
Effect of symmetry in the many-particle Wigner function

Emiliano Cancellieri, Paolo Bordone, and Carlo Jacoboni
Dipartimento di Fisica, Università di Modena e Reggio Emilia, and CNR-INFM S3 National Research Center, via Campi 213/a,

41100 Modena, Italy
�Received 28 February 2007; revised manuscript received 30 August 2007; published 4 December 2007�

An analysis of the Wigner function for identical particles is presented. Four situations have been considered.
�i� The first is scattering process between two indistinguishable particles described by a minimum uncertainty
wave packets showing the exchange and correlation effects in Wigner phase space. �ii� An equilibrium en-
semble of N particles in a one-dimensional box and in a one-dimensional harmonic potential is considered
second, showing that the reduced one-particle Wigner function, as a function of the energy defined in the
Wigner phase space, tends to the Fermi-Dirac or to the Bose-Einstein distribution function, depending on the
considered statistics. �iii� The third situation is reduced one-particle transport equation for the Wigner function,
in the case of interacting particles, showing the need for the two-particle reduced Wigner function within the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy scheme. �iv� Finally, the electron-phonon interaction in the
two-particle case is considered, showing coparticipation of two electrons in the interaction with the phonon
bath.
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I. INTRODUCTION

Highly sophisticated technologies produce physical sys-
tems, and in particular semiconductor devices, of very small
dimensions, comparable with the electron wavelength or
with the electron coherence length. Under such conditions,
semiclassical dynamics is not justified in principle, and in-
terference effects due to the linear superpositions of quantum
states have to be considered. Among the possible different
approaches, the Wigner function �WF� has proved to be very
useful for studying quantum electron transport,1–4 owing to
its strong analogy with the semiclassical picture, since it ex-
plicitly refers to variables defined in an �r ,p� Wigner phase
space, together with a rigorous description of electron dy-
namics in quantum terms.

In this work we present an analysis of the WF for identi-
cal particles. Even though the WF was defined from its very
beginning for the study of many-particle physics, in electron
transport theory it has been used mainly in its one-particle
version. The importance of the many-body problem derives
from the fact that any real physical system one can think of
is composed of a set of interacting bodies. Moreover, since
we are dealing with quantum mechanical systems, the sym-
metry properties that describe the behavior of identical par-
ticles play an essential role. The present paper will be fo-
cused on the effects due to the symmetry of the spatial part
of the wave function. The spin variables are not explicitly
included. If particles with spin 1/2 are considered �such as,
e.g., electrons�, a symmetric spatial wave function will cor-
respond to an antisymmetric spin wave function and an an-
tisymmetric spatial wave function will correspond to a sym-
metric spin wave function.

Four situations will be analyzed: �i� a scattering process
between two indistinguishable particles described by
minimum-uncertainty wave packets, showing the exchange
and correlation effects in Wigner phase space; �ii� an equi-
librium ensemble of N particles in a box and in a harmonic
potential, showing that the value of the WF in points in the

Wigner phase space with given energy tends to a Fermi-
Dirac �FD� or to a Bose-Einstein �BE� distribution function,
depending on the considered statistics; �iii� the transport
equation for interacting particles, showing the Bogoliubov-
Born-Green-Kirkwood-Yvon �BBGKY� hierarchy when the
integral, over the degrees of freedom of all the particles but
one, is performed,5,6 �iv� the electron-phonon interaction in
the case of two particles, where new Keldysh diagrams7 ap-
pear with respect to the one-electron case.8

II. WIGNER FUNCTION FOR MANY IDENTICAL
PARTICLES

The WF was introduced by Wigner in 1932 to study quan-
tum corrections to classical statistical mechanics.1,9–11 Thus,
even though it is now used mainly in single-particle prob-
lems, from the very beginning this function was defined for
N particles as

fW�r1,p1, . . . ,rN,pN,t� =� ds1 ¯ dsN exp�−
i

�
� sipi�

� ��r1 +
s1

2
, . . . ,rN +

sN

2
,t�

� ���r1 −
s1

2
, . . . ,rN −

sN

2
,t� . �1�

In the case of identical particles, the wave function de-
scribing the many-body system satisfies well-known symme-
try relations. When the position coordinates of two particles
are interchanged, the spatial part of the wave function re-
mains unaffected �in the symmetric case� or changes sign �in
the antisymmetric case�. Since the WF is bilinear in the wave
function, it remains the same if the positions and, accord-
ingly, the Wigner momenta of two particles are exchanged.

This symmetry property of the WF allows the definition
of a reduced M-particle WF in a system of N particles as12,13
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fW
�N��r1,p1, . . . ,rM,pM,t�

=
N!

�N − M� ! h3�N−M� � drM+1dpM+1 ¯ drNdpN

�fW�r1,p1, . . . ,rN,pN,t� , �2�

where the superscript �N� indicates that the reduced
M-particle WF is defined in a system with N particles. Note
that in the case where M =1 the above equation becomes

fW
�N��r1,p1,t� =

N

h3�N−1� � dr2dp2 ¯ drNdpN

� fW�r1,p1, . . . ,rN,pN,t� . �3�

The factorials appearing in front of the integral in Eq. �2�
simplify to N in Eq. �3�, since this is the number of equiva-
lent ways one can reduce the N-particle WF when the par-
ticles themselves are supposed to be identical.

A. The WF for many single-particle wave functions

We consider the case of N particles in the system, and we
define the WF with a wave function that is a symmetric or
antisymmetric linear combination of products of single-
particle wave functions �i�r� �i=1, . . . ,N� as

��r1, . . . ,rN� = �1�r1��2�r2��3�r3� ¯ �N�rN�

± �1�r2��2�r1��3�r3� ¯ �N�rN�

+ �1�r2��2�r3��3�r1� ¯ �N�rN�

± �1�r3��2�r2��3�r1� ¯ �N�rN� + ¯ , �4�

where the upper sign is for the symmetric case and the lower
for the antisymmetric case. In the WF expression it is pos-
sible to identify two different types of terms. The first one is
characterized by the product of single-particle WFs. In each
of these contributions, from the different wave functions, N
WFs are obtained that are evaluated in a particular permuta-
tion of the variable indices as, for example,
fW1

�r4 ,p4�fW2
�r1 ,p1�fW3

�r2 ,p2� . . . fWN
�rN−5 ,pN−5�.

The second type of contribution accounts for the ex-
change effects and vanishes when the wave functions �n�r�
do not overlap. These terms are constituted by integrals of
the product of N factors �n�n

�, one for each of the N wave
functions �n. In these terms at least two products �n�ri

+si /2��n
��r j −s j /2� are evaluated with i� j. It is the presence

of such factors that makes it impossible to obtain the many-
particle WF in terms of single-particle WFs. The number of
factors �n�n

�, where �n and �n
� correspond to different par-

ticles, appearing in a given integral can range from 2 to N.
As an example, the WF in the case of N=2 reads

fW�r1,p1,r2,p2,� = fW1�r1,p1�fW2�r2,p2� + fW1�r2,p2�fW2�r1,p1� ±
1

�6 � ds1ds2e�−i/���s1p1+s2p2�

���1�r1 +
s1

2
��1

��r2 −
s2

2
��2�r2 +

s2

2
��2
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2
� + �1�r2 +

s2

2
��1

��r1 −
s1

2
��2�r1 +

s1

2
��2

��r2 −
s2

2
��;

�5�

here four terms appear, two for each kind of contribution.
The two-particle system is treated in detail in Ref. 14.

B. Example of two colliding particles

A one-dimensional situation where two charged particles
collide with each other has been simulated. The Schrödinger
equation was solved with initial conditions given by two
minimum-uncertainty wave packets interacting through the
Coulomb potential, and the WF was evaluated at different
time steps.

In Fig. 1 we plot the one-particle reduced WF of the sys-
tem for the case of two Gaussian wave packets with opposite
central wave vectors. Since we are dealing with a one-
dimensional system, the two particles are expected to decel-
erate, scatter, and then move away from each other. At t=0
we suppose the two particles to be described by an antisym-
metric wave function. In Fig. 1�b� the system is shown 12 ps
after the Coulomb interaction is switched on. At the begin-
ning of the scattering process the exchange hole due to the

Pauli exclusion principle appears. In Fig. 1�c� the two par-
ticles are shown when their mutual distance has reached the
minimum value. In this case the exchange hole is maximally
evident. When the two particles are moving far enough from
each other the exchange hole tends to disappear 	Fig. 1�d�
.

For the sake of comparison in Fig. 2 the evolution of the
above system is represented in the case where the two par-
ticles at t=0 are described by a symmetric wave function. In
this case, at t=24 ps we do not see the appearance of any
exchange hole.

III. EQUILIBRIUM WF FOR NONINTERACTING
PARTICLES IN CONFINING POTENTIALS

In this section a system of N particles in two different
confining potentials V�r� has been studied. In the noninter-
acting case, the one-particle reduced WF is studied at ther-
mal equilibrium at different temperatures. In order to sim-
plify the mathematical treatment we shall introduce the
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second-quantization notation. The N-particle wave function
can thus be written as

��r1, . . . ,rN� = �r1, . . . ,rN�� = �0��̂�r1� ¯ �̂�rN��� ,

�6�

and the WF as

fW
�N��r1,p1� =

N

h3�N−1� � dr2dp2 ¯ drNdpN� ds1 ¯ dsN

�exp�−
i

�
�
j=1

N

p js j��0��̂�r1 +
s1

2
�

¯ �̂�rN +
sN

2
�������̂†�rN −

sN

2
�

¯ �̂†�r1 −
s1

2
��0� , �7�

where, here and in the following, �̂ and �̂† are the creation

and annihilation field operators. Since we are interested in
the thermal equilibrium distribution of a fixed number of
particles, the density matrix in the above equation is

����� = �̂ =
1

Z
e−Ĥ/kBT, �8�

where Z is the partition function, Ĥ the Hamiltonian, kB the
Boltzmann constant, and T the temperature of the system.
Since the particles in the system are supposed to be nonin-
teracting, and the system is supposed to be confined, the
Hamiltonian in its second-quantization form can easily be
written in terms of the particle creation ĉn

† and annihilation ĉn
operators as

Ĥ = �
n=1

�

�nĉn
†ĉn, �9�

where � is the energy of the nth discrete level. Writing the
field operators in terms of the creation and annihilation op-
erators, the mean value element appearing in Eq. �7�
becomes

�0� ¯ �0 = �
n1�

¯ �
nN�

�
n1�

¯ �
nN�
�0�ĉn1�

¯ ĉnN�
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ĉnN�
†
¯ ĉn1�

† �0e−�1/kBT���n1�
+¯+�nN�

�

��n1��r1 +
s1

2
�¯ �nN��rN +

sN

2
��nN�

� �rN −
sN

2
�¯ �n1�

� �r1 −
s1

2
� , �10�

FIG. 1. �Color online� One-dimensional reduced one-particle
WF of two interacting particles at different times. The case of an
antisymmetric wave function, as initial condition, has been consid-
ered. The figure clearly shows the exchange hole due to the Pauli
exclusion principle.

FIG. 2. �Color online� One-dimensional reduced one-particle
WF of two interacting particles at different times. The case of a
symmetric wave function, as initial condition, has been considered.
The figure clearly shows that no exchange hole appears.
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where �n indicates the nth eigenstate of the confining poten-
tial. As shown in the Appendix, Eq. �7� reduces to

fW
�N��r1,p1� = �

n1�

n̄n1�
fWn1�

�r1,p1� . �11�

In the limit of large N and of an infinite number of allowed
states with continuous energy spectrum, the above term gives
the FD or the BE distribution function evaluated at an energy
value �n1�

.15

Once the one-particle reduced WF is obtained, the func-
tion F��� giving the occupation number in an energy interval
� ,�+	� can be evaluated as

F��� =
1

Vps�����,�+	�

fW
�N��r1,p1�dr1dp1, �12�

where �=p1
2 /2m+V�r1� is the counterpart, in the Wigner

phase space, of the classical energy. The integral is per-
formed over those r1 and p1 giving a specific value of �
within the interval � ,�+	�, and Vps��� is the corresponding
volume of the Wigner phase space.

A. Examples for Fermi-Dirac statistics

1. Infinite square well potential

An infinite square well potential in one dimension has
been investigated at a temperature of T=2 K. In our simula-
tions the width of the well has been kept constant to a value
of 150 nm. The one-particle reduced WF has been evaluated
for N=4,6 ,8, and 10 by means of Eq. �11�. Then F���, the
average values of the points of the WF corresponding to
energy interval �, �+	�, have been plotted in Fig. 3.

A comparison between our curves and the Fermi functions
is obtained by evaluating the chemical potentials 
 for N
=4,6 ,8, and 10 from a numerical solution of the equation

N = �
n=1

�
1

e��n−
�/KBT + 1
. �13�

The curves in Fig. 3 show a good agreement between the
Fermi function and the average of the WF for any number of
particles.

It is worth noting that, as expected, the agreement be-
tween the averages of WFs and the Fermi distributions is
higher as the number of particles increases. However, in Fig.
3, even in the case of ten particles the value of the WF’s
average corresponding to the point with �=0 does not reach
the maximal value of 1. For this reason we have plotted in
Fig. 4 the system in more detail in the energy range from 0 to
10 K for a higher number of particles. As before, we simu-
late a well 150 nm wide with an electron gas at a tempera-
ture of 2 K; in this case, however, the number of simulated
particles is increased to 85. Figure 4 shows that when the
number of particles increases the value corresponding to �
=0 approaches 1.

2. Harmonic potential

As a second example, we have studied a one-dimensional
harmonic potential. Equation �11� has been evaluated for dif-
ferent numbers of particles �four, six, eight, and ten� at a
temperature of T=2 K. The averages F��� of the points of
the WF belonging to the same energy interval � ,�+	� are
plotted in Fig. 5. In the case of the harmonic potential this
means

� =
p2

2m
+

1

2
kx2, �14�

where m is the mass of any particle in the system and k is the
spring constant. The Fermi function with the chemical poten-
tial given by Eq. �13� is clearly approached by the corre-
sponding average of the WF.

3. Effect of temperature versus level spacing

It is possible to study how the particle distributions
change when the dimension of the well or the strength of the
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Fermi functions

FIG. 3. �Color online� Average values F��� of the points corre-
sponding to the same energy interval. The case of a one-particle
reduced WF of a system of N particles with antisymmetric spatial
part of the wave function, at thermal equilibrium �T=2 K�, in one-
dimensional infinite square well potential is considered. Since the
energy depends only upon the momenta of the particles, the average
F��� corresponds to the integral over the position variable �x�. The
width of the well has been fixed to 150 nm. In the upper part of the
frame, the black triangles indicate the energies corresponding to the
eigenstates of the well.
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FIG. 4. �Color online� Average values F��� of the points corre-
sponding to the same energy of the one-particle reduced WF of a
system of N particles with antisymmetric spatial part of the wave
function, at thermal equilibrium at a temperature of 2 K, in a 1D
infinite square well potential. The width of the well has been fixed
to 150 nm and the number of fermions increased from 10 to 85.
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harmonic potential is varied. When the width of the well
decreases or the strength of the harmonic potential increases,
the spacing between the allowed energy levels increases and
an oscillating behavior shows up in the curves �see Figs. 6
and 7�. Our calculations have been performed in the case of
a system with ten particles at a temperature of 2 K. When the
width of the well is decreased from 150 to 70 nm, the energy
gap between the ninth and the tenth energy levels increases
from 3.8 to 17.1 K. In the case of the harmonic potential, the
strength of the force constant is varied from 1.54�108 to
5.69�108 kg /s2, leading to an increase of the distance be-
tween the energy levels from 1 to 2 K. The simulations show
that such oscillations get more and more evident as the ratio
between the spacing of the energy levels and kBT becomes
greater. Under these conditions the approximation of a con-
tinuous spectrum of energies breaks down. Our outcomes
indicate that, in the limit of large N and of a continuous

distribution of energy levels, the one-particle reduced WF
reproduces the FD statistics.

B. Examples for Bose-Einstein statistics

1. Infinite square potential well

As in the previous Sec. III A, an infinite square well po-
tential in one dimension has been investigated at a tempera-
ture of T=2 K. As before, the width of the well has been
kept constant to a value of 150 nm. The one-particle reduced
WF has been evaluated in the case of N=4 and 10 particles
by means of Eq. �11�. Then F���, the average values of the
points of the WF corresponding to energy interval �, �+	�,
have been plotted in Fig. 8. Finally, a comparison between
our curves and the BE distribution functions is obtained, as
in �13� by evaluating the chemical potentials 
 for N=4 and
10 particles from a numerical solution of the following equa-
tion:

N = �
n=1

�
1

e��n−
�/kBT − 1
. �15�

2. Harmonic potential

As for the FD statistics we have studied, as a second
example, a one-dimensional harmonic potential. Equation
�11� has been evaluated for different numbers of particles
�four and ten� at a temperature of T=2 K. The averages F���
of the points of the WF belonging to the same energy interval
� ,�+	� are plotted in Fig. 9. The Bose function with the
chemical potential given by Eq. �15� is clearly approached
by the corresponding average of the WF.

3. Effect of temperature versus level spacing

As a final example we study the effect of the temperature
on the particle distribution and on the agreement between the
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4 paricles
6 particles
8 particles
10 particles
Fermi functions

FIG. 5. �Color online� Average values F��� of the points corre-
sponding to the same energy of the reduced one-particle WF in a
harmonic potential with spring constant k=1.54�108 kg /s2. The
system in the case of N=4,6 ,8 ,10 particles is studied at thermal
equilibrium at a temperature of 2 K. The curves clearly tend to the
FD distribution. In the upper part of the frame the black triangles
indicate the energies corresponding to the eigenstates of the har-
monic potential.
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FIG. 6. �Color online� Average values F��� of the points corre-
sponding to the same energy of the reduced one-particle WF in a 1D
infinite square potential well. In a system with ten particles with
antisymmetric spatial part of the wave function at a temperature of
2 K, the width of the well has been reduced from 150 to 70 nm,
which corresponds to an energy gap increase, from the ninth to the
tenth energy levels, from 3.8 to 17.1 K. When the energy spacing
between the levels is bigger than the thermal energy, the particle
distribution deviates from a Fermi function.
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FIG. 7. �Color online� Average values F��� of the points corre-
sponding to the same energy interval of the reduced one-particle
WF in a harmonic potential. In the case of ten particles with anti-
symmetric spatial part of the wave function the bound constant has
been varied from k=1.54�108 to k=5.69�108 kg /s2 correspond-
ing to an increase of the spacing between the energy levels from 1
to 2 K. When the gap between the energy levels increases and be-
comes bigger than 2 K, the gas temperature, the particle distribution
shows an oscillating behavior superimposed on the Fermi-like
shape.

EFFECT OF SYMMETRY IN THE MANY-PARTICLE… PHYSICAL REVIEW B 76, 214301 �2007�

214301-5



BE distribution functions and the curves obtained by means
of our simulations. For both considered systems �i.e., the
infinite square potential well and the harmonic potential� the
agreement between the Bose distributions and our curves is
improved by an increase of the equilibrium temperature. In
Figs. 10 and 11 the well and the harmonic potential are stud-
ied in the case of ten particles. Our outcomes indicate that,
for temperatures greater than or of the order of the level
spacing, and in the limit of a continuous spectrum of energy
levels, the one-particle reduced WF reproduces the BE dis-
tribution function.

IV. TRANSPORT EQUATION

The dynamical equation for the single-particle WF is de-
rived by differentiating the definition of the WF itself:

�

�t
fW�r,p,t� =� ds e−�i/��sp �

�t
���r +

s

2
,t����r −

s

2
,t�� .

�16�

By means of the Schrödinger equation it is possible to
evaluate the time derivative of the product of the two wave
functions and to obtain the dynamical equation for the WF:4

�

�t
fW�r,p,t� = −

p

m
� fW�r,p,t� +

1

h3 � dp�VW�r,p − p��

�fW�r,p�,t� , �17�

where VW is the interaction kernel for an external potential
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FIG. 8. �Color online� Average values F��� of the points corre-
sponding to the same energy interval. The case of a one-particle
reduced WF of a system of N particles with symmetric spatial part
of the wave function, at thermal equilibrium �T=2 K�, in a 1D
infinite square well potential is considered. Since the energy de-
pends only upon the momenta of the bosons, the average F���
corresponds to the integral over the position variable �x�. The width
of the well has been fixed to 150 nm. In the upper part of the frame,
the black triangles indicate the energies corresponding to the eigen-
states of the well.
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FIG. 9. �Color online� Average values F��� of the points corre-
sponding to the same energy of the reduced one-particle WF in a
harmonic potential with spring constant k=1.54�108 kg /s2. The
system in the case of N=4 and 10 particles with symmetric spatial
part of the wave function is studied at thermal equilibrium at a
temperature of 2 K. The curves tend to the BE distribution. In the
upper part of the frame, the black triangles indicate the energies
corresponding to the eigenstates of the harmonic potential.

0 0.5 1 1.5 2 2.5 3 3.5 4
ε [Kelvin]

0

1

2

3

4

5

6

7

8

F
(

ε
)

WF, T = 16 K
WF, T = 6 K
WF, T = 1 K
Bose functions

FIG. 10. �Color online� Average values F��� of the points cor-
responding to the same energy of the reduced one-particle WF in a
1D infinite square potential well 150 nm wide. The system in the
case of N=10 particles with symmetric spatial part of the wave
function is studied at thermal equilibrium at a temperature varying
from 1 to 16 K. The agreement between our curves and the BE
distribution functions clearly improves as the temperature increases.
In the upper part of the frame, the black triangles indicate the en-
ergies corresponding to the eigenstates of the well.
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FIG. 11. �Color online� Average values F��� of the points cor-
responding to the same energy of the reduced one-particle WF in a
harmonic potential with spring constant k=1.54�108 kg /s2. The
system in the case of N=10 particles with symmetric spatial part of
the wave function is studied at thermal equilibrium at a temperature
varying from 1 to 9 K. The agreement between our curves and the
BE distribution functions clearly improves as the temperature in-
creases. In the upper part of the frame, the black triangles indicate
the energies corresponding to the eigenstates of the harmonic
potential.
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V�r�. Note that the interaction term, given by

VW�r,p� =
1

i�
� ds e−�i/��ps�V�r +

s

2
� − V�r −

s

2
��

�18�

depends on the values of V at points different from r. How-
ever, while the nonlocality of VW extends to infinity, its effect
on the particle dynamics has to be considered only up to

regions where the electron correlation is different from zero.

A. Particle-particle scattering

Let us study the transport equation for particle-particle
scattering. In the case where no phonons nor external forces
are present, the potential V�r1 ,r2 , . . . ,rN� is taken to be a
Coulomb-like interaction and the transport equation thus
reads

�

�t
fW�r1,p1, . . . ,rN,pN,t� = − �

l

pl

m
�rl

fW�r1,p1, . . . ,rl,pl, . . . ,rN,pN,t� +
1

�3�
i

�
j
� dpi�dp j�	��pi + �p j�VW��ri − r j�,�pi

− �p j� � fW�r1,p1, . . . ,ri,pi�, . . . ,r j,p j�, . . . rN,pN,t� , �19�

where VW is the potential kernel of the Wigner equation and �p=p−p�. As done before, in order to get a better understanding
of the above equation, the kernel that describes the particle-particle interaction is studied for N=2:

VW�r1,r2,p1,p2� =
1

i�
� ds1ds2e−�i/���p1s1+p2s2� � �V�r1 +

s1

2
,r2 +

s2

2
� − V�r1 −

s1

2
,r2 −

s2

2
�� . �20�

Since the Coulomb interaction depends only upon the distance between the two particles, it is useful to rewrite the above
equation using the new variables x=r1−r2, s=s1−s2, and s�= �p1s2+p2s1� / �p1+p2�:

VW�r1,r2,p1,p2� =
1

i�
� ds ds�e−�i/���p1+p2�s�e−�i/���p1−p2�s�V�x +

s

2
� − V�x −

s

2
��

=
�3

i�
	�p1 + p2� � ds e−�i/���p1−p2�s�V�x +

s

2
� − V�x −

s

2
�� = �3	�p1 + p2�VW�r1 − r2,p1 − p2� . �21�

Thus the factor 	��pi+�p j� appearing in Eq. �19� repre-
sents the constraint for the total momentum conservation,
while the difference ��pi−�p j� indicates that the interaction
depends only upon the momentum transfer between particles
i and j.

When the one-particle reduced WF in the case of N par-
ticles is evaluated, Eq. �19� reads

�

�t
fW

�N��r,p,t� = −
p

m
�rfW

�N��r,p,t� +
1

�3 � d �dp�� dp�

�VW��r − ��,2�p�fW
�N��r,p�,�,p�,t� , �22�

where r and p are the position and the Wigner momentum of
the considered particle and, � and p� indicate the position
coordinates of one of the remaining N−1 particles. It should
be noticed that all the particles are interacting with each
other, but, due to their indistinguishability, all the contribu-
tions are identical and sum up to balance the factorials ap-
pearing in Eq. �2�. The above expression shows that the
transport equation for the reduced one-particle WF depends
on the reduced two-particle WF. When the transport equation
for the reduced two-particle WF is evaluated, the particle-
particle interaction term depends upon the three-particle re-
duced WF, and so on for the transport equation for the other

reduced WFs. It is the Wigner picture of the BBGKY hier-
archy.

When the WF is written in terms of antisymmetric single-
particle wave functions, as we have seen in Eq. �5�, two
types of contributions can be identified. It is then possible to
study how the transport equation reads when only the con-
tributions due to nonoverlapping wave functions are consid-
ered:

�

�t
fW

�N��r,p,t� =
�

�t
�

i

fWi

�N��r,p,t� = −
p

m
�rfW

�N��r,p,t�

+
1

�3�
i
� dp�d�VW��r − ��,2�p�

���
j�i

�� j����2� fWi

�N��r,p�,t� . �23�

In addition to a Liouvillian contribution, an interaction term
appears where each one-particle contribution interacts with
all the others as in the Hartree approximation. In the case of
overlapping wave functions also the other kind of contribu-
tions 	as studied in Eq. �5�
 must be considered, and the
exchange term is restored.
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B. Electron-phonon scattering for the two-electron WF

If two electrons are interacting with the phonon gas, the
state of the system is described by the electron state and the
state of the crystal vibrations. A proper basis set in this case
can be

�r1,r2,�nq� , �24�

where �nq� is the set of occupation numbers of the phonon
modes q. In this case the electron-phonon �e-ph� interaction
Hamiltonian is

Hep = �
q

i�F�q�	aq�eiqr1 + eiqr2� − aq
†�e−iqr1 + e−iqr2�
 ,

�25�

where aq and aq
† are the annihilation and creation operators

for the phonon mode q, with frequency �q and F�q� is a real
function that depends on the e-ph interaction mechanism. In
this case the e-ph interaction term for the dynamical equation
for two electrons is made out of eight terms as follows:

� �

�t
fW�

ep

= �
q�

F�q���ei	q�r1−�q��t−t0�
�nq� + 1fW�r1,p1 −
�q�

2
,r2,p2,�. . . ,nq� + 1, . . . �,�nq��,t� − e−i	q�r1−�q��t−t0�
�nq�

�fW�r1,p1 +
�q�

2
,r2,p2,�. . . ,nq� − 1, . . . �,�nq��,t� + e−i	q�r1−�q��t−t0�
�nq�

� + 1

�fW�r1,p1 −
�q�

2
,r2,p2,�nq�,�. . . ,nq�

� + 1, . . . �,t� − ei	q�r1−�q��t−t0�
�nq�
�

�fW�r1,p1 +
�q�

2
,r2,p2,�nq�,�. . . ,nq�

� − 1, . . . �,t� + o.p.� , �26�

where r1 ,p1 ,r2 ,p2 are the Wigner phase-space coordinates
of the two particles. In the above equation, o.p. stands for
other particle and indicates the four terms where r2 replaces
r1 in the exponential factors and p2 undergoes a variation of
�q� /2 while p1 remains unchanged.

The eight terms appearing on the right-hand side �RHS�
of the above equation have simple physical interpretations:
the e-ph interaction occurs as emission or absorption of a
quantum of any mode q and this may appear in the state on
the left or on the right of the bilinear expression that defines
the WF. Each elementary interaction or vertex changes only
one of the two sets of variables of the WF; more precisely,
one of the occupation numbers nq is changed by unity and
one of the electron momenta is changed by half of the pho-
non momentum.

In analogy with the Chambers formulation16 of the clas-
sical kinetic equation, it is possible to introduce new vari-
ables �ri

* ,pi
* , t*� that allow us to obtain an integral form of

the dynamical equation for the WF. This integral equation is
in a closed form and can be solved by iteratively substituting
it into itself, leading to what is known as its Neumann ex-
pansion.

Equation �26� gives eight terms for the contribution of the
first order of the Neumann expansion, 64 terms for the con-
tribution of the second order, and so on for the higher-order
terms. In order to obtain meaningful physical quantities,
however, the trace over the phonon modes must be per-
formed, leading to a vanishing contribution for each term
corresponding to an odd order in the Neumann expansion.8

Only terms with an even number of vertices give diagonal
�in the phonon modes� contributions different from zero.

As stated before, the second order in the Neumann expan-
sion gives 64 terms. Among these, 32 yield contributions
diagonal in the phonon modes and survive to the trace op-
eration, 16 terms refer to one particle and 16 to the other. For
each particle eight terms are the complex conjugate of the
other eight and can be summed together, leading to eight
contributions for each particle. Among these it is possible to
recognize four standard interactions undergone by each par-
ticle: real emission, real absorption, virtual emission, and
virtual absorption.

The main difference from the single-particle case lies in
the eight �four for each particle� remaining terms. In the
two-particle case the phonon occupation number can be
changed, in the first or second set of values in the arguments
of the WF, not just by one electron losing �gaining� a Wigner
momentum equal to half the phonon momentum in each of
the two vertices8 but also by the action of two electrons. One
electron loses or gains half the phonon momentum in the first
vertex and another electron loses or gains half the phonon
momentum in the second vertex. Since we are dealing with
identical particles, we do not know which electron interacts
with the phonon bath in the first or in the second vertex.
These four terms are real or virtual emissions or absorptions
where the interaction with the phonon bath is shared between
the two electrons.

It should be recalled that the p variable of the WF is
obtained as a linear combination of two electron momenta. A
specific value p̃ is obtained as p̃=��k1+k2� /2 where k1 and
k2 range from −� to +�. For this reason the Wigner momen-
tum undergoes a change corresponding to half of the phonon
momentum at each interaction vertex.
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In Fig. 12, by means of the Keldysh-diagram formalism,
two of the coparticipating graphs are shown: a real phonon
emission due to electron-electron cooperation and a virtual
emission, respectively. In each case both the Keldysh dia-
gram representing the transition and the corresponding
Wigner path8 undergone by the two electrons are shown.
Since the Keldysh diagrams are in the density matrix �DM�
representation, four timelines appear, two for each electron.
The first and the third lines correspond to the first wave
function of the DM while the other two correspond to the
second wave function. In the upper box at time t= t1 one
electron in the first wave function of the DM emits a phonon
and at time t= t2 another electron in the second wave func-
tion emits the same phonon.

In the lower box of Fig. 12 at time t= t2 an electron ab-
sorbs the phonon emitted at t= t1, corresponding to a virtual
emission.

V. CONCLUSION

We have developed a model based on the WF formalism
that allows us to introduce the symmetry effect in a system
where particles interact with each other and with the phonon
bath. We have shown how this formalism can be useful by
applying it to different situations: the study of particle-
particle scattering, of the thermal distribution of N particles
in confining potentials, and of the two-electron dynamics in
the presence of electron-phonon scattering. One of the main
results of this work is that the FD and BE distribution func-
tions are reasonably reproduced using in the Wigner phase

space the classical energy p2 /2m+V�r�. The agreement im-
proves as the spacing between the energy levels decreases.
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APPENDIX

The study of the thermal equilibrium of a system of N
particles in a confining potential, by means of the many-
particle WF, has shown 	see Eqs. �7� and �10�
 that the one-
particle reduced WF can be written as a linear combination
of the product of the single-particle wave functions of the
eigenstates of the potential.

By means of the normalization condition, we prove that,
when the WF is written in terms of Eqs. �7� and �10�, it is
possible to isolate N−1 summations that correspond to the
average occupation number �n̄s� of the sth energy eigenstate,
as defined in the study of quantum statistics of an ideal gas in
Ref. 15. In the limit of a continuous spectrum of energy
levels, the average number of particles n̄s can be shown to
reproduce the FD or the BE distribution function, according
to the specific symmetry of the wave function. Moreover, we
show that the many-particle WF can be written as a linear
combination of the single-particle WFs of the eigenstates of
the potential, and that the weights of such linear combination
coincide with the average occupation numbers n̄s.

Following Ref. 15 the average number of particles in a
given energy level is defined as

n̄s =
1

Z�
R

nse
−�1/kBT��R, �A1�

where Z is the partition function and is defined as

Z = �
R

e−�1/kBT��R. �A2�

The summation is extended over all the allowed configura-
tions R having energy �R. In the first equation ns is the num-
ber of particles in the sth level for a particular configuration.
For a given configuration the argument of the summation
reads

nse
−�1/kBT��n1�1+n2�2+¯+nN�N�, �A3�

where �i is the energy of the ith eigenstate occupied by ni
particles. Summing the average number of particles occupy-
ing the sth state �n̄s� over all the eigenstates, the total number
�N� of particles is obtained. Thus

�
s

�
R

nse
−�1/kBT��R = NZ . �A4�

Let us now consider the N-particle WF; for the sake of
clarity we study the one-dimensional case. We start from the
normalization condition for the WF:

FIG. 12. Real emission of a phonon mode in mutual participa-
tion by two electrons. One electron e1 changes its Wigner momen-
tum by half of the phonon momentum at time t= t1 and the other
electron e2 does the same at a later time t= t2 �upper box�. Virtual
emission occurs where one electron lose a Wigner momentum equal
to half the momentum of the phonon while the other electron gains
the same amount �lower box�.
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1

hN � dx1dp1 ¯ dxN dpNfW�x1,p1, . . . ,xN,pN� = N;

�A5�

then we consider the N-particle WF written in second quan-
tization as given by Eqs. �7� and �10�. In Eq. �A5�, perform-
ing the integral over the variable pi, a Dirac delta function
	�si� is obtained for every particle i:

1

h
� dpie

−�i/��pisi = 	�si� . �A6�

Then, performing the integral over all the variables si, each
one-particle wave function �ni�

�xi+s1 /2� and �ni�
� �xi−s1 /2� is

evaluated at the point xi:

� dsi	�si��ni��xi +
si

2
��ni�

� �xi −
si

2
� = �ni�

�xi��ni�
� �xi� .

�A7�

Finally, for each particle, the integral over the variable xi
gives a Kronecker delta function 	ni�ni�

since the one-particle

wave functions �ni�
and �ni�

� are eigenstates of the confining

potential:

� dxi�ni�
�xi��n�si

� �xi� = 	ni�ni�
. �A8�

The normalization condition can now be written as

1

hN � dx1dp1 ¯ dxNdpNfW�x1,p1, . . . ,xN,pN�

=
1

Z�
n1�

¯ �
nN�

�
n1�

¯ �
nN�

�0�ĉn1�
¯ ĉnN�

ĉnN�
† . . . ĉn1�

† �0

�e−�1/kBT���n1�
+¯+�nN�

�	n1�n1�
¯ 	nN�nN�

�A9�

Using Eq. �A5� and the Kronecker 	’s to perform the sum-
mations over the indices ni�, the normalization condition be-
comes

NZ = �
n1�

¯ �
nN�

e−�1/kBT���n1�
+¯+�nN�

�

� �0�ĉn1�
¯ ĉnN�

ĉnN�
†
¯ ĉn1�

† �0 . �A10�

Recalling Eq. �A4�, the following identity is achieved

�
s

�
R

nse
−�1/kBT��R = �

n1�

. . . �
nN�

e−�1/kBT���n1�
+¯+�nN�

�

� �0�ĉn1�
. . . ĉnN�

ĉnN�
† . . . ĉn1�

† �0 .

�A11�

The summations �n1�
and �s are both summations over all

the states of the confining potential; thus it is possible to
change the index s to n1� to obtain the relation

�
n1�

�
R

nn1�
e−�1/kBT��R = �

n1�

¯ �
nN�

e−�1/kBT���n1�
+¯+�nN�

�

� �0�ĉn1�
. . . ĉnN�

ĉnN�
† . . . ĉn1�

† �0

�A12�

and

n̄n1�
Z = �

R

nn1�
e−�1/kBT��R = �

n2�

. . . �
nN�

e−�1/kBT���n1�
+. . .+�nN�

�

� �0�ĉn1�
. . . ĉnN�

ĉnN�
† . . . ĉn1�

† �0 . �A13�

The above equation tells us that the distribution functions
for bosons and for fermions can be obtained not only with
Eq. �A1� but also as

n̄n1�
=

1

Z�
n2�

. . . �
nN�

e−�1/kBT���n1�
+¯+�nN�

�

� �0�ĉn1�
. . . ĉnN�

ĉnN�
† . . . ĉn1�

† �0 , �A14�

where N−1 summations appear and all the summations are
extended over all the states of the confining potential. It is
the matrix element �0 � ¯ �0 that selects the allowed configu-
rations and provides the right number of particles for a given
configuration. The one-particle reduced WF is obtained by
performing the integrals over the Wigner variables of N−1
particles. Therefore, using Eqs. �7� and �10� and N−1 times
Eqs. �A6�–�A8�, the one-particle reduced WF reads

fW
�N��x1,p1� =

1

Z�
n1�

�
n1�

�
n2�

¯ �
nN�

��0�ĉn1�
ĉn2�

¯ ĉnN�
ĉnN�

†
¯ ĉn2�

† ĉn1�
† �0

�e−�1/kBT���n1�
+¯+�nN�

� � ds1e−�i��p1s1

��n1��x1 +
s1

2
��n1�

† �x1 −
s1

2
� . �A15�

In the above equation, the mean value �0 � ¯ �0 is equal to
zero if n1��n1�, and is equal to the RHS of Eq. �A14� other-
wise. Substituting Eq. �A14� into �A15� the one-particle re-
duced WF reads

fW
�N��x1,p1� = �

n1�

n̄n1�
fWn1�

�x1,p1� . �A16�
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