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Abstract
A geometric approach to the proof of Fermat’s last theorem is proposed. Instead of integers a, b, c, Fermat’s last theorem 

considers a triangle with side lengths a, b, c. It is proved that in the case of right-angled and obtuse-angled triangles Fermat’s equation 
has no solutions. When considering the case when a, b, c are sides of an acute triangle, it is proved that Fermat’s equation has no 
entire solutions for p > 2. The numbers a = k, b = k +m, c = k+n, where k, m, n are natural numbers satisfying the inequalities n > m, 
n < k+m, exhaust all possible variants of natural numbers a, b, c which are the sides of the triangle.

The proof in this case is carried out by introducing a new auxiliary function f(k,p) = kp+(k+m)p–(k+n)p of two variables, which is 
a polynomial of degree p in the variable k. The study of this function necessary for the proof of the theorem is carried out. A special case 
of Fermat’s last theorem is proved, when the variables a, b, c take consecutive integer values. The proof of Fermat’s last theorem was 
carried out in two stages. Namely, all possible values of natural numbers k, m, n, p were considered, satisfying the following conditions: 
firstly, the number (np–mp) is odd, and secondly, this number is even, where the number (np–mp) is a free member of the function f(k, p).

Another proof of Fermat’s last theorem is proposed, in which all possible relationships between the supposed integer solu-
tion k of the equation f(k, p) = 0 and the number ( ) n m−  corresponding to this supposed solution k  are considered.

The proof is carried out using the mathematical apparatus of the theory of integers, elements of higher algebra and the foun-
dations of mathematical analysis. These studies are a continuation of the author’s works, in which some special cases of Fermat’s  
last theorem are proved.
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1. Introduction
In 1637, the French mathematician Pierre Fermat made the following conjecture: for any 

natural number p > 2, the equation:

a b cp p p+ =

has no solutions in nonzero integers a, b, c. The results of attempts to prove Fermat’s last theorem 
for more than 300 years are known, a review of which is given, for example, in [1–3]. Pierre Fer-
mat himself proved the absence of integer solutions for the case p = 4 [4, 5]. As early as 1770, the 
p = 3 case was proved by Euler, and enough time had to pass for the theory used by Euler to be 
convincingly substantiated by Gauss. In 1825, the proof of Fermat’s last theorem for the case p = 5 
was presented almost simultaneously by Lejeune Dirichlet and Legendre [1]. For the case p = 7, 
the theorem was proved by Lame in 1839. Later, in 1847, Lame announced that he had succeeded 
in finding a proof of Fermat’s last theorem for all prime exponents p ≥ 3. But Liouville [1] almost 
immediately found an error in Lame’s proof, which Lame later admitted.

Using the ideas of Kummer, with the help of already modern computing tools, the validity 
of Fermat’s last theorem was proved for all prime exponents p < 100000.

In 1993, Andrew Wiles published the first 130-page proof of Fermat’s last theorem. Soon 
a serious gap was discovered in it, which, with the help of Richard Lawrence Taylor, was quickly 
eliminated. In 1995, the final version of the proof of Fermat’s last theorem [6] was published.

It is known that Fermat’s last theorem was proved by Andrew Wiles, professor of mathema-
tics at Princeton University [7]. At the same time, the author used modern mathematical tools.  
His proof took up an entire issue of the Annals of Mathematics.
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Mathematicians appreciated the proof [8]. Thus, the American mathematician Serge Leng 
included in the third edition of his classic manual on algebra the main constructions of the proof of 
Fermat’s last theorem by Wiles.

Attempts to contribute to the proof of Fermat’s last theorem continue. Thus, in [9], the  
author proves that «there are no nonzero integer solutions of the Fermat equation for exponents 
greater than the one for which the absence of integer solutions has been proved».

The idea of finding a simpler proof of Fermat’s last theorem also remains attractive. The 
author proposes a geometric approach to the proof of Fermat’s last theorem, assuming that the va-
riables a, b, c in Fermat’s equation are the lengths of the sides of a certain triangle.

2. Materials and methods
The geometric approach, as well as the introduction of an auxiliary function u = f(k, p) of 

two variables, made it possible to simultaneously apply elements of number theory, higher algebra 
and mathematical analysis in the proof [10, 11].

3. Results and discussion
The work is a continuation of studies [12, 13].
Fermat’s last theorem. For any natural number p > 2, the equation

 a b cp p p+ =  (1)

has no solutions in non-zero integers a, b, c.
Let’s prove the theorem in an equivalent formulation, stating that Eq. (1) has no natural 

solutions.
Obviously, a < c, b < c, c < a+b. Let’s apply a geometric approach, namely: instead of a triple 

of numbers a, b, c, consider a triangle with side lengths a, b, c.
Three options are possible: a triangle is right-angled, obtuse-angled or acute-angled.
In the first case:

 a b c2 2 2+ = .  (2)

In the second case, it follows from the cosine theorem that:

 a b c2 2 2+ < . (3)

Combining (2) and (3), let’s obtain:

 a b c2 2 2+ ≤ . (4)

Multiplying inequality (4) by c p–2, let’s obtain:

a c b c cp p p2 2 2 2⋅ ⋅+ ≤− − .

Where

a b cp p p+ < ,

since a2c p–2 > a p, b2c p–2 > b p. That is, in the first two cases, equation (1) has no solutions for p > 2.
Let’s consider the third case, namely: the triangle is acute. Without loss of generality, let’s 

assume that a < b.
For a = b, equation (1) takes the form:

a a cp p p+ = .
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Where

c a p= 2.

It is known from number theory [10] that c is an irrational number for a and p integers.
Numbers:

a = k, b = k +m, c = k+n,

where k, m, n – natural numbers satisfying the inequalities:

n > m, n < k +m,

exhaust all possible variants of natural numbers a, b, c that are sides of the triangle.
Let’s formulate the theorem in an equivalent form and with the indicated notation.
Fermat’s last theorem. For any natural number p > 2, the equation:

k k m k np p p+ + = +( ) ( )

has no solutions in natural numbers k, m, n.
In an acute triangle, the following condition is additionally satisfied:

 k n m n n m> − + −( )2 .  (5)

Let’s prove inequality (5). As is known from the cosine theorem,

a b c2 2 2+ > , k k m k n2 2 2+ +( ) > +( ) ,

k k n m m n2 2 22 0− −( ) + − > ,

where

k n m n n m> − + −( )2 .

From inequality (5) it follows that k > 3.
Let’s consider a function of two variables:

 f k p k k m k np p p, ,( ) = + +( ) − +( )  (6)

where p ≥ 2, k > 3.
Assuming the number p to be an integer, let’s transform equality (6) according to the New-

ton binomial formula:

 f k p k C n m k C n m k C n m kp
p

p
p

p
p

p p, ...( ) = − −( ) − −( ) − − −( ) −− − − −1 1 2 2 2 2 1 1 1 nn mp p−( ).  (7)

Thus, f(k, p) is a polynomial of degree p of the argument k.
According to Descartes’ theorem [11] from the course of higher algebra, the equation:

 f k p,( ) = 0  (8)

has a unique positive root for any p ≥ 2, i.e. the number of positive roots of equation (8) does not 
depend on p.

Let’s prove some assertions.
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Proposition 1. For any integer p ≥ 3 and

3
2 1

2

2 2 2 2

< ≤
−( ) + −( ) + −( ) −( )

k
p n m p n m p p n m

function f(k,p) < 0.
Proof. Let’s transform equality (7):

f k p k C n m k C n m k

C n m k

p
p

p
p

p

p
p

,

...

( ) = − −( ) − −( ) −

− −( ) + +

− −

−

1 1 2 2 2 2

3 3 3 3 CC n m k n mp
p p p p1 1 1− −−( ) + −( )  .

Obviously, at:

 k C n m k C n m kp
p

p
p

p− −( ) − −( ) ≤− −1 1 2 2 2 2 0  (9)

function f(k,p) < 0.
Inequality (9) is satisfied under the condition:

p n m p n m p p n m
k

p n m p n m p p

−( ) − −( ) + −( ) −( )
≤ ≤

≤
−( ) + −( ) + −( )

2 2 2 2

2 2

2 1

2

2 1 nn m2 2

2

−( )
.

Considering that k > 3, let’s obtain the proof of Proposition 1.
Consequence. Equation (8) has a single positive root k0 satisfying the inequality:

 k
p n m p n m p p n m

0

2 2 2 22 1

2
>

−( ) + −( ) + −( ) −( )
.  (10)

From inequality (10) it follows that:

k p n m0 > −( ).

When proving Propositions 2 and 3, the main theorems of mathematical analysis are used.
Proposition 2. Let f k p p p k, ( ).( ) < ∀ > >0 30

Then f(k,p) decreases monotonically on the interval ( p0,∞) with respect to p.
Proof. 

′ ( ) = + +( ) +( ) − +( ) +( ) < +( ) +

+ +(
f k p k k k m k m k n k n k k n

k m

p
p p p p, ln ln ln ln

)) +( ) − +( ) +( ) = ( ) +( ) <p p
k n k n k n f k p k nln ln , ln .0

Therefore, f(k,p) is a monotonically decreasing function on the interval (p0,∞).
Proposition 3. Let f k p k k p, .( ) > ∀ > ≥( )0 20  Then the function f(k,p) is monotonically  

increasing in the variable k on the interval (k0,∞).
Proof. ′( ) = −( )f k p pf k pk , , .1
By assumption, f(k,p−1) > 0. Therefore, ′( ) >f k pk , .0  That is, f(k,p) is monotonically increas-

ing on the interval (k0,∞).
Consequence. The graph of the function u = f(k,p) is concave for any integer p ≥ 3 on the 

interval (k0,∞).
Really,

′′ ( ) = −( ) −( ) >f k p p p f k pkk , , .1 2 0
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The graph of the function u = f(k,p) is shown in Fig. 1, where k0 – the minimum point of the 
function f(k,p+1).

Fig. 1. Mutual arrangement of graphs of functions u = f(k,p) and u = f(k,p+1)

Proposition 4. The following recursive formula is valid:

 f k p kf k p n k n m k mp p, , [ ( ) ) ,+( ) = ( ) − + − +( 1  (11)

for any integer p ≥ 2 and integer k > 3.
Proof.

f k p k k m k n k k k m k m

k n k n

p p p p p, +( ) = + +( ) − +( ) = ⋅ + +( ) +( ) −

− +( ) +

+ + +1 1 1 1

(( ) = ( ) − +( ) − +( )





p p p
kf k p n k n m k m, .

Obviously, f(k, p+1) < 0 for f(k, p) ≤ 0.
Corollary 1. If the triangle is right-angled or obtuse-angled, equation (1) has no solutions in 

natural numbers a, b, c and positive integer p > 2.
Indeed, in the first case f(k,2) = 0, and in the second case f(k,2) < 0. In both cases f(k,3) < 0.
Corollary 2. If f(k,p) > 0, then f(k,p−1) > 0.
The statement directly follows from equality (11).
Proposition 5. Equation (8) has no positive integer roots for any integer p > 2 for the case:

a k= −1,  b k= ,  c k= + 1.

Proof. Equation (8) will take the form:

 k k kp p p− +( ) − −( )



 =1 1 0.  (12)

For odd p:

 k C k C kp
p

p
p

p− + + +  =− −2 1 01 1 3 3 ... .  (13)

For even p:

 k C k C k Cp
p

p
p

p
p

− − −− + + +  =1 1 2 3 4 12 0... . (14)

In both cases, for k ≤ 2p, the function f(k,p) < 0. Therefore, equation (12) has a root k0 ≥ 2p+1.
In equation (13) the intercept is (−2), and in equation (14) it is (−2p). As is known, equa-

tions (13) and (14) can have integer roots that are divisors of free terms. But k0 ≥ 2p+1, therefore, 
equation (12) has no integer positive roots for integer p.

Proposition 6. Equation (8) has no positive integer roots for n–m = 2s+1, where s is a positive 
integer, and for any integer p > 2.

Proof. Thus, the numbers a, b, c take the values:

a k= , b k m= + , c k m s= + + +2 1.

0

u
u f (k,p)

u f (k,p 1) 

0k kp pm n
p 1 p 1m n 

k

 

k
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It is easy to show that the free term of equation (8), equal to:

m m sp p− + +( )2 1 ,

is an odd number.
Indeed, for any positive integer m, one of the numbers m or (m+2s+1) is odd, therefore, one 

of the numbers m p or (m+2s+1) p is an odd number.
Whence it follows that:

m m sp p− + +( )2 1 ,

is an odd number.
Thus, equation (8) in the considered case does not have even roots.
Let’s show that equation (8) has no odd positive roots for n– m = 2s+1 and any integer p > 2.
Assume the opposite, that is, equation (8) has an odd positive root k (with corresponding 

values m  and n ) for some p > 2.
Obviously,

2 2 2δ δ< < +k ,

where d – positive integer.
Moreover, it is necessary to consider only the case f p2 0δ, ,( ) <  f p2 2 0δ +( ) >, .

Let’s do Fig. 2, on which draw a curve u f k p= ( ),   on a segment 2 2 2δ δ, .+[ ]

Fig. 2. Mutual arrangement of numbers k0 and k

Let’s make the equation of a straight line:

A f p2 2δ δ; , ,( )   B f p2 2 2 2δ δ+ +( ) ; , ;

 u k f p
f p f p

k( ) − ( ) =
+( ) − ( )

−( )2
2 2 2

2
2δ

δ δ
δ,

, ,
.

 

 (15)

Where

 k
f p

f p f p0 2
2 2

2 2 2
= −

( )
+( ) − ( )δ

δ
δ δ

,

, ,
.



 

 (16)

From equality (16) it follows:
1) If f p f p2 2 2δ δ, , , ( ) > +( )  then k0 2 1> +δ .
2) If f p f p2 2 2δ δ, , , ( ) = +( )  then k0 2 1= +δ .
3) If f p f p2 2 2δ δ, , , ( ) < +( )  then k0 2 1< +δ .
In the first and second cases, the number k  is not an integer, since:

2 1 2 2δ δ+ < < +k .

0

u

k

B

A

2δ
0k

2δ 2k

 u f k; p

 u u k
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Let’s consider the third case, namely:

−
( )

+( ) <
f p

f p

2

2 2
1

δ
δ

,

,
.





It is easy to verify that the numerator and denominator are odd numbers (if there is a com-
mon divisor, then it must be reduced by it).

In this way,

 −
( )

+( ) = <
f p

f p

r

q

2

2 2
1

δ
δ

,

,
,





 (17)

where r q  is an irreducible fraction, and r < q. Let’s recall that, by assumption:

f p2 1 0δ +( ) =, .

To illustrate case 3, let’s perform Fig. 3, where E(k0; 0), M 2 1 0δ +( ); , C 2 2 0δ +( ); ,  D 2 0δ; .( )

Fig. 3. Graphical interpretation of case 3

From equality (15) it follows:

u
f p f p

2 1
2 2 2

2
δ

δ δ
+( ) =

( ) + +( ), ,
.

 

Triangles ETM and EBC are similar, so:

BC

MT

k

k
=

+ −
+ −

2 2

2 1
0

0

δ
δ

.

Where

MT f p
k

= +( ) −
+ −







2 2 1
1

2 2 0
δ

δ
, ,

so

1
1

2 2

2 2 2

2 2 20
−

+ −
=

( ) + +( )
+( )δ

δ δ
δk

f p f p

f p

, ,

,
.

 



After performing the transformations, let’s obtain:

k
r

r q0 2
2

= +
+

δ .

Wherein

 2 1 00δ + − =
−
+

>k
q r

q r
. (18)

Therefore, for any r, q satisfying condition (17), f k p0 0, .( ) <

0

u

k

B

A

D
M CE

 u u k

T

 u f k; p
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That’s why:

lim , , .
r q

f k p f p
→

( ) = +( ) ≤0 2 1 0 δ

On the other hand, let’s arrive at case 2, in which f p2 1 0δ +( ) ≠, .

Therefore, equation (8) has no odd positive roots for n−m = 2s+1 and any integer p > 2.
Proposition 7. Equation (8) has no positive integer roots for n−m = 2s, where s is a positive 

integer, and any integer p > 2.
Proof.
Equation (8) in expanded form has the form:

k C n m k C n m k C n m k n mp
p

p
p

p
p

p p p p= −( ) + −( ) + + −( ) + −− − − −1 1 2 2 2 2 1 1 1... .

Equation (8) has no odd roots, since for any odd k, the left side of the equality is an odd 
number, and the right side is an even number.

By analogy with proposition (6), it can be shown that equation (8) has no even positive roots.
Combining propositions (6), (7) let’s arrive at the following statement:
Fermat’s last theorem. For any natural number p > 2, the equation f(k,p) = 0 has no solutions 

in the natural numbers k, m, n.
Let’s offer one more proof of Fermat’s last theorem.
Proposition 8. Equation (8) has no positive integer roots for any integer p > 2.
Proof.
Let’s assume the opposite, that is, there are integers  p k,  (with corresponding values  m nand )  

such that f k p , .( ) = 0
The following options are possible:
1. Numbers k  and  n m−( )  do not have common divisors provided  n m−( ) ≠ 1.
2. Numbers k  and  n m−( )  have GCD equal to μ, and m < − n m.
3. GCD of k  and  n m−( )  numbers and equal to  n m−( ).
Let’s write equation (8) in expanded form:

 k C n m k C n m k C n m k n mp
p

p
p

p
p

p p p p= −( ) + −( ) + + −( ) + −− − − −1 1 2 2 2 2 1 1 1... .  (19)

Let’s consider the first option. Substituting the solution k  into equation (19), let’s obtain  
the identity:

 

 



 

















k C n m k C n m k C np
p

p
p

p
p

p= −( ) + −( ) + + −− − −1 1 2 2 2 2 1 1... 



 

  m k n mp p p−( ) + −1 .  (20)

By virtue of the assumption, the number  k p  is not divisible by  n m−( ). The right side of 
equality (20) is divisible by the number  n m−( ). It is a contradiction.

Let’s consider the second option. Number μ is the GCD of numbers k  and  n m−( )  therefore:



 k t n m s= − =m m0 0, ,

moreover, the numbers t0 and s0 do not have common divisors.
Substituting into equation (19), let’s obtain:

 

m m m m mt C s t C s n m t

C

p
p

p
p

p
0

1
0 0

1 2
0 0

2( ) = ( )( ) + ( ) +( )( ) +

+

− −









  ...



   



    



p
p p p ps n mn nm m t

s n

1
0

2 3 3 2
0

0

m m

m

( ) + + + +( ) +

+( )

− − − −...

pp p p pmn m n m− − − −+ + + +( )1 2 2 1
    

  ... .  (21)

The number on the right side of equality (21) has a divisor s0, but the number on the left side 
of equality (21) has no such divisor. They came to a contradiction.
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In the third case   k n m= −( )l ,  where l > p.
Let’s substitute into equation (19):

 

l l l        









n m C n m n m C n m
p

p
p

p−( )  = −( ) −( )  + −( )−1 1 2 2 2 nn m

C n m n m n

p

p
p p p

−( )  +

+ −( ) −( )  + −

−

− −



     





  

2

1 1 1

...

l mm p .  (22)

The left and right sides of equality (22) are integers. The left side is the product of two  
factors. The right side has a divisor  n m−( ).

Dividing equality (22) by  n m−( )  let’s obtain:

 

l l l l       









n m C n m n m C n m
p

p
p

p−( )  = −( ) −( )  + −
− −1 1 2 2 2 2(( ) −( )  +

+ −( ) + +

−

− − −

l l

l

 

    





   

n m

C n m n mn

p

p
p p p

3

1 1 1 1

...

pp p pnm m− − −+ + +( )2 2 1... .  

   (23)

The last term in equality (23) does not explicitly contain divisors  n m−( )  and l. All other 
terms on the right side and the left side of the equality are divided into numbers  n m−( )  and l.  
In this case, too, we have arrived at a contradiction.

Whence follows the assertion of Fermat’s last theorem.
Indeed, for natural numbers p, m, n, the number k is not a natural number.
Let’s give one more (incomplete) proof of the third option, when   k n m= −( )l .
Let  n m s−( ) = 2 , and  n m,  – odd numbers. Substituting into equation (19), let’s obtain:

 

2 2 2
1

2
2 2 2 21 2

s p s s
p p

s m s s
p p pl l l[ ] = ( )[ ] +

−( ) ( ) +( )[ ] +− −  



 

 ... ++ ( ) ×

× −( ) ( ) +
−( ) −( ) ( ) + +− −



 

 

 

 

p s

p m s
p p

s m pp p

2

1 2
1 2

2
22 2 3 ... −−( ) ( ) + ( )











×

×[ ] + ( ) +
−

− −

−

1 2 2

2 2

2 1

1



 

 

 



m s s

s pm s
p p

p p

pl
11

2
2 2 22 2 1( ) ( ) + + ( ) + ( )











− −
  



 

m s pm s sp p p... .  (24)

Let’s divide equality (24) by 2s. In this case, the number on the left side of the resulting 
equality and all terms on the right side (except for the term   pm p−1) are even. Moreover, the term 
 

pm p−1 is odd if the number p  is odd and even if the number p  is even. In the first case, let’s came 
to a contradiction, since there is an even number on the left side of the resulting equality, and an 
odd number on the right.

Let p  be an even number. The number p  can be represented as:

p ji= ⋅2 ,

where i, j – integers i p j< − ≥( ) 1 1, ,  j – odd number.
Dividing the resulting equality by 2i let’s obtain an odd number on the right side, and an 

even number on the left side. They came to a contradiction.
Let n  and m  even numbers having GCD γ i.e.

 n n m m= =1 1γ γ, .

In this case, one of the numbers m1, n1 is odd, or both are odd.
In the first case (n1−m1) is an odd number, in the second case (n1−m1) is even.
It can be shown that equation (8) for any integer k has a unique root p0, which is not a po-

sitive integer.
By virtue of the previous theorem f k p( , ) ,≠ 0  for any integers p > 2 and k > 3. As is known, 

in an acute triangle f(k,2) > 0 for any k satisfying inequality (5). The number f(k,3) can be nega-
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tive or positive. Let f(k,3) < 0. Due to the continuity of the function f(k,p) with respect to the 
variable p, there exists a unique number p0 (2 < p0 < 3) such that f(k,p0) = 0. If f(k,3) > 0, then  
let’s continue the indicated process, considering f(k,4) and so on.

4. Conclusions
Intersecting statements are deliberately given. Perhaps they will help to find a more concise 

proof of Fermat’s last theorem.
This is one of many attempts to prove Fermat’s Last Theorem.
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