the early exercise premium is 

not needed and can not influence the results. Second, the Dax index is a capital weighted 

performance index composed of 30 major German stocks and is adjusted for dividends, stocks 

splits and changes in capital. Since dividends are assumed to be reinvested into the shares, they 

do not affect the index value. In the second place, we look for a combination of call and put 

prices in a single estimate, in order to convey the information from both call and put prices and 

cancel possible errors across option  type.  

The plan of the paper is the following: in section 2 we illustrate the data set used, the 

sampling procedure and the variables definitions. In section 3 we describe the methodology used 

in order to address the unbiasedeness and efficiency of the different volatility forecasts. In 

section 4 we report the results of the univariate and encompassing regressions and we test for 

robustness our methodology in order to see if some errors in variables problem may have 

affected our results. As in Godbey and Mahar (2006) it is highlighted that traded volume has a 

positive relation with the information content of option implied volatility, in Section 5 we 

analyse the different information content of implied volatility by grouping options into four 

quartiles according to increasing trading volume. Based on the results of Section 5, in section 6 

we combine call and put implied volatilities in a single estimate: a trade weighted average 

implied volatility and we compare the performance of this estimator on the same data set. The 

last section concludes. 

 

2. The Data set, the sampling procedure and the variables definitions. 

 

Our data set2 consists of closing prices of at the money call and put options on the DAX-

index, with maturity one month recorded from 19 July 1999 to 6 December 2006. Each record 

reports the strike price, expiration month, transaction price and total trading volume of the day 

separately for call and put prices. We have a total of 1928 observations. As for the underlying we 

use the DAX-index closing prices recorded in the same time period. As a proxy for the risk-free 

rate we use the one month Euribor rate.  

DAX-options started trading on the German Options and Futures Exchange (EUREX) in 

August 1991. They are European options on the DAX-index, which is a capital weighted 

performance index composed of 30 major German stocks and is adjusted for dividends, stocks 

                                                
2 The data source for Dax-index options, Dax index and the risk-free rate is Data-Stream. 
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splits and changes in capital. Since dividends are assumed to be reinvested into the shares, they 

do not affect the index value, therefore we do not have to estimate the dividend payments. 

Moreover the fact that the options are European avoids the estimation of the early exercise 

premium. This latter feature is very important since our data set is by construction less prone to 

estimation errors if compared to the majority of previous studies that use American style options. 

DAX-index options are quoted in index points, carried out one decimal place. The contract value 

is EUR 5 per DAX index point. The tick size is 0.1 of a point representing a value of EUR 0.50. 

They are cash settled, payable on the first exchange trading day immediately following the last 

trading day. The last trading day is the third Friday of the expiration month, if that is an 

exchange day, otherwise the exchange trading day immediately prior to that Friday. The final 

settlement price is the value of the DAX determined on the basis of the collective prices of the 

shares contained on the DAX index as reflected in the intra-day trading auction on the electronic 

system of the Frankfurt Stock Exchange. Expiration months are the three near calendar months 

within the cycle March, June, September and December as well as the two following months of 

the cycle June and December.  

In order to avoid measurement errors, the data set has been filtered according to the 

following filtering constraints. First, in order not to use stale quotes, we eliminate dates with 

trading volume less than ten contracts. Second, we eliminate dates with option prices violating 

the standard no arbitrage bounds. After the application of the filters, we are left out with 1860 

observations out of 1928.  

As for the sampling procedure, in order to avoid the telescoping problem described in 

Christensen, Hansen and Prabhala (2001), we use monthly non-ovelapping samples. In 

particular, we collect the prices recorded on the Wednesday that immediately follows the expiry 

of the option (third Saturday of the expiry month) since the week immediately following the 

expiration date is one of the most active. These options have a fixed maturity of almost one 

month (from 17 to 22 days to expiration). If the Wednesday is not a trading day we move to the 

trading day immediately following. 

The implied volatility, provided by Datastream, is obtained by inverting the Black and 

Scholes formula as a weighted average of the two options closest to being at the money i.e. with 

strikes one below and one above the underlying price, with weights equal to the distance to the 

moneyness (for example if the DAX-index is 5355 and the closest strikes are 5400 and 5350 the 

implied volatility of the 5400 strike will be weighted 5/50 against the implied volatility 5350 

strike which is weighted 45/50). The implied volatility is computed for call options (σc) and for 

put options (σp). 
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Implied volatility is an ex-ante forecast of future realised volatility on the time period 

until the option expiration. Therefore we compute the realised volatility (σr) in month t, as the 

sample standard deviation of the daily index returns over the option’s remaining life: 

2
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where Ri is the return of the DAX-index on day i and R is the mean return of the Dax-INDEX in 

month t. We annualize the standard deviation by multiplying it by 252 . 

In order to examine the predictive power of implied volatility versus a time series 

volatility model, following prior research (see e.g. Christensen and Prabhala (1998), Jiang and 

Tian (2005)), we choose to use the lagged (one month before) realized volatility as a proxy for 

historical volatility (σh). 

Descriptive statistics for volatility and log volatility series are reported in Table 1. We 

can see that on average realized volatility is lower than implied volatility estimates, with call 

implied volatility being slightly higher than put implied volatility. As for the standard deviation, 

realised volatility is slightly more volatile than both implied volatility estimates. The volatility 

series are highly skewed (long right tail) and leptokurtic.   

In line with the literature (see e.g. Jiang and Tian (2005)) we decided to use the natural logarithm 

of the volatility series instead of the volatility itself in the empirical analysis for the following 

reasons. First log-volatility series conform more closely to normality than pure volatility series, 

this is documented in various papers and it is the case in our sample (see Table 1). Second, 

natural logarithms are less likely to be affected by outliers in the regression analysis.   

 

Table 1. Descriptive statistics. 
Statistic σc σp σr ln σc ln σp ln σr 
mean  0,2404 0,2395 0,2279 -1,51 -1,52 -1,6 
std dev 0,11 0,11 0,12 0,41 0,41 0,49 
skewness 1,43 1,31 1,36 0,49 0,4 0,41 
kurtosis 4,77 4,21 4,37 2,73 2,71 2,46 
Jarque 
Bera 

41,11 30,28 33,68 3,69 2,68 3,54 

p-value 0,00 0,00 0,00 0,16 0,26 0,17 
 

 

3. The methodology. 

The information content of implied volatility is examined both in univariate and in 

encompassing regressions. In univariate regressions, realized volatility is regressed against one 
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of the three volatility forecasts (implied call (σc), implied put (σp), historical volatility (σh)) in 

order to examine the predictive power of each volatility estimator. The univariate regressions are 

the following: 

)ln()ln( ir σβασ +=          (1) 

where σr = realized volatility and σi= volatility forecast, i=h,c,p. 

In encompassing regressions, realized volatility is regressed against two or more 

volatility forecasts in order to distinguish which one has the highest explanatory power. We 

choose to compare pairwise one implied volatility forecast (call, put) with historical volatility in 

order to see if implied volatility subsumes all the information contained in historical volatility. 

The encompassing regressions used are the following: 

ln( ) ln( ) ln( )r i hσ α β σ γ σ= + +         (2) 

where σr = realized volatility, σi= implied volatility, i=c,p and σh = historical volatility. 

Moreover, we compare call and put implied volatilities in order to understand if the information 

carried by call (put) prices is more valuable than the information carried by put (call) prices: 

ln( ) ln( ) ln( )r p cσ α β σ γ σ= + +         (3) 

where σr = realized volatility, σc= implied call volatility and σp= implied put volatility. 

Following Christensen and Prabhala (1998) three are the hypotheses tested in univariate 

regressions (1). The first hypothesis concerns the amount of information about future realized 

volatility contained in the volatility forecast. If the volatility forecast contains some information, 

then the slope coefficient should be different from zero. Therefore we test if 0β =  and we see 

whether it can be rejected. The second hypothesis is about the unbiasdness of the volatility 

forecast. If the volatility forecast is an unbiased estimator of future realised volatility, then the 

intercept should be zero and the slope coefficient should be one (H0: 0=α  and 1=β ). In case 

this latter hypothesis is rejected, we see if at least the slope coefficient is equal to one (H0: 

1=β ) and, if confirmed, we interpret the volatility forecast as unbiased after a constant 

adjustment. Finally if implied volatility is efficient then the error term should be white noise and 

uncorrelated with the information set.  

In encompassing regressions (2) three are the hypotheses to be tested. The first is about 

the efficiency of the volatility forecast: in encompassing regressions (2) we test whether the 

volatility forecast (implied call, implied put) subsumes all the information contained in historical 

volatility. In affirmative case the slope coefficient of historical volatility should be equal to zero, 

(H0: 0=γ ). Moreover, as a joint test of information content and efficiency we test in equations 

(2) if the slope coefficients of historical volatility and implied volatility (call, put) are equal to 
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zero and one respectively (H0: 0=γ  and 1=β ). Following Jiang and Tian (2005), we ignore 

the intercept in the latter null hypothesis, and if our null hypothesis is verified, we interpret the 

volatility forecast as unbiased after a constant adjustment.  

Finally we investigate the different information content of call and put implied volatility. 

To this end we test, in augmented regression (3), if 0=γ  and 1=β , in order to see if put 

implied volatility subsumes all the information contained in call implied volatility.  

Differently from other papers (see e.g. Christensen and Prabhala 1998, Christensen and 

Hansen (2002)) that use American options on dividend paying indexes, our data set of European 

style options on a non-dividend paying index avoids measurement errors that may arise in the 

estimation of the dividend yield and the early exercise premium. Nonetheless, as we are using 

closing prices for the index and the option that are non- synchronous (15 minutes difference) and 

we are ignoring bid ask spreads, some measurement errors may still affect our estimates. 

Therefore we adopt an instrumental variable procedure (IV), we regress call (put) implied 

volatility on an instrument (in univariate regressions) and on an instrument and any other 

exogenous variable (in encompassing and augmented regressions) and replace fitted values in the 

original univariate and encompassing regressions. As the instrument for call (put) implied 

volatility we use both historical volatility and past call (put) implied volatility as they are 

possibly correlated to the true call (put) implied volatility, but unrelated to the measurement error 

associated with call (put) implied volatility one month later. As an indicator of the presence of 

errors in variables we use the Hausman (1978) specification test statistic3. 

 

4. The results. 

The results of the OLS univariate (equation (1)), encompassing (equation (2)), and 

augmented (equation (3)) regressions are reported in Table 2 (p-values in parentheses). In all the 

regressions the residuals are normal, omoschedastic and not autocorrelated (the Durbin Watson 

statistic is not significantly different from two and the Breusch-Godfrey LM test confirms non 

autocorrelation up to lag 124).  The columns χ2a and χ2b report the statistic (p-values in 

                                                

3 The Hausman specification test is defined as: 
( )2ˆ ˆ

ˆ ˆ( ) ( )
IV OLS

IV OLS

m
Var Var

β β

β β

−
=

−
 where: ˆ

IVβ  is the beta obtained 

through the TSLS procedure, ˆ
OLSβ is the beta obtained through the OLS procedure and Var(x) is the variance of the 

coefficient x. The Hausman specification test is distributed as a χ2(1). 
4 In the regressions that include as explanatory variable the lagged realised volatility, the Durbin’s alternative has 
been computed and only in equation (1) it was possible to obtain a result that has confirmed the non autocorrelation 
of the residuals. The results of the Durbin’s alternative and of the Breusch-Godfrey LM test are available upon 
request. 
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parentheses) of a χ2 test for the null hypothesis 0=α  and 1=β  in equation (1), and 0=γ and 

1=β  in equations (2) and (3) respectively. The superscripts ***, **, * indicate that β is 

insignificantly different from one at the 10%, 5%, and 1% critical level respectively. The 

superscripts +++, ++, + indicate that β is insignificantly different from zero at the 10%, 5%, and 1% 

critical level respectively. 

First of all, in the three univariate regressions all the beta coefficients are significantly 

different from zero: this means that all the three volatility forecasts (implied call, implied put and 

historical) contain some information about future realised volatility. However, the null 

hypothesis that any of the three volatility forecasts is an unbiased estimate of future realized 

volatility is strongly rejected in all cases. In particular, in our sample, realized volatility is on 

average a little lower than the two implied volatility forecasts, suggesting that implied 

overpredicts realised volatility, in line with the results found in Lynch and Panigirtzoglou (2003). 

The adjusted R2 is the highest for the put implied volatility, followed by the call implied 

volatility. The historical volatility has the lowest adjusted R2. Therefore among the two implied 

volatility forecasts, the put implied is ranked first in explaining future realized volatility, while 

historical volatility is the last. The null hypothesis that β is insignificantly different from one can 

not be rejected at the 10% critical level for the two implied volatility estimates, while it is 

strongly rejected for historical volatility. Therefore we can consider both implied volatility 

estimates as unbiased after a constant adjustment given by the intercept of the regression. 

In encompassing regressions (2) we compare pairwise one implied volatility forecast 

(call, put) with historical volatility in order to understand if implied volatility subsumes all the 

information contained in historical volatility. The results are striking and provide strong evidence 

for both the unbiasdness and efficiency of both implied volatility forecasts. First of all, from the 

comparison of univariate and encompassing regressions, the inclusion of historical volatility 

does not improve the goodness of fit according to the adjusted R2. In fact, the slope coefficient of 

historical volatility is not significantly different from zero at the 10% level in all the two 

encompassing regressions (2), indicating that both call and put implied volatilities subsume all 

the information contained in historical volatility. The slope coefficient of both call and put 

implied volatilities is not significantly different from one at the 10% level and the joint test of 

information content and efficiency 0=γ  and 1=β  does not reject the null hypothesis, 

indicating that both implied volatility estimates are efficient and unbiased after a constant 

adjustment.  

In order to see if put implied volatility has more predictive power than call implied 

volatility, we test in augmented regression (3) if 0=γ and 1=β . We see that only the slope 
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coefficient of put implied volatility is significantly different from zero, while the slope 

coefficient of call implied volatility is not significantly different from zero. The joint test 

0=γ and 1=β  does not reject the null hypothesis, providing evidence for the superiority of put 

implied volatility with respect to call implied volatility. 

Finally, in order to test for robustness our results, and see if implied volatility has been 

measured with errors, we adopt an instrumental variable procedure (IV) and run a two stage least 

squares. The Hausman (1978) specification test reported in the last column of Table 2 indicates 

that the errors in variables problem is not significant neither in univariate regressions (1), nor in 

encompassing regressions (2), nor in augmented regression (3)5. Therefore we can trust the OLS 

regressions results. 

 

Table 2. OLS regressions. 
Dependent variable: log realized volatility     
Independent variables       
Intercept ln(σc) ln(σp) ln(σh) Adj. 

R2 
DW χ2 a χ2 b Hausman 

test 
-0,01  1,05***  0,77 1,73 13,139  0,10021 
(0,915)  (0,000)    (0,00)   
-0,018 1,047***   0,76 1,77 13,139  0,25128 
(0,853) (0,000)     (0,00)   
-0,29   0,82 0,65 2,12 7,517   
(0,008)   (0,000)   (0,02)   
-0,02 0,938***  0,103+++ 0,76 1,87  1,288 0,47115 
(0,850) (0,000)  (0,400)    (0,53)  
-0,01  0,9631*** 0,082+++ 0,77 1,80  1,158 0,95521 
(0,915)  (0,000) (0,489)    (0,56)  
0,0006 0,372 0,6861***  0,77 1,74  2,04 0,14977 
(0,994) (0,244) (0,033)     (0,35)  
 

Note: The number in brackets are the p-values. The χ2a report the statistic of a χ2 test for the joint null hypothesis 

0=α  and 1=β  (p-values in parentheses) in the following univariate regressions )ln()ln( ir σβασ += , 

where σr = realized volatility and σi= volatility forecast, i=h,c,p. The χ2b report the statistic of a χ2 test for the joint 

null hypothesis 0=γ  and 1=β  (p-values in parentheses) in the following regressions: 

)ln()ln()ln( hir σγσβασ ++= , )ln()ln()ln( cpr σγσβασ ++= , where σr = realized volatility, σh= 

historical volatility  and σi= volatility forecast, i=c,p. The superscripts ***, **, * indicate that the slope coefficient is 

insignificantly different from one at the 10%, 5%, and 1% critical level respectively. The superscripts +++, ++, + 

indicate that the slope coefficient is insignificantly different from zero at the 10%, 5%, and 1% critical level 

respectively The last column reports the Hausman (1978) specification test statistic (one degree of freedom) 5% 

critical level = 3,841.   

                                                
5 In augmented regression (3) the instrumental variables procedure is used for the variable ln(σp). 
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Our results, that point to a better performance of put implied volatility w.r.t call implied, 

are very different from the ones obtained both in Fleming (1998) and in Christensen and Hansen 

(2002). The difference can possibly be attributed to the option exercise feature, that in our case is 

European and not American, and to the underlying index features, that in our case does not 

require the dividend payment estimation. An other possible explanation stems from the very 

same characteristics of the data set used. In particular in our case put implied volatility was on 

average lower than the call implied one, while in Christensen and Hansen (2002) the opposite is 

true. As usually implied volatility overpredicts realised volatility, if a choice has to be made 

between call and put implied volatility, a rule of thumb can be to choose the lowest one between 

the two. 

 
 
5. The role of trading volume in forecasting volatility. 
 

Implied volatility is a forward looking estimate of future realised volatility. As such, we 

expect actively traded options to be more informative of future realised volatility than less traded 

options. Various papers have investigated the role of trading volume in influencing the predictive 

power of implied volatility. By analysing the predictive power of implied volatility for individual 

stocks, Mayhew and Stivers (2003) and Godbey and Mahar (2006) find that the predictive power 

of implied volatility increases with option trading volume. Donaldson and Kamstra (2005) 

investigate the role of trading volume in the information content of ARCH versus implied 

volatility forecasts, given by the VIX index. They find that trading volume is important in 

increasing the informativeness of the volatility forecast. 

In line with these contributions, in this section we investigate if the liquidity of the option 

type, call versus put, proxied by the total trading volume of the day in each option class, is a key 

determinant of the information content of implied volatility. To this end we group implied 

volatility of call and put separately into four quartiles, according to increasing trading volume. 

Table 3 reports the minimum, maximum and average volume of contracts traded in the four 

quartiles for both call and put options. We can see that put options are more actively traded than 

call options in each quartile. For each quartile and each option type we run univariate regressions 

(1) and we collect the R2, as a measure of goodness of fit. In Appendix 1 we report the results of 

the regressions of log realized volatility on call or put log implied volatility in each quartile. 

Figure 1 shows how the R2 varies in the four quartiles for each option type.  

Differently from previous papers, the evidence is mixed and it is not simple to extrapolate 

a one to one relation. For both call and put options the highest quartile has the highest 
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forecasting power.  For call options, trading volume has an u-shaped relation with forecasting 

power, with the highest and lowest quartiles being the best. For put options, trading volume has a 

swinging relation with forecasting power and is less volatile than the one for call options. The R2 

are on average higher for put options than for call options: this may be explained by the average 

higher trading volume of put options. Therefore it seems that trading volume has some positive 

relation with forecasting power, in particular for the highest quartiles. 

 

Table 3. The volume of contract traded for call and put options. 

 Call Put 
Min 13601 15329 
Max 229546 235190 
Average 75337 89873 
1st quartile 13601 - 67587 15329 – 70294 
2nd quartile 67587 - 121574 70294 – 125260 
3rd quartile 121574 - 175560 125260 – 180225 
4th quartile 175560 - 229546 180225 – 235190 
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Figure 1. The R2 in the four quartiles for call and put options. 

 

6. A combination of call and put options. 

Many papers in the literature have addressed the issue of combining implied volatilities 

extracted from options with different strike price or type in a single estimate (see e.g. Ederington 

and Guan (2002)). The most used weighting schemes are based on the vega of the option or the 

trading volume, whereas less used schemes are equally weighted proportions or weights based 

on the elasticity of option price to volatility. Weighting schemes based on the vega or the trading 
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volume lead to the same result of favouring at the money options, since at the money options 

have the highest vega and the highest trading volume. The forecasting performance of these 

schemes has been empirically tested against the performance of individual implied volatilities 

and in general weighting schemes that favour at the money options have performed better than 

others. 

Given that prices are observed with measurement errors (stemming from finite quote 

precision, bid-ask spreads, non-synchronous observations and other measurement errors) small 

errors in any of the input may produce large errors in the implied volatility. Quoting Hentshle 

(2003): “Unfortunately many authors preclude the cancellation of errors across puts and calls by 

using only the more liquid out of the money options. Unless underlying asset prices and dividend  

rates are observed with high precision, this practice can result in a substantial loss of efficiency”. 

Moreover, as noted in Moriggia, Muzzioli and Torricelli (2007) the use of both call and put 

options in the volatility estimation, highly improves the pricing performance of option pricing 

models based on implied binomial trees. 

Therefore, in this section we investigate how to combine call and put implied volatilities 

in a single estimate, in order to convey the information from both call and put prices and cancel 

possible errors across option type6. In the logarithmic specification, natural candidates for the 

weights that we may assign to call and put implied volatilities, would be the estimated 

coefficients of regression (3). However, as the beta coefficient of call implied volatility is not 

significantly different from zero, it is not possible to find an optimal combination of the two with 

constant weights through time. 

Based on the results of Section 5 and in line with the approach by Christensen and 

Hansen (2002), that proposes to favour the most actively traded options, we construct a weighted 

average of call and put implied volatilities (σm), where the weights are the relative trading 

volume of each option class on the total trading volume: 

c c p p
m

c p

V V
V V

σ σ
σ

+
=

+
 

where Vi is the trading volume of option i, i=c,p, c for call and p for put. The weighting rule 

favours the most actively traded options. 

Descriptive statistics of average implied volatility and log average implied volatility are 

reported in Table 4. Average implied volatility is slightly higher than realised volatility. 

Similarly to the results in Table 1, we can see that the natural logarithm of average implied 

                                                
6 Even if the Hausman specification test pursued in Section 2 highlights that the errors in variables problem does not 
matter in our case, the use of both option classes can still be deemed useful in eliminating noise. 
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volatility conforms more to normality than the plain average implied volatility series. Therefore 

it will be used as explanatory variable in univariate and encompassing regressions (1) and (2). 

In order to analyse the performance of the obtained average implied volatility estimate, 

we run both univariate and encompassing regressions (1) and (2) with σi=σm. Furthermore, in 

order to test for robustness our results, we look for possible errors in variables. The results are 

reported in Table 5. In all the regressions the residuals are normal, omoschedastic and not 

autocorrelated (the Durbin Watson statistic is not significantly different from two and the 

Breusch-Godfrey LM test confirms non autocorrelation up to lag 127). 

 

Table 4. Descriptive statistics for average implied volatility. 
Statistic σm ln σm 
mean  0,2398 -1,51 
std dev 0,11 0,41 
skewness 1,38 0,46 
kurtosis 4,5 2,73 
Jarque 
Bera 

35,85 3,32 

p-value 0,00 0,19 
 

 

In univariate regression (1), the beta coefficient of average implied is significantly 

different from zero, but the null hypothesis that average implied is an unbiased estimate of future 

realized volatility is strongly rejected. The null hypothesis that β is insignificantly different from 

one can not be rejected at the 10% critical level: therefore we can consider average implied 

volatility as unbiased after a constant adjustment given by the intercept of the regression. With 

respect to the performance of the other volatility forecasts reported in Table 2, the adjusted R2 is 

the highest for average implied volatility. Therefore we conclude that average implied has the 

highest forecasting power if compared to call or put implied volatility.  

In encompassing regression (2) we compare average implied volatility with historical 

volatility in order to understand if average implied volatility subsumes all the information 

contained in historical volatility. The results provide strong evidence for both the unbiasedness 

and efficiency of the average implied volatility forecast. First of all, from the comparison of 

univariate and encompassing regression, the inclusion of historical volatility does not improve 

the goodness of fit according to the adjusted R2. In fact, the slope coefficient of historical 

volatility is not significantly different from zero at the 10% level, indicating that average implied 
                                                
7 In the regression that include as explanatory variable the lagged realised volatility, the Durbin’s alternative has 
been computed, but it was not possible to obtain a result. The results of the Durbin’s alternative and of the Breusch-
Godfrey LM test are available upon request. 
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subsume all the information contained in historical volatility. The slope coefficient of average 

implied volatility is not significantly different from one at the 10% level and the joint test of 

information content and efficiency 0=γ  and 1=β  does not reject the null hypothesis, 

indicating that average implied volatility is efficient and unbiased after a constant adjustment. 

With respect to the performance of the other volatility forecasts reported in Table 2, average 

implied has the highest forecasting power. The better performance of average implied can be 

attributed to the fact that it contains more information, being an average of both call and put 

implied volatilities weighted by trading volume.  

 

Table 5. OLS regressions of realised volatility on average implied volatility. 

Dependent variable: log realized volatility    
Independen
t variables 

     

Intercept ln(σm) ln(σh) Adj. R2 DW χ2 a χ2 b Hausman 
test 

0,0022 1,059***  0,78 1,73 13,73  0,00019 
(0,981) (0,000)    (0,00)   
0,0013 1*** 0,055+++ 0,78 1,78  1,157 1,136729 
(0,989) (0,000) (0,648)    (0,56)  

 

Note: The number in brackets are the p-values. The χ2a report the statistic of a χ2 test for the joint null hypothesis 

0=α  and 1=β  (p-values in parentheses) in the following univariate regression ln( ) ln( )r mσ α β σ= + , 

where σr = realized volatility and σm= average implied volatility. The χ2b report the statistic of a χ2 test for the joint 

null hypothesis 0=γ  and 1=β  (p-values in parentheses) in the following encompassing regression: 

ln( ) ln( ) ln( )r m hσ α β σ γ σ= + + , where σr = realized volatility, σh= historical volatility  and σm= average 

implied volatility. The superscripts ***, **, * indicate that the slope coefficient is insignificantly different from one 

at the 10%, 5%, and 1% critical level respectively. The superscripts +++, ++, + indicate that the slope coefficient is 

insignificantly different from zero at the 10%, 5%, and 1% critical level respectively. The last column reports the 

Hausman (1978) specification test statistic (one degree of freedom): 5% critical level = 3,841.   

 

Finally, in order to test for robustness, we adopt an instrumental variable procedure (IV), 

we regress average implied volatility on an instrument (in univariate regression (1)) and on an 

instrument and any other exogenous variable (in encompassing regression (2)) and replace fitted 

values in the original univariate and encompassing regressions. As the instrument for implied 

volatility we use both historical volatility and past average implied volatility as they are possibly 

correlated to the true implied volatility, but unrelated to the measurement error associated with 

implied volatility one month later. The Hausman (1978) specification test reported in the last 
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column of Table 5 indicates that the errors in variables problem is not significant both in 

univariate and in encompassing regressions. 

 

7. Conclusions. 
 

In this paper we have investigated the relation between implied volatility, historical 

volatility and realised volatility in the Dax index options market. Since implied volatility varies 

across option type (call versus put) we have run a horse race of different implied volatility 

estimates: implied call, implied put and average implied, that is a weighted average of call and 

put implied volatility, with weights proportional to traded volume.  

Two hypotheses have been tested: unbiasedness and efficiency of the different volatility 

forecasts. Our results suggest that all the three implied volatility forecasts (implied call, implied 

put, average implied) contain more information about future realised volatility than historical 

volatility. In particular, all the three implied volatility estimates are unbiased (after a constant 

adjustment) and efficient forecasts of realised volatility in that they subsume all the information 

contained in historical volatility. Differently from previous research (Christensen and Hansen, 

2002) in our sample put implied volatility has more predictive power than call implied volatility. 

This is an interesting result and is a warning against the a-priori choice of using call implied 

volatility. 

Among the three implied volatility forecasts, the average implied is ranked first in 

explaining future realized volatility, followed by put implied volatility, and call implied 

volatility. The better performance of average implied can be attributed to the fact that it contains 

more information, being a trade weighted average of both call and put implied volatilities and 

permits error cancellation across option type.  
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Appendix 1. 
 
We report in Table A1 the results of the OLS regressions of log realized volatility on log implied 
call or put volatility in each quartile (standard errors in brackets). ln(σc)i, i=1,…4 is the log 
implied call volatility in quartile i, ln(σp)I, i=1,…4 is the log implied put volatility in quartile i. 
 
Table A1. OLS regressions of log realized volatility on log implied call or put volatility in 
each quartile.  
Dependent variable: log realized volatility in each quartile     
Independent variables         
intercept ln(σc)1 ln(σc)2 ln(σc)3 ln(σc)4 ln(σp)1 ln(σp)2 ln(σp)3 ln(σp)4 R2 DW 

0,308 1,299        0,825 1,587 
(0,153) (0,000)          
-0,378  0,811       0,761 2,123 

(0,460)  (0,000)         
-0,210   0,926      0,513 2,015 

(0,504)   (0,000)        
0,104    1,118     0,861 2,800 

(0,468)    (0,000)       
0,349     1,299    0,693 2,282 

(0,257)     (0,000)      
-0,042      1,040   0,846 1,952 

(0,790)      (0,000)     
-0,159       0,952  0,713 1,704 

(0,469)       (0,000)    
-0,021        1,021 0,830 2,277 

(0,895)        (0,000)   
Note: p-values in brackets. 
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