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Abstract

We improve and extend to the non-orientable case a recent result of Karabas, Malicki
and Nedela concerning the classification of all orientable prime 3-manifolds of Heegaard
genus two, triangulated with at most 42 coloured tetrahedra.
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1 Introduction

In [20], Karabas, Malicki and Nedela show that there exist exactly 78 non-homeomorphic,
closed, orientable, prime 3-manifolds with Heegaard genus two, admitting a coloured triangu-
lation with at most 42 tetrahedra.

Each manifold M is identified by a suitable 6-tuple of non-negative integers, representing
a minimal crystallization – hence a minimal coloured triangulation – of M . From such a
6-tuple, a presentation of the fundamental group and of the first homology group of M are
easily obtained (see also [21]).

The result is performed first by generating all “admissible” 6-tuples, encoding genus two
crystallizations up to order 42 ([19]) and then by using combinatorics, topology and group
theory to subdivide them into 78 equivalence classes (after excluding S3, S1 × S2, lens spaces
and connected sums), which are proved to be in one-to-one correspondence with the homeo-
morphism classes of the represented 3-manifolds.

In the present paper, we improve the previous result and extend it to the non-orientable
case, by using a computer program which generates directly all (bipartite and non-bipartite)
3-manifold crystallizations of a given order.

∗Work performed under the auspicies of the G.N.S.A.G.A. of I.N.D.A.M. (Istituto Nazionale di Alta Matem-
atica) and financially supported by MiUR of Italy (project “Proprietà geometriche delle varietà reali e comp-
lesse”) and by the University of Modena and Reggio Emilia (project “Modelli discreti di strutture algebriche
e geometriche”).
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The procedure, restricted to graphs of regular genus two and order at most 42, produces
as output 703 bipartite crystallizations (thus representing orientable 3-manifolds) and 82 non-
bipartite crystallizations (thus representing non-orientable 3-manifolds).

A classification algorithm based on the concept of “dipole moves”, implemented in a C++
program, enables us to partition the graphs previously generated into 175 classes in the bi-
partite case and into 9 classes in the non-bipartite case, which are proved to represent non-
homeomorphic (orientable and non-orientable) 3-manifolds, of Heegaard genus ≤ 2 (with the
given bound for the number of vertices of the crystallizations).

In the orientable case, 97 classes represent genus one 3-manifolds or connected sums. The
remaining 78 classes, representing prime, genus two 3-manifolds, are listed in Table 2, by
increasing number of vertices of the crystallizations, where for each class a geometric descrip-
tion, the representative 6-tuple and the position in Karabas-Malicki-Nedela’s list are presented.
This completes the identification of all still unknown manifolds of [20].

In the non-orientable case, two classes represent S1×̃S2 (the twisted 2-sphere bundle over
S1, of Heegaard genus one) and a connected sum respectively. Hence, there exist exactly 7
prime, non-orientable 3-manifolds with genus two, all listed and identified in Table 3, again
by increasing number of vertices of the crystallizations.

2 Preliminaries

Throughout this paper, spaces and maps will be in PL-category, for which we refer to [31].
Manifolds will be closed and connected, when not otherwise specified. The symbol ∼= will
mean PL-homeomorphism.

Crystallization theory provides an useful tool for representing manifolds by means of edge-
coloured graphs ([30]). In this section, we limit ourselves to give definitions and results which
are necessary to understand our work. For an exhaustive look on the theory, we refer to [1]
and [15]. For the basic facts about graph theory see [17].

An (n + 1)-coloured graph is a pair (Γ, γ), where Γ is a graph, regular of degree n + 1, and
γ : E(Γ) → ∆n = {0, . . . , n} a map which is injective on each pair of adjacent edges of Γ. In
the following, we will often write Γ instead of (Γ, γ).

For each B ⊆ ∆n, we call B-residues of (Γ, γ) the connected components of the coloured
graph ΓB = (V (Γ), γ−1(B)); given an integer m ∈ {1, . . . , n}, we call m-residue of Γ each
B-residue of Γ with #B = m. Moreover, for each i ∈ ∆n, we set ı̂ = ∆n \ {i}.

An isomorphism φ : Γ → Γ′ is called a coloured isomorphism between the (n + 1)-coloured
graphs (Γ, γ) and (Γ′, γ′) if there exists a permutation ϕ of ∆n such that ϕ ◦ γ = γ′ ◦ φ.

A coloured n-complex is a pseudocomplex K of dimension n with a labelling of its vertices
by ∆n = {0, . . . , n}, which is injective on the vertex-set of each simplex of K.

For each (n + 1)-coloured graph Γ, a coloured n-complex K(Γ) can be obtained by the
following rules:

- for each vertex v of Γ, take an n-simplex σ(v) and label its vertices by ∆n;

- if v and w are vertices of Γ joined by an c-coloured edge (c ∈ ∆n), then identify the
(n − 1)-faces of σ(v) and σ(w) opposite to the vertices labelled c.
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If M is a manifold of dimension n and Γ an (n + 1)-coloured graph such that |K(Γ)| ∼= M
(here |K(Γ)| denotes the space of the complex K(Γ)), then, following Lins ([23]), we say that
Γ is a gem (graph-encoded-manifold) representing M.

If, for each i ∈ ∆n, Γı̂ is connected (equivalently if the corresponding coloured triangulation
K(Γ) has exactly one vertex labelled i, for each i ∈ ∆n), then Γ and K(Γ) are called contracted ;
furthermore, a contracted gem representing an n-manifold M is called a crystallization of M .
Note that M is orientable iff Γ is bipartite.

Given two (n + 1)-coloured graphs Γ′ and Γ′′ representing the manifolds M ′ and M ′′ re-
spectively, we can easily construct an (n+1)-coloured graph Γ = Γ′#Γ′′ representing M ′#M ′′.
Let x be a vertex of Γ′ and y a vertex of Γ′′; then we obtain Γ by removing x from Γ′ , y from
Γ′′ and by gluing the “hanging” edges according to their colours (see [15]).

It is well-known that, if both manifolds are orientable (i.e. Γ′ and Γ′′ are both bipartite)
and do not admit orientation-reversing automorphisms, there exist two non-homeomorphic
connected sums. In this case, by the above construction, we can obtain two (n + 1)-coloured
graphs, each corresponding to fix x in V (Γ′) and choose y in one of the two different bipartition
classes of V (Γ′′).

Let Γ be an (n + 1)-coloured graph representing an n-manifold M and suppose that Γ
satisfies the following condition (which in the following will be referred to as “condition (#)”):

(#) Γ has n + 1 edges {e0, . . . , en}, one for each colour i ∈ ∆n, such that Γ − {e0, . . . , en}
splits into two connected components.

Then it is easy to reverse the connected sum construction and, starting from Γ, obtain two
(n+1)-coloured graphs Γ′ and Γ′′, representing two n-manifolds M ′ and M ′′ respectively, such
that Γ = Γ′#Γ′′. Hence Γ represents M ′#M ′′ (more precisely, Γ represents one of the two
possibly non-homeomorphic connected sums).

Coloured graphs appearing in our catalogues are always represented by a numerical “string”,
which is called the code; it describes completely the combinatorial structure of the coloured
graph (see [10] for definition and description of the related rooted numbering algorithm) and,
since two (n + 1)-coloured graphs are colour-isomorphic iff they have the same code ([10]),
by representing each coloured graph by its code, we can easily reduce any catalogue of crys-
tallizations to one containing only non-colour-isomorphic graphs. Moreover the code is easy
to be handled by computer and starting from a code c there is a standard way to contruct a
coloured graph having c as its code.

Main tools of our work are combinatorial moves (dipole moves) which transform a gem
representing an n-manifold into another (usually non-colour-isomorphic) gem, representing
the same manifold.

If x, y are two vertices of a (n + 1)-coloured graph (Γ, γ) joined by k edges {e1, . . . , ek}
with γ(eh) = ih, for h = 1, . . . , k, then we call θ = {x, y} a k-dipole or a dipole of type k in Γ,
involving colours i1, . . . , ik, iff x and y belong to different (∆n − {i1, . . . , ik})-residues of Γ.

In this case a new (n + 1)-coloured graph (Γ′, γ′) can be obtained from Γ by deleting x, y
and all their incident edges and joining, for each i ∈ ∆n − {i1, . . . , ik}, the vertex i-adjacent
to x to the vertex i-adjacent to y; (Γ′, γ′) is said to be obtained from (Γ, γ) by deleting the
k-dipole θ. Conversely (Γ, γ) is said to be obtained from (Γ′, γ′) by adding the k-dipole.
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From now on, we restrict ourselves to 3-manifolds; in this context, we can introduce further
moves.

Let (Γ, γ) be a 4–coloured graph. Let Θ be a subgraph of Γ formed by a {i, j}-coloured
cycle C of length m+1 and a {h, k}-coloured cycle C ′ of length n+1, having only one common
vertex x0 and such that {i, j, h, k} = {0, 1, 2, 3}. Then Θ is called an (m,n)–dipole.

If x1, xm, y1, yn are the vertices respectively i, j, h, k-adjacent to x0, we define the 4-
coloured graph (Γ′, γ′) obtained from Γ by cancelling the (m,n)–dipole, in the following way:

1) delete Θ from Γ and consider the product Ξ of the subgraphs C − {x0} and C ′ − {x0};

2) for each s, s′ ∈ {1, . . . , n} (resp. for each r, r′ ∈ {1, . . . , m}), let e be the edge joining ys

and ys′ (resp. xr and xr′) in Γ. If γ(e) = c ∈ {0, 1, 2, 3}, then, for each t ∈ {1, . . . , m}
(resp. for each t ∈ {1, . . . , n}), join the vertices (xt, ys) and (xt, ys′) (resp. (xr, yt) and
(xr′, yt)) by a c-coloured edge in Ξ;

3) for all r ∈ {1, . . . , m}, s ∈ {1, . . . , n}, if a vertex z of Γ−Θ is joined to ys (resp. xr) by
a i or j (resp. h or k)–coloured edge in Γ, then z is joined to (x1, ys), (xm, ys) (resp.
(xr, y1), (xr, yn)) by a i or j (resp. h or k)–coloured edge in Γ′.

Cancellation or addition of a (m, n)-dipole is called a generalized dipole move.
If two i-coloured edges e, f ∈ E(Γ) belong to the same {i, j}-coloured cycle and to the

same {i, k}-coloured cycle of Γ, with j, k ∈ ∆3 − {i} (resp. to the same {i, h}-coloured cycle
of Γ, for each h ∈ ∆3 − {i}), then (e, f) is called a ρ2-pair (resp. a ρ3-pair). Usually, we will
write ρ-pair instead of ρ2-pair or ρ3-pair.

A graph Γ is a rigid crystallization of a 3-manifold M3 if it is a crystallization of M3

and contains no ρ-pairs. A non-rigid crystallization Γ of a 3-manifold M can be always
transformed into a rigid one by switching ρ-pairs (see [23]) and cancelling the dipoles which
might be created in the process.

The effects of cancellation/addition of a dipole, a generalized dipole and of switching of a
ρ-pair are described in the following Proposition.

Proposition 1 ([14], [23])

(i) If Γ and Γ′ are 4-coloured graphs representing two 3-manifolds M and M ′ respectively,
and Γ′ is obtained from Γ by a dipole move or a generalized dipole move or by switching
a ρ2-pair, then M ∼= M ′.

(ii) Let Γ be a 4-coloured graph representing a 3-manifold M , containing a ρ3-pair. If Γ′,
obtained from Γ by switching it, is connected, then it represents a 3-manifold M ′, such
that M = M ′#H, where either H = S1 × S2 or H = S1×̃S2.

Note that, if Γ is a crystallization of M , then Γ′ is always connected.

Remark 1 In the case of dipole moves, statement (i) of the above Proposition is actually
stronger. In fact the main theorem of [14] proves that M ad M ′ are homeomorphic iff Γ and
Γ′ are obtained from each other by a sequence of dipole moves.

4



A different set of moves is defined in [24]

Remark 2 Each closed connected 3-manifold admits a rigid crystallization (see [7] for a
detailed proof). Moreover, an easy consequence of Proposition 1 proves that every closed
connected 3-manifold M different from M ′#H admits a rigid crystallization of minimal order
(see [7]). Hence, since we are interested mainly in prime manifolds, in the generation and
analysis of our catalogues we will restrict ourselves to rigid crystallizations.

Note that, each orientable genus two 3-manifolds is the 2-fold covering of S3, branched over
a knot or link L ([4]). The construction described in [13] allows to obtain a crystallization Γ of
M , starting from a 3-bridge presentation of L. As a consequence of the construction, Γ belongs
to a particular class of crystallizations, called 2-symmetric in [11], which can be codified by
suitable 6-tuples (called admissible) of non-negative integers ([8]). Hence, admissible 6-tuples
are a representation tool for orientable genus two 3-manifolds.

In [16], the authors describe an equivalence relation on the set of admissible 6-tuples,
whose equivalence classes consist only of 6-tuples representing 2-symmetric crystallizations of
the same manifold. In [18] a catalogue was presented of the representatives of the equivalence
classes of admissible 6-tuples, whose associated 2-symmetric crystallizations have at most 42
vertices. Subsequently in [20] the catalogue was reduced to 6-tuples all representing distinct
manifolds.

3 Seifert manifolds and coloured triangulations

Let M = (S, (α1, β1), . . . , (αn, βn)) be the Seifert fibered space whose orbit space is the surface
S and having n exceptional fibers, with non-normalized parameters (αi, βi), i = 1, . . . , n.

Let us consider a triple of integers (p, q, r) such that:

(i) (|p|, |q|) = 1;

(ii) p + q + r = 0;

In [5] and [6], the author describes a triangulation of the solid torus, called layered solid
torus of type (p,q,r) and denoted by LST (p, q, r), which is used to construct triangulations of
Seifert manifolds.

We recall briefly the main steps of the construction, which is done recursively. First of
all, we point out that, at each step, we obtain a layered solid torus (from now on, LST for
short) having exactly two 2-simplexes on the boundary, which will be called its boundary faces.
Moreover, it has exactly three boundary edges with a labelling by means of integers satisfying
conditions (i) − (ii). The labelling is defined by recursion, too.

The main point of the procedure is the possibility of performing a layering on an edge e′

of a layered solid torus LST (p, q, r) in the following way:
suppose that e′ is labelled i ∈ {p, q, r}, then a new tetrahedron is considered and two adjacent
faces of it, say F and F ′, are identified with the boundary faces of LST (p, q, r) so that the
common edge of F and F ′ coincides with the edge e′. Let f and g be the boundary edges
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of LST (p, q, r) labelled j and k respectively (j, k ∈ {p, q, r} − {i}). Then the new boundary
edge identified with f (resp. g) inherits the label j (resp. −k). The obtained complex is the
layered solid torus whose set of related integers is {j,−k, k − j}.

Remark 3 The integers p, q are actually the intersection numbers of the boundary of a
meridinal disk of LST (p, q, r), which is a simple oriented curve on the boundary torus T
of LST (p, q, r), with the basis of π1(T ) formed by the (suitably oriented) edges labelled p and
q. It is not difficult to see that LST (−p,−q,−r) is the same triangulation of the solid torus
and describes the same curves with reversed orientations. Since for our aims we don’t need
to distinguish the two layered solid tori, from now on we suppose that two of the elements of
the set {p, q, r} are positive. Moreover, each permutation of the set {p, q, r} doesn’t change
the related LST; therefore, in the following construction we need only to specify the set of
integers we are working on, without imposing an ordering.

In order to construct the LST with set of parameters {p, q,−p−q}, we perform the following
procedure:

- the initial step is the LST whose parameters are {1, 2,−3}: it is obtained from the
tetrahedron, with labelled edges, in Figure 1, by identifying the “back” faces according
to the arrows.

1

1

2

2

1

-3

Figure 1:

- the LST with parameters {i, j, k} (0 < j < k) is obtained from the LST with parameters
{j,−k, k − j}, by a layering on the edge labelled k − j.

For more details about the construction and its geometric meanings, see [5] and [6].
We are now ready to describe how to construct a coloured triangulation of the Seifert fiber

space M = (S2, (α1, β1), (α2, β2), (α3, β3)).
Let us fix a point A ∈ S2 and let D1, D2, D3 be 2-disks in S2 such that D1∩D2∩D3 = ∂D1∩

∂D2∩∂D3 = {A}. The pseudocomplex P of Figure 2 is a planar realization of S2 \
⋃3

i=1 int Di.
Figure 3 shows the boundary surface of P × I, with the identifications of the faces P ×{0}

and {a1}× I with P ×{1} and {a2}× I respectively. Moreover, we marked the subdivision of
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Figure 2:

the faces {li} × I (i = 1, 2, 3) which will be necessary for the construction of a triangulation
of M .

We point out that for each i = 1, 2, 3, the boundary face {li}×I is the usual representation
of a torus by a square. Therefore, after the identifications of P ×{0} and {a1}×I with P ×{1}
and {a2} × I respectively, we obtain S1 × S2 with three solid tori removed.

The last step is the identification, for each i = 1, 2, 3, of the two triangles of {li} × I (see
Figure 3) with the boundary faces of LST (αi, θi, σi), where either θi = βi or σi = −βi, so as
to identify the edges {A} × I (resp. li × {0} and li × {1}) with the edges labelled αi (resp.
either θi or σi). In this way we obtain a triangulation K of M .

Note that, in order to define precisely the gluing of the three layered solid tori, it is necessary
to specify not only the sets of parameters but also their ordering. Hence the notation with
triples (αi, θi, σi), i = 1, 2, 3.

Finally, in order to obtain a coloured triangulation, we consider the first barycentric sub-
division K ′ of K and colour h (h ∈ ∆3) the barycenters of h-dimensional cells of K ′.

4 Generating and analysing genus two crystallizations

The regular genus of an n-manifold is a combinatorial invariant which extends to dimension
n the classical concepts of genus of a surface and Heegaard genus of a 3-manifold. For the
precise definition of the invariant, we refer to [1], but to suit our present aim it is sufficient to
recall that, if Γ is a crystallization of a 3-manifold, then the regular genus of Γ is the integer

ρ(Γ) = min{g01(Γ), g02(Γ), g03(Γ)} − 1

where for each i = 1, 2, 3, g0i(Γ) is the number of {0, i}-residues of Γ.
Therefore, the regular genus of a 3-manifold M can be defined as the minimum ρ(Γ) among

all crystallizations of M .
Combinatorial encoding of closed 3-manifolds by crystallizations, together with the restric-

tion to rigid ones, allows us to construct essential catalogues of all contracted triangulations
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Figure 3:

of closed 3-manifolds up to a certain number of vertices. By using the codes, we can easily
avoid isomorphic graphs, too.

The general algorithm, which is fully described in [7] and [9], runs as follows:

– The starting point is the set S(2p) of all (connected) rigid1 and planar 3-coloured graphs
with 2p vertices. The construction makes use of Lins’s results in [22] and is performed
by induction on p. More precisely every rigid and planar 3-coloured graph with 2p
vertices is obtained from an analogous one with 2p − 2 vertices, by a suitable operation
(antifusion), with the possible exception of the ”prism” with p-gonal base (with p even);

– to each element of S(2p) 3-coloured edges are added in all possible ways so as to pro-
duce rigid crystallizations of 3-manifolds. By checking bipartition, crystallizations of
orientable and non-orientable manifolds can be separated.

In this way we obtain the catalogues of all non-isomorphic rigid bipartite and non-bipartite
crystallizations with 2p vertices.

1here “rigid” means without ρ2-pairs
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It is possible to modify the general algorithm in order to construct only crystallizations
having a fixed regular genus. In particular, we modified Lins’s construction in order to obtain
the set S̃(2p) of all rigid 3-coloured graphs Σ̃ with 2p vertices representing S2 and such that
gij(Σ̃) = 3, for at least one pair of distinct colours i, j ∈ {0, 1, 2} and ghk(Σ̃) ≥ 3 for the
remaining pairs. Since Lins’s procedure is inductive on the number of vertices and each step
increases the number of bicoloured cycles of a given pair of colours by at most one, it was
sufficient, at each step, to perform the required transformations only on graphs having at most
two {i, j}-residues for at least one pair i, j ∈ {0, 1, 2} and finally to eliminate the resulting
graphs with 2p vertices which satisfy the same property.

By adding p 3-coloured edges to each element of S̃(2p) in all possible ways so as not to
destroy planarity of the ĵ-residues (j ∈ {0, 1, 2}) and rigidity, and by eliminating the resulting

graphs Γ which are not contracted, we obtained the catalogues C
(2p)
2 and C̃

(2p)
2 of all rigid bi-

partite and non-bipartite, respectively, non-isomorphic crystallizations with 2p vertices having
regular genus two.

The restriction about the genus allows us to obtain a reduction of time in the generation
procedure and, consequently, we could obtain catalogues for higher number of vertices than
in the general case where no genus bounds are imposed. More precisely, we generated these
catalogues up to 42 vertices.

The above algorithm was implemented in a C++ program, whose output data are presented
in Table 1 according to the number of vertices. We point out that there are no rigid genus
two crystallizations with less than 14 vertices.

2p 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

#C
(2p)
2 1 2 4 6 8 14 18 23 38 47 58 79 118 128 159

#C̃
(2p)
2 1 1 1 1 2 2 3 2 6 7 9 7 12 12 16

Table 1: Genus two rigid crystallizations up to 42 vertices.
In [9] for the orientable case and [2] and [7] for the non-orientable case, catalogues of

all rigid crystallizations with at most 30 vertices have been analysed and the represented
manifolds identified.

In this paper we follow the same line with respect to the catalogues C
(2p)
2 and C̃

(2p)
2 with

p ≤ 21, i.e. we manipulate crystallizations through generalized dipole moves and subdivide
them into classes according to the equivalence defined by the moves.

In fact, the procedure is completely general and requires only a given list X of rigid crystal-
lizations and a fixed set S of sequences (called admissible) of generalized dipoles moves, dipole
moves and ρ-pairs switching, such that each element of S transforms rigid crystallizations into
rigid crystallizations (see [9] for details). For each Γ ∈ X and for each ǫ ∈ S, we denote by
θǫ(Γ) the (rigid) crystallization obtained by applying the sequence ǫ to Γ.

Note that, by Proposition 1, if Γ represents a 3-manifold M then θǫ(Γ) represents the
3-manifold M ′, such that M = M ′#rH where #rH denotes the connected sum of r copies
either of the orientable or of the non-orientable S2-bundle over S1; more precisely H = S1 ×S2

iff Γ and θǫ(Γ) are both bipartite or both non-bipartite. Obviously r is the number of ρ3-pairs,
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which have been eventually deleted while applying the sequence ǫ (usually we denote this
number by hǫ(Γ)).

As a consequence, by using the elements of S, it is possible to subdivide X into disjoint
classes {c1, . . . , cs} such that, for each i ∈ {1, . . . , s} and for each Γ, Γ′ ∈ ci, there exist two
integers h, k ≥ 0 and a 3-manifold M such that |K(Γ)| = M#hH and |K(Γ′)| = M#kH .

More precisely, for each Γ ∈ X, we define the class of Γ as the set

cl(Γ) = {Γ′ ∈ X | ∃ ǫ, ǫ′ ∈ S s.t.

θǫ(Γ) and θǫ′(Γ
′) have the same code}.

In [9] and [2] it is shown how to construct the set cl(Γ), for each Γ ∈ X, and also how to
compute a non-negative number denoted by h(Γ); it defines a function h : X → N ∪ {0}
inducing a natural subdivision of each class ci (i = 1, . . . , s ) into subclasses ci,k = {Γ′ ∈
ci | h(Γ′) = k} such that all crystallizations of a given subclass represent the same manifold.

Moreover, for each Γ ∈ X such that cl(Γ) = ci, if the elements of ci,0 represents a 3-manifold
M , then Γ represents the 3-manifold M ′ = M#h(Γ)H , with H as above.

For the precise description of the algorithm yielding cl(Γ) and h(Γ), we refer to the already
cited papers. Moreover, we point out that the choice of the set S, which is used in our
implementation, is exactly the same as described in [2].

Note that, by the above definitions and results, if known catalogues of crystallizations are
inserted in X, all classes of X containing at least one known crystallization are completely
identified, with respect to the manifolds represented by all their subclasses.

Moreover, condition (#) can be checked to recognize connected sums.
According to these ideas, the classification algorithm has been implemented in the C++

program Γ-class 2: its input data are a list X of rigid crystallizations and the informations
about already known crystallizations in X (possibly none), i.e the identification of their rep-
resented manifolds through suitable “names”; the output is the list of classes of X, together
with their representatives and, if possible, their names.

In the following sections we present the results of Γ-class applied to catalogues C42
2 =⋃21

p=1 C
(2p)
2 and C̃42

2 =
⋃21

p=1 C̃
(2p)
2 .

5 Genus two orientable 3-manifolds

The catalogue C42
2 is partitioned by the program Γ-class into 175 classes, 93 of which are

known through former results in [23] and [9]; moreover the program recognized 23 connected
sums, which didn’t appear in the cited papers.

In particular, we have the following result.

Lemma 2 For each (Γ, γ) ∈ C
(42)
2 satisfying condition (#) with summands (Γ(1), γ(1)) and

(Γ(2), γ(2)), then

2developed by M.R. Casali and P. Cristofori and available at WEB page
http://cdm.unimo.it/home/matematica/casali.mariarita/CATALOGUES.htm where a detailed description of
the program can be found, too.
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- if at least one of |K(Γ(1))|, |K(Γ(2))| admits orientation-reversing self-homeomorphisms,
then cl(Γ) is the only class representing a connected sum with summands |K(Γ(1))| and
|K(Γ(2))|;

- otherwise there are exactly two classes cl(Γ), cl(Γ′) representing a connected sum with
summands |K(Γ(1))| and |K(Γ(2))|; in this case |K(Γ)| ≇ |K(Γ′)|.

Proof. Our program results show that, whenever at least one of |K(Γ(1))|, |K(Γ(2))| admits
orientation-reversing self-homeomorphisms, there is only one class as in the statement.

On the other hand, in the case of neither |K(Γ(1))| nor |K(Γ(2))| admitting orientation-
reversing self-homeomorphisms, there are exactly two classes cl(Γ), cl(Γ′) representing a
connected sum with |K(Γ(1))| and |K(Γ(2))| as summands.

Furthermore, we point out that, if Γ is the connected sum of the graphs (Γ1, γ1) and
(Γ2, γ2) with respect to the vertices v1 ∈ V (Γ(1)) and v2 ∈ V (Γ(2)), then, by choosing in
V (Γ(2)) a vertex v′

2 belonging to a different bipartition class from v2, we can construct a
connected sum Γ′′ of (Γ1, γ1) and (Γ2, γ2) (with #V (Γ′) = #V (Γ′′) ≤ 42) such that
|K(Γ)| ≇ |K(Γ′′)|. Moreover, by a suitable choice of v′

2, we can obtain that Γ′′ has regular
genus two. Actually Γ and Γ′′ represent the two non-homeomorphic connected sums of
|K(Γ(1))| and |K(Γ(2))| .

Since Γ′′ must belong to C
(42)
2 too, we have necessarily Γ′′ ∈ cl(Γ′).

Remark 4 The identification of the summands |K(Γ(1))| and |K(Γ(2))| involved in the
above lemma, has been done directly by the program for a large number of classes; namely
those having Γ(1) and Γ(2) with less than 32 vertices. All other summands had cyclic
fundamental groups. Therefore, we constructed crystallizations of genus one of lens spaces
with the required groups and inserted them in the list handled by Γ-class. The program
identified all unknown summands as lens spaces in our list.

Further 29 classes of C42
2 , having cyclic fundamental groups, were recognized by applying

the same procedure as described in the above remark. They all turned out to represent lens
spaces, which don’t appear in catalogues C(2p), 1 ≤ p ≤ 15 or among the manifolds of [3].
Furthermore, as we will see in the following, no lens space is left among the still unidentified
manifolds.

The main consequence of the output results of Γ-class and the above lemma, is that a
bjiective correspondence exists between the already identified subclasses and the represented
manifolds. As we will prove, the same holds for the whole catalogue.

The classes of C42
2 , which have not been identified by Γ-class, are 30. The problem of their

recognition will be discussed and wholly solved in the following sections.
A comparison of codes yields that there is a bijective correspondence between our still

unknown classes of crystallizations of C42
2 and 30 of the 78 6-tuples which in [20] are proved

to represent all distinct prime orientable genus two 3-manifolds admitting a coloured triangu-
lation with 2p tetrahedra, with p ≤ 21 and having acyclic fundamental groups. Among these
classes three are already identified by the results of [3] up to 34 tetrahedra.
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The 48 manifolds which have been already identified by Γ-class, by means of their admitting
at least one coloured triangulation with less than 32 tetrahedra (see [9]), are mostly Seifert
spaces with base S2 and three exceptional fibers (for the complete list see Appendix A).

The remaining unidentified manifolds fall into two cases: those with finite and those with
infinite fundamental group. As pointed out in [20], all finite groups are Milnor’s groups,
therefore the correspoding manifolds are elliptic and completely known. In Appendix A,
besides explicitly writing down the groups, we specified also the Seifert structure of these
manifolds.

The problem of identifying the manifolds with infinite fundamental group is left open by
the authors of [20]. We are solving it by manipulating group presentations and by constructing
coloured triangulations of Seifert spaces with base S2 and three exceptional fibres. In fact all
manifolds under examination turn out to belong to this family.

Our starting point is the following Proposition, which enables us to recognize all groups
in Karabas-Malicky-Nedela’s list (in the following “KMN-list” for short) corresponding to our
still unknown manifolds, as fundamental groups of Seifert spaces of the above described type.

Proposition 3

(i) the group G(α1, α2, α3) defined by the presentation

< a, b / aα1 = bα2 = (ab)α3 >, αi > 0, for each i = 1, 2

is isomorphic to the fundamental group of the Seifert manifold

(S2, (α1, 1), (α2, 1), (|α3|, ε)), where ε = −α3/|α3|;

(ii) the group

G′(α1, α2, α3) =< a, b / aα3 = bα2 = (a−εbε)α1 >,

with αi > 0, for each i = 1, 2, 3, ε = ±1, is isomorphic to the fundamental group of
the Seifert manifold

(S2, (α1, 1), (α2,−ε), (α3, ε)).

(iii) the group

G′′ =< a, b / a5 = b3 = (ab−2)−3 >

is isomorphic to the fundamental group of the Seifert manifold

(S2, (3, 1), (3, 1), (5,−4)).

Proof.
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(i) Let us set q1 = a, q2 = b, q3 = (ab)−1, h = (ab)−α3 , then from the relations of G, we
have

qα1

1 = qα2

2 = h−1, q
|α3|
3 hε = 1, q1q2q3 = 1

Moreover, it easy to see that, for each i = 1, 2, 3, qi and h commute.

Therefore G admits the presentation

< q1, q2, q3, h / q1h = hq1, q2h = hq2, q3h = hq3, qα1

1 h = 1,

qα2

2 h = 1, q
|α3|
3 hε = 1, q1q2q3 = 1 >

which is a well-known presentation of π1((S
2, (α1, 1), (α2, 1), (|α3|, ε))) (see [29]).

(ii) Let us consider the case ε = 1, then

G′(α1, α2, α3) =< a, b / aα3 = bα2 = (a−1b)α1 >

Set q1 = a−1b, q2 = b−1, q3 = a, h = (a−1b)−α1

We have
qα1

1 = q−α2

2 = qα3

3 = h−1, q1q2q3 = 1

and again each qi (i = 1, 2, 3) commutes with h.

Therefore G′ ∼= π1((S
2, (α1, 1), (α2,−1), (α3, 1))). The case ε = −1 is analogous.

(iii) If we set q1 = ab−2, q2 = b−1, q3 = a−1, h = (ab−2)−3, then we have the relations

q3
1 = q3

2 = q5
3 = h−1, q2

2 = q3q1

Hence h−1 = q3
2 = q3q1q2. Since each qi (i = 1, 2, 3) commutes with h, we can write

q−1
3 h−1 = h−1q−1

3 =⇒ q1q2 = q3q1q2q
−1
3 =⇒ q1q2q3 = q3q2q1

By comparing the relations we have

h−1 = q3q1q2 = q1q2q3

Therefore

G′′ ∼=< q1, q2, q3, h / q1h = hq1, q2h = hq2, q3h = hq3, q3
1h = 1,

q3
2h = 1, q5

3h = 1, q1q2q3 = h−1 >

which is the fundamental group of

(S2, (3, 1), (3, 1), (5, 1), (1,−1)) = (S2, (3, 1), (3, 1), (5,−4)).
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We point out that all unknown 6-tuples in KMN-list corresponding to manifolds which
were not identified by our former results have fundamental group admitting a presentation of
one of the above types.

For each of these 6-tuples f , by means of the algorithm described in section 3, we con-
structed a coloured triangulation Γ(f) of the Seifert manifold M = (S2, (α1, β1), (α2, β2), (α3, β3)),
with parameters αi, βi (i = 1, 2, 3) determined by the presentation of the fundamental group
of Γ(f) given in KMN-list and by Proposition 3. In the following table, we present for each
of these Seifert manifolds, the triples of parameters (αi, θi, σi) (i = 1, 2, 3) of the three layered
solid tori which have been glued to the three boundary components of P ×I, in order to obtain
the required triangulation of M .

As a consequence, by cancellation of dipoles and switching of ρ-pairs in the above coloured
triangulations, we obtain easily a list Y of crystallizations of the Seifert manifolds which could
match our unknown classes.

Seifert manifold Layered Solid tori

(S2, (3, 1), (3, 2), (4,−3)) (3, 1,−4), (3, 2,−5), (4,−7, 3)
(S2, (2, 1), (4, 1), (4,−1)) (2, 1,−3), (4, 1,−5), (4,−5, 1)
(S2, (2, 1), (4, 1), (5,−4)) (2, 1,−3), (4, 1,−5), (5,−9, 4)
(S2, (3, 1), (3, 1), (3, 1)) (3,−2,−1), (3, 1,−4), (3, 1,−4)

(S2, (3, 1), (3, 1), (4,−1)) (3, 1,−4), (3, 1,−4), (4,−5, 1)
(S2, (2, 1), (3, 1), (7,−6)) (2, 1,−3), (3, 1,−4), (7,−13, 6)
(S2, (3, 1), (3, 1), (4,−3)) (3, 1,−4), (3, 1,−4), (4,−7, 3)
(S2, (2, 1), (3, 2), (6,−5)) (2, 1,−3), (3, 2,−5), (6,−11, 5)
(S2, (3, 1), (3, 2), (5,−4)) (3, 1,−4), (3, 2,−5), (5,−9, 4)
(S2, (2, 1), (3, 1), (6,−1)) (2, 1,−3), (3, 1,−4), (6,−7, 1)
(S2, (2, 1), (4, 1), (5,−3)) (2, 1,−3), (4, 1,−5), (5,−8, 3)
(S2, (2, 1), (4, 3), (5,−4)) (2, 1,−3), (4, 3,−7), (5,−9, 4)
(S2, (2, 1), (4, 1), (6,−5)) (2, 1,−3), (4, 1,−5), (6,−11, 5)
(S2, (3, 1), (3, 2), (3,−1)) (3, 1,−4), (3, 2,−5), (3,−4, 1)
(S2, (2, 1), (4, 1), (4, 1)) (2, 1,−3), (4,−3, 1), (4, 1,−5)

(S2, (3, 2), (4, 1), (4,−3)) (3, 2,−5), (4, 1,−5), (4,−7, 3)
(S2, (2, 1), (4, 1), (5,−1)) (2, 1,−3), (4, 1,−5), (5,−6, 1)
(S2, (2, 1), (5, 1), (5,−4)) (2, 1,−3), (5, 1,−6), (5,−9, 4)
(S2, (3, 1), (3, 1), (4, 1)) (3, 1,−4), (3, 1,−4), (4,−3,−1)

(S2, (3, 1), (4, 1), (4,−1)) (3, 1,−4), (4, 1,−5), (4,−5, 1)
(S2, (3, 1), (3, 1), (5,−1)) (3, 1,−4), (3, 1,−4), (5,−6, 1)
(S2, (2, 1), (3, 1), (8,−7)) (2, 1,−3), (3, 1,−4), (8,−15, 7)
(S2, (2, 1), (3, 1), (7,−5)) (2, 1,−3), (3, 1,−4), (7,−12, 5)
(S2, (3, 1), (3, 1), (5,−4)) (3, 1,−4), (3, 1,−4), (5,−9, 4)

The following Proposition and its corollary solve the recognition problem both for the
crystallizations of C42

2 and for the 6-tuples of [20].
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Proposition 4 There are exactly 78 genus two prime orientable 3-manifolds admitting a
coloured triangulation with at most 42 tetrahedra and regular genus two. They are:

- seventy-three Seifert manifolds 3;

- three Dehn-fillings (of the complement of link 63
1)

4;

- two non-geometric graph-manifolds;

Proof. 48 manifolds appeared already in catalogues C(2p) with p ≤ 15 and program Γ-
class proved that at least one of their genus two crystallizations is equivalent (by dipole and
generalized dipole moves and ρ-pair switchings) to a crystallization with less than 32 vertices.
Among them there are the three Dehn-fillings and the two non-geometric graph-manifolds.
Further three manifolds are listed in [3]. Of the remaining ones, 11 admit finite fundamental
group and could be recognized through Milnor’s list of groups. In all cases, by the results in
[20], the group identifies univocally the manifold.

We remark once more that the remaining 16 classes represent manifolds with infinite funda-
mental groups of the type (i), (ii) or (iii) in Proposition 3 (see Appendix A of [20]). Therefore,
we added to the set Y , which we described above, the crystallizations of the unknown classes
and we applied program Γ-class to the resulting list. The output results proved that the
suspected identifications were true.

Table 2 of Appendix A contains KMN-list of 6-tuples together with their represented
manifolds according to the results summarized in the above Proposition.

6 Genus two non-orientable 3-manifolds

Γ-class, applied to C̃
(42)

2 , produced nine classes, which were all recognized by the program by

means of the inserted catalogues C̃(2p) with 1 ≤ p ≤ 15 (see (resp. [2])) and correspond to nine
distinct manifolds, including S1×̃S2 (of genus one) and the connected sum L(2, 1)#(S1×̃S2) .
As a consequence we can state the following Proposition5.

Proposition 5 There exist exactly seven non-orientable prime genus two 3-manifolds admit-
ting a coloured triangulation with at most 42 tetrahedra and regular genus two. They are

• RP
2 × S1

• the two flat manifolds E3/Bb and E3/Pna21

• the three torus bundles TB

(
0 1
1 −1

)
, TB

(
2 1
1 0

)
and TB

(
3 1
1 0

)
with Sol geometry;

• the Seifert manifold (RP2; (2, 1), (3, 1)) with geometry H2 × R.

3thirty-nine elliptic, four flat, ten with Nil and twenty with S̃L2(R) geometry
4two of these manifolds admit also a torus bundle structure with Sol geometry, the remaining one is

hyperbolic
5for notations see Appendix A
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All these manifolds, excepting RP
2×S1, also admit coloured triangulations of strictly higher

genus with 30 or less tetrahedra.

More precisely, in Table 3 of Appendix A we present the list of the above manifolds
according to the number of vertices of their minimal genus two crystallization.

A Appendix A

Table 2 (resp. Table 3) presents the catalogue of Heegaard genus two prime orientable (resp.
non-orientable) 3-manifolds admitting a crystallization (with regular genus two) with at most
42 vertices. The manifolds are identified via their JSJ decomposition or fibering structure
and, possibly, via a further structure as quotient of S3 or E3. The second and last column of
Table 2 contain the informations about the 6-tuple which represent the manifold in KMN-list
and its position in the same list.

As far as the identification of a manifold is concerned, the following notations are used:

- S3/G is the quotient space of S3 by the action of the group G; the involved groups are
groups of type

Q4n =< x, y | x2 = (xy)2 = yn >, (n ≥ 2)

D2k(2n+1) =< x, y | x2k

= 1, y2n+1 = 1, xyx−1 = y−1 >, (k ≥ 3, n ≥ 1),

P24 =< x, y | x2 = (xy)3 = y3, x4 = 1 >,

P48 =< x, y | x2 = (xy)3 = y4, x4 = 1 >,

P120 =< x, y | x2 = (xy)3 = y5, x4 = 1 >,

P ′
3k8

=< x, y, z | x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3k

= 1 >, (k ≥ 2)

or direct products of the above with cyclic groups Zn (n ∈ Z+);

- E3/G is the quotient space of E3 by the action of the group G; the notations for groups
G are those of the International Tables for Crystallography (see also [33] and [34], where
the alternative notations, used in [2] and [7], were introduced, too).

- as in section 3, (S, (α1, β1), . . . , (αn, βn)) is the (orientable or non-orientable according
to the context) Seifert fibered space whose orbit space is the surface S and having n
exceptional fibers, with non-normalized parameters (αi, βi), i = 1, . . . , n;

- for each matrix A ∈ GL(2; Z), TB(A) = (T × I)/A is the torus bundle over S1 with
monodromy induced by A;

- H1

⋃
A H2 is the graph manifold obtained by gluing a Seifert manifold H1, with ∂H1

∼= T ,
and a Seifert manifold H2, with ∂H2

∼= T , along their boundary tori by means of the
attaching map associated to matrix A;
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- following [28], Qi(p, q) denotes the closed manifold obtained as Dehn filling with pa-
rameters (p, q) of the compact manifold Qi, whose interior is one of the 11 hyperbolic
manifolds of finite volume with a single cusp and complexity at most three (see [12] and
[27]).

In Table 2 we wrote in italics the 6-tuples representing manifolds which don’t appear in
former catalogues of crystallizations ([2],[3],[9]).

tetrahedra 6-tuple 3-manifold position
in [20]

18 (3, 3, 3, 2, 2, 2) S3/Q8 = (S2, (2, 1), (2, 1), (2,−1)) P.6

22 (3, 3, 5, 2, 2, 4) S3/Q12 = (S2, (2, 1), (2, 1), (3,−2)) P.14

24 (4, 4, 4, 1, 1, 1) S3/Q8 × Z3 = (S2, (2, 1), (2, 1), (2, 1)) P.25
(4, 4, 4, 1, 1, 5) S3/D24 = (S2, (2, 1), (2, 1), (3,−1)) P.29
(4, 4, 4, 3, 3, 3) S3/P24 = (S2, (2, 1), (3, 1), (3,−2)) P.11

26 (3, 3, 7, 2, 2, 6) S3/Q16 = (S2, (2, 1), (2, 1), (4,−3)) P.7

28 (4, 4, 6, 1, 1, 1) S3/D48 = (S2, (2, 1), (2, 1), (3, 1)) P.50
(4, 4, 6, 1, 1, 7) S3/P ′

72 = (S2, (2, 1), (3, 1), (3,−1)) P.34
(4, 4, 6, 1, 5, 1) S3/Q16 × Z3 = (S2, (2, 1), (2, 1), (4,−1)) P.26

(Table 2 continues...)
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tetrahedra 6-tuple 3-manifold position
in [20]

28 (4, 4, 6, 3, 3, 5) S3/P48 = (S2, (2, 1), (3, 1), (4,−3)) P.3

30 (3, 3, 9, 2, 2, 8) S3/Q20 = (S2, (2, 1), (2, 1), (5,−4)) P.15
(5, 5, 5, 2, 2, 2) E3/P212121 = (RP2, (2, 1), (2,−1)) P.18
(5, 5, 5, 4, 4, 4) S3/P120 = (S2, (2, 1), (3, 1), (5,−4)) P.1

32 (4, 4, 8, 1, 1, 1) S3/Q16 × Z5 = (S2, (2, 1), (2, 1), (4, 1)) P.40
(4, 4, 8, 1, 1, 9) S3/P48 × Z5 = (S2, (2, 1), (3, 2), (4,−3)) P.38
(4, 4, 8, 1, 5, 1) S3/D80 = (S2, (2, 1), (2, 1), (5,−1)) P.51
(4, 6, 6, 1, 1, 1) S3/P24 × Z7 = (S2, (2, 1), (3, 1), (3, 1)) P.59

(4, 6, 6, 1, 1, 9) TB

(
−1 1
−1 0

)
= (S2, (3, 1), (3, 1), (3,−1)) P.13

(4, 6, 6, 1, 7, 1) S3/P48 × Z7 = (S2, (2, 1), (3, 1), (4,−1)) P.46

(4, 6, 6, 5, 5, 3) E3/P41 = TB

(
0 1
−1 0

)
= (S2, (2, 1), (4, 1), (4,−3)) P.74

34 (3, 3, 11, 2, 2, 4) S3/D40 = (S2, (2, 1), (2, 1), (5,−3)) P.30
(3, 3, 11, 2, 2, 10) S3/Q24 = (S2, (2, 1), (2, 1), (6,−5)) P.8
(3, 7, 7, 2, 2, 2) S3/P24 × Z5 = (S2, (2, 1), (3, 2), (3,−1)) P.48
(5, 5, 7, 2, 4, 2) (RP2, (2, 1), (2, 1)) P.19

(5, 5, 7, 2, 6, 6) E3/P31 = TB

(
0 1
−1 −1

)
= (S2, (3, 1), (3, 1), (3,−2)) P.75

(5, 5, 7, 4, 4, 6) E3/P61 = TB

(
1 −1
1 0

)
= (S2, (2, 1), (3, 1), (6,−5)) P.72

(Table 2 continues...)
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tetrahedra 6-tuple 3-manifold position
in [20]

36 (4 , 4 , 10 , 1 , 1 , 1 ) S3/D40 × Z3 = (S2, (2, 1), (2, 1), (5, 1)) P.63
(4, 4, 10, 1, 1, 7) S3/Q12 × Z5 = (S2, (2, 1), (2, 1), (3, 2)) P.57

(4 , 4 , 10 , 1 , 1 , 11 ) S3/P120 × Z11 = (S2, (2, 1), (3, 2), (5,−4)) P.42
(4 , 4 , 10 , 1 , 5 , 1 ) S3/Q24 × Z5 = (S2, (2, 1), (2, 1), (6,−1)) P.41
(4, 4, 10, 1, 5, 7) S3/Q20 × Z3 = (S2, (2, 1), (2, 1), (5,−2)) P.43
(4, 4, 10, 3, 3, 3) S3/P120 × Z7 = (S2, (2, 1), (3, 1), (5,−3)) P.28
(4 , 6 , 8 , 1 , 1 , 1 ) S3/P48 × Z13 = (S2, (2, 1), (3, 1), (4, 1)) P.68
(4 , 6 , 8 , 1 , 1 , 11 ) (S2, (3, 1), (3, 2), (4,−3)) P.35
(4 , 6 , 8 , 1 , 7 , 1 ) S3/P120 × Z19 = (S2, (2, 1), (3, 1), (5,−1)) P.56
(4 , 6 , 8 , 3 , 9 , 13 ) (S2, (2, 1), (4, 1), (4,−1)) P.33
(4, 6, 8, 5, 5, 11) (S2, (2, 1), (4, 1), (5,−4)) P.4
(6 , 6 , 6 , 1 , 1 , 1 ) (S2, (3, 1), (3, 1), (3, 1)) P.37
(6 , 6 , 6 , 1 , 1 , 9 ) (S2, (3, 1), (3, 1), (4,−1)) P.49

(6, 6, 6, 1, 7, 7) TB

(
−1 0
−1 −1

)
= (K, (1, 1)) P.76

(6, 6, 6, 5, 5, 5) TB

(
1 0
1 1

)
= (T, (1, 1)) P.78

38 (3 , 3 , 13 , 2 , 2 , 12 ) S3/Q28 = (S2, (2, 1), (2, 1), (7,−6)) P.16
(5, 5, 9, 2, 2, 2) (RP2, (2, 1), (3,−1)) P.66
(5, 5, 9, 4, 4, 8) (S2, (2, 1), (3, 1), (7,−6)) P.2
(5, 7, 7, 4, 6, 12) (S2, (3, 1), (3, 1), (4,−3)) P.12

(Table 2 continues...)
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tetrahedra 6-tuple 3-manifold position
in [20]

40 (4 , 4 , 12 , 1 , 1 , 1 ) S3/Q24 × Z7 = (S2, (2, 1), (2, 1), (6, 1)) P.47
(4, 4, 12, 1, 1, 5) S3/Q8 × Z5 = (S2, (2, 1), (2, 1), (2, 3)) P.39

(4 , 4 , 12 , 1 , 1 , 13 ) (S2, (2, 1), (3, 2), (6,−5)) P.44
(4 , 4 , 12 , 1 , 5 , 1 ) S3/D56 × Z3 = (S2, (2, 1), (2, 1), (7,−1)) P.64
(4 , 6 , 10 , 1 , 1 , 1 ) S3/P120 × Z31 = (S2, (2, 1), (3, 1), (5, 1)) P.70
(4 , 6 , 10 , 1 , 1 , 13 ) (S2, (3, 1), (3, 2), (5,−4)) P.36
(4 , 6 , 10 , 1 , 7 , 1 ) (S2, (2, 1), (3, 1), (6,−1)) P.65
(4, 6, 10, 3, 5, 3) (S2, (2, 1), (4, 1), (5,−3)) P.23

(4 , 6 , 10 , 3 , 9 , 15 ) (S2, (2, 1), (4, 3), (5,−4)) P.55
(4, 6, 10, 5, 1, 1) S3/P48 × Z11 = (S2, (2, 1), (3, 2), (4,−1)) P.61

(4 , 6 , 10 , 5 , 5 , 13 ) (S2, (2, 1), (4, 1), (6,−5)) P.10
(4, 6, 10, 5, 9, 3) (S2, (3, 1), (3, 2), (3,−1)) P.27

(4 , 6 , 10 , 7 , 1 , 1 ) S3/P ′
216 = (S2, (2, 1), (3, 1), (3, 2)) P.69

(4, 6, 10, 7, 3, 15) S3/P120 × Z13 = (S2, (2, 1), (3, 1), (5,−2)) P.45
(4 , 8 , 8 , 1 , 1 , 1 ) (S2, (2, 1), (4, 1), (4, 1)) P.53
(4 , 8 , 8 , 1 , 1 , 13 ) (S2, (3, 2), (4, 1), (4,−3)) P.32
(4 , 8 , 8 , 1 , 9 , 1 ) (S2, (2, 1), (4, 1), (5,−1)) P.62
(4, 8, 8, 5, 5, 13) (S2, (2, 1), (5, 1), (5,−4)) P.20
(6 , 6 , 8 , 1 , 1 , 1 ) (S2, (3, 1), (3, 1), (4, 1)) P.71
(6 , 6 , 8 , 1 , 1 , 11 ) (S2, (3, 1), (4, 1), (4,−1)) P.52
(6 , 6 , 8 , 1 , 9 , 1 ) (S2, (3, 1), (3, 1), (5,−1)) P.60

(Table 2 continues...)
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tetrahedra 6-tuple 3-manifold position
in [20]

40 (6, 6, 8, 5, 5, 7) TB

(
0 1
−1 3

)
= Q2(0, 1) P.73

(6, 6, 8, 5, 11, 7) TB

(
0 1
−1 −3

)
= Q1(1, 1) P.77

42 (3, 3, 15, 2, 2, 6) S3/D56 = (S2, (2, 1), (2, 1), (7,−5)) P.31
(3 , 3 , 15 , 2 , 2 , 14 ) S3/Q32 = (S2, (2, 1), (2, 1), (8,−7)) P.9

(3, 7, 11, 4, 2, 2) S3/P120 × Z17 = (S2, (2, 1), (3, 2), (5,−3)) P.54
(5, 5, 11, 2, 4, 2) (RP

2, (2, 1), (3, 1)) P.67
(5, 5, 11, 4, 4, 10) (S2, (2, 1), (3, 1), (8,−7)) P.5
(5, 5, 11, 4, 8, 4) (S2, (2, 1), (3, 1), (7,−5)) P.21
(5, 7, 9, 2, 4, 4) (D, (2, 1), (2,−3))

⋃
0

@

0 1
1 0

1

A

(D, (2, 1), (3,−2)) P.58

(5 , 7 , 9 , 4 , 6 , 14 ) (S2, (3, 1), (3, 1), (5,−4)) P.24
(7, 7, 7, 2, 2, 2) Q1(2,−3) P.22
(7, 7, 7, 2, 6, 10) (D, (2, 1), (2, 1))

⋃
0

@

0 1
1 0

1

A

(D, (2, 1), (3, 1)) P.17

TABLE 2: Prime genus two 3-manifolds represented by crystallizations of C
(42)
2
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tetrahedra 3-manifold

16 RP
2 × S1

32 E3/Bb = TB

(
0 1
1 0

)

E3/Pna21 = (RP2; (2, 1), (2, 1))

34 TB

(
0 1
1 −1

)

36 TB

(
2 1
1 0

)

40 TB

(
3 1
1 0

)

(RP2; (2, 1), (3, 1))

TABLE 3: Prime genus two 3-manifolds represented by crystallizations of C̃2
(42)
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