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Chapter

A Primer on Machine Learning
Methods for Credit Rating
Modeling
Yixiao Jiang

Abstract

Using machine learning methods, this chapter studies features that are important
to predict corporate bond ratings. There is a growing literature of predicting credit
ratings via machine learning methods. However, there have been less empirical stud-
ies using ensemble methods, which refer to the technique of combining the prediction
of multiple classifiers. This chapter compares six machine learning models: ordered
logit model (OL), neural network (NN), support vector machine (SVM), bagged
decision trees (BDT), random forest (RF), and gradient boosted machines (GBMs).
By providing an intuitive description for each employed method, this chapter may
also serve as a primer for empirical researchers who want to learn machine learning
methods. Moody’s ratings were employed, with data collected from 2001 to 2017.
Three broad categories of features, including financial ratios, equity risk, and bond
issuer’s cross-ownership relation with the credit rating agencies, were explored in the
modeling phase, performed with the data prior to 2016. These models were tested on
an evaluation phase, using the most recent data after 2016.

Keywords: machine learning, credit ratings, forecasting, random forest, gradient
boosted machine

1. Introduction

An issue of continuing interest to many financial market participants (portfolio
risk managers, for example) is to predict corporate bond ratings for unrated issuers.
Issuers themselves may seek a preliminary estimate of what their rating might be to
decide the ratio of debt and equity financing. Starting with the seminal works of [1, 2],
pioneering studies in the finance literature use accounting ratios and other publicly
available information in reduced-form models to predict credit ratings. A variety of
statistical techniques (OLS, discriminant analysis, and ordered logit/probit models)
were employed to identify the most important characteristics for predicting ratings.
See, [3–5].

Bond rating is, in a way, a classification problem. There is also a growing literature
of predicting credit ratings via machine learning (ML) methods [6–11]. As can be seen
from Table 1, neural network (NN) and support vector machine (SVM) have been
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widely employed by prior studies. However, there have been less empirical studies
using ensemble methods, which refer to the technique of combining the prediction of
multiple classifiers. This study attempts to fill the void by employing three ensemble
methods to predict credit ratings and contrasting their performance with popular
single-classifier ML methods.

The two popular methods for creating accurate ensembles are bootstrap aggregat-
ing, or bagging, and boosting. Previous works in the statistics and computer science
literature have shown that these methods are very effective for decision trees (DT)1,
so this chapter considers DT as the basic classification method. [11] employs the
random forest (RF) to predict enterprise ratings in Taiwan. To date, no comparative
study has been carried out for the United States with any ensemble methods to our
knowledge. Other than RF, this study also employs two additional ensemble methods:
bagged decision trees (BDT) and gradient boosted machine (GBM).

This study is also the first to explore the predictive power of conflicts of interest in
forecasting bond ratings. After the collapse of highly rated securities during the 07–09

Study Rating

Categories

Methods Data Accuracy Predictors Sample

size

Benchmark

Models

[7] 5 SVM,

NN

Bank Ratings �80% 21 Financial

Ratios

265 (US)

+74

(Taiwan)

LR:� 75%

[8] 6 NN Moody’s long

term ratings

on US firms

79% 25 financial

ratios

129 LDA: 33%

[9] 5 SVM Ratings on

commercial

papers in

Korea

67.2% 297 financial

ratios

3017 NN: 59.9%,

MDA: 58.8%,

CBR: 63.4%

[6] 9 SVM International

bank ratings

62.4% 7 financial

ratios, time and

county

dummies

Ordered

Logit: 51.5%,

Ordered

Probit: 50.8%

[11] 3 RF + RST enterprise

credit ratings

in Taiwan

93.4% 21 financial

variable +

distance to

default

2470 RST: 90.3%,

RF + DT:

84%, DT:

83.5%

RF + SVM:

77.8%, SVM:

74.4%

[10] 7 LASSO CDS-based

and equity-

based ratings

84% and

91%

268 financial

factors, market-

driven

indicators, and

macroeconomic

predictors

1298 + 1540 Ordered

Probit:

22% + 49%

Note: SVM = Support Vector Machine. NN = Neural Network. MDA = Multivariate Discriminant Analysis.
RF = Random Forest. RST = Rough Set Theory.

Table 1.
Summary of credit rating predictive studies using machine learning.

1 See, for example, [12–14].
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financial crisis, the role of credit rating agencies (CRAs) as gatekeepers to financial
markets has been scrutinized by academia and regulators at an unprecedented level. A
number of conflicts of interest, including the issuer-pays business model, cross-
ownership [15, 16], non-rating business relationship [17], transitioning analysts [18],
have been identified in the literature as contributing factors to the rating inflation.

The type of conflict of interest under study arises from cross-ownership, meaning
that the bond issuers and the CRA are controlled by common shareholders. Conflicts
of interest between shareholders and managers, at a general level, have a variety of
negative impact on the company [19]. In the context of the rating industry, as noted
by [16], companies invested by Moody’s two large shareholders, Berkshire Hathaway
and Davis Selected Advisors, tend to receive more favorable ratings compared with
others. Based on institutional ownership data, [15] constructed an index to capture
bond issuers’ cross-ownership with Moody’s via all common shareholders and finds
such biases to be more universal.

Motivated by the aforementioned studies, this chapter incorporates several con-
flicts of interest measure from the cross-ownership channel to predict Moody’s ratings
from 2001 to 2017. Since the predictive performance of ML methods is usually
context-dependent, we compare the aforementioned tree-based ensemble methods
(RF, BDT, and GBM) with three other ML models: ordered logit model (OL), neural
network (NN), and support vector machine (SVM). RF presents the best results,
correctly predicting 73.2% ratings out of sample. To improve the interpretability of
“black box” ML models, we use sensitivity analysis to measure the importance and
effect of particular input features in the model output response.

The rest of the chapter is organized as follow. Section 2 describes the empirical
rating data and the features (attributes) under study. Section 3 discusses the three
ensemble ML methods in the context of predicting credit ratings. Section 4 contains
the predictive results and sensitivity analyses, and Section 5 concludes.

2. Data and features

The objective of this chapter is to predict corporate bond ratings assigned by
Moody’s, the leading credit rating agency (CRA) in the United States. The empirical
sample consists of publicly listed companies covered in either Center for Research in
Security Prices (CRSP) or Compustat. Moody’s ratings on bonds issued by these
companies are obtained from Mergent’s Fixed Income Securities Database (FISD).
Since the analysis involves Moody’s shareholders, the sampling period starts from
January 2001, when Moody’s went to public, to December 2017.

2.1 Credit rating outcome

Under Moody’s rating scale, the rating outcome falls into seven ordered categories
with descending credit quality: Aaa,Aa,A,Baa,Ba,B, and C. The first four categories,
from Aaa to Baa, are termed “investment-grade,” whereas the remaining three are
termed “high yield.” The distribution of ratings over time is reported in Table 2. In
2004, about 50% of bonds in the data received investment grade ratings. The propor-
tion of investment grade bonds has been trending up prior to the 07–09 financial
crisis. The fact that nearly 90% of bonds received investment grade rating in 2008
suggests an obvious inflation of ratings. For the purpose of predicting credit ratings, it
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is therefore important to include conflicts of interest measures, which account for this
trend.

A second observation from Table 2 is that the rating outcome is highly skewed
toward the middle. The majority of bonds are rated in A and Baa, and only 2% of
bonds received Aaa or C ratings. This is yet another reason to consider ensemble
methods, which are known to be superior than other ML methods with single
classifiers when applying to highly imbalanced data [20, 21].

2.2 Attributes under study

For each quarter from 2001Q1 to 2017Q4, a total of 20 features/attributes are
obtained from a variety of sources to predict ratings. These features can be broadly
categorized into three groups: (1) financial ratios, (2) equity risk measures, and (3)
the bond issuer’s “connectedness” with Moody’s shareholders.

2.2.1 Financial ratios

We follow [22] and employ the following financial ratios in the analysis: (X1) the
value of the firm’s total assets (log(asset)), (X2) long- and short-term debt divided by
total asset (Book_lev). (X3) Convertible debt divided by total assets (ConvDe_assets),
(X4) rental payments divided by total assets (Rent_Assets), (X5) cash and marketable

Year Aaa Aa A Baa Ba B C Total # of Ratings

2001 6 17 62 125 59 44 2 315

2002 1 8 57 93 52 39 2 252

2003 8 47 67 117 54 98 12 403

2004 3 11 44 94 53 73 8 286

2005 1 21 39 93 51 49 9 263

2006 3 19 69 106 41 41 20 299

2007 6 24 103 95 41 45 4 318

2008 2 29 76 96 21 5 1 230

2009 3 15 97 164 57 73 7 416

2010 7 24 71 134 59 82 20 397

2011 10 17 117 163 33 69 12 421

2012 3 24 134 189 69 89 14 522

2013 12 29 150 218 76 76 15 576

2014 8 20 127 231 59 65 10 520

2015 20 22 178 274 53 46 3 596

2016 26 31 160 278 62 57 1 615

2017 11 31 98 166 41 36 2 385

Total 130 389 1649 2636 881 987 142 6814

Table 2.
Distribution of ratings.
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securities divided by total assets (Cash_assets), (X6) long- and short-term debt divided
by EBITDA (Debt_EBITDA), (X7) EBITDA to interest payments (EBITA_int), (X8)
profitability, measured as EBITDA divided by sales (Profit), (X9) tangibility, mea-
sured as net property, plant, and equipment divided by total assets (PPE_assets),
(X10) capital expenditures divided by total assets (CAPX_assets), (X11) the volatility
of profitability (Vol_profit), defined as the standard deviation of profitability in the
last 5 years divided by the mean in absolute values. The data on the aforementioned
firm-level financial ratios are obtained from the CRSP-Compustat merged database in
Wharton Research and Data Services (WRDS).

There is a distinction between the issuer rating and issue rating for corporate
bonds. The former addresses the issuer’s overall credit creditworthiness, whereas the
latter refers to specific debt obligations and considers the ranking in the capital
structure such as secured or subordinated.2 Since this chapter predicts rating at the
bond level, three bond characteristics are also included: (X12) the log of the issuing
amount (Amt), (X13) a dummy variable indicating whether the bond is senior
(Seniority), and (X14) a dummy variable indicating whether the bond is secured
(Security). The issuing amount affects the maximum financial loss on the investment,
whereas the seniority and security status affect the priority of repayment should a
default occur. Data on these bond characteristics are obtained from FSID along with
the credit ratings.

2.2.2 Equity risk

As noted by [23], equity risk has been accounting for a greater proportion of
variations in credit rating outcomes among the three leading CRAs in the United
States. To obtain measures for a company’s equity risk, we estimate a Fama–French
three-factor model for each issuer in the sample.3 The following measures are then
obtained: (X15) the firm’s beta (Beta), which is the stock’s market beta computed
estimated annually using the CRSP value-weighted index, and (X16) the firm’s idio-
syncratic risk (Idiosyncratic risk), computed annually as the root mean squared error
from the three-factor model.

2.2.3 Cross-ownership with Moody’s

As noted above, conflicts of interest are measured by the “connectedness” (cross-
ownership) between Moody’s and a bond issuer. To characterize the degree of cross-
ownership, I first obtain the list of Moody’s shareholders from Thomson Reuters (13F)
and calculate their ownership stake in Moody’s (the percentage of Moody’s stock that
they hold) for each quarter in the sampling period. Next, I access each shareholder’s
investment portfolio to find out which bond issuers have the same shareholders as
investors. The shareholder’s manager type code (MGRNO) and the firm’s Committee
on Uniform Securities Identification Procedures (CUSIP) number are used to match
the shareholding data with bond issuers.

To summarily characterize the shared-ownership relation between bond issuers
and Moody’s, I employ the following measure, termed Moody-Firm-Ownership-Index

2 The issuer rating usually applies to senior unsecured debt
3 The normal estimation window is set to be 252 days prior to the rating assignment date. For companies

with sparse stock price data, we require at least 126 days.
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(MFOI), proposed by [15]. Suppose Moody’s has j ¼ 1,2,⋯,M shareholders in a given
quarter4, and any subset of those shareholders can invest in an issuing firm. Define

X17ð Þ : MFOIi ¼
X

M

j¼1

bijsj (1)

where sj denotes shareholder j‘s ownership take in Moody’s, and bij denotes bond
issuer i‘s weight in shareholder j‘s investment portfolio. Note that bij ¼ 0 means
shareholder j does not invest in bond issuer i.

In addition to MFOI, three other measures are included as predictors. The first is
the number of common shareholders, defined as

X18ð Þ : Num_SHi ¼
X

M

j¼1

1 bij >0
� �

(2)

The second is the number of large common shareholders (which owns at least 5%
of Moody’s stock), defined as

X19ð Þ : Num_large_SHi ¼
X

M

j¼1

1 bij >0
� �

� 1 sj >0:05
� �

(3)

The last is a dummy variable capturing if the bond issuer is invested by Berkshire
Hathaway, Moody’s leading shareholder for our sampling period.

X20ð Þ : BRKi ¼ 1 bik >0f g, k ¼ Berkshire Hathaway (4)

Berkshire Hathaway is singled out here because it owns significantly more shares
of Moody’s compared with any other large shareholders.

2.3 Descriptive statistics

After combining data from multiple sources, the final dataset consists of 6817
bonds issued by 895 firms. The descriptive statistics for the 20 features/attributes are
reported in Table 3. For asset (X1), EBITDA to interest (X7), profitability (X8),
issuing amount (X12), and seniority (X13), there is a clear positive correlation between
rating categories and the level of these attributes. For others like the Book-leverage
ratio (X2), Debt-to-EBITDA ratio (X6), tangibility-to-asset ratio (X10), volatility of
profit (X11), and idiosyncratic risk (X16), the correlation is negative. For the four
conflicts of interest measures (X17 - X20), they all decrease as the rating drops.

3. Methods

The dataset is split into two subsets based on the timing of the rating: a training set,
which consists of 5814 (85.3% of the total) ratings before 2016, and a holdout set,
which consists of 1000 (14.7%) ratings in 2016–2017. In this section, we discuss the

4 Since all of the variable are time-specific, I drop the time t subscript for notational simplicity
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methodological aspect of three resemble methods—Random Forest (RF), Bagging,
and Gradient Boosted Modeling (GBM)—and how they are implemented. The per-
formances of these methods are compared with three other ML models: Ordered Logit
Regression (OLR), Support Vector Machine (SVM), and Neural Network (NN), based
on the predictive accuracy in the holdout set.

3.1 Decision trees

To understand the resemble method, we must first understand decision trees, the
basic classification procedure upon which the ensemble (or resulting classification) is
based5. For illustrative purpose, consider a sample decision tree that includes categor-
ical outcome Y (credit rating) and three predictor variables: firm asset, leverage, and

Aaa Aa A Baa Ba B C

Financial Ratio

Asset(X1) 11.91 12.13 10.69 9.85 8.68 7.99 7.75

Book_lev (X2) 0.18 0.33 0.29 0.32 0.36 0.46 0.59

ConvDe_asset (X3) 0.00 0.00 0.00 0.01 0.02 0.02 0.04

Rent_asset(X4) 0.01 0.01 0.01 0.01 0.01 0.02 0.02

Cash_asset(X5) 0.28 0.12 0.13 0.08 0.09 0.09 0.09

Debt_ebitda(X6) 1.42 5.45 3.14 3.03 2.90 3.85 6.66

Ebitda_int (X7) 48.64 27.62 20.26 10.82 6.79 4.21 2.50

Profit(X8) 0.31 0.31 0.27 0.23 0.19 0.19 0.24

PPE_asset(X9) 0.22 0.21 0.25 0.32 0.31 0.36 0.46

CAPEX_asset (X10) 0.04 0.04 0.04 0.05 0.05 0.06 0.08

Profit_vol (X11) 0.06 0.06 0.11 0.13 0.19 0.18 0.01

Amt(X12) 13.92 13.11 13.27 13.12 12.84 12.68 12.37

Seniority(X13) 0.99 0.99 0.99 0.98 0.88 0.81 0.82

Secure(X14) 0.01 0.00 0.00 0.01 0.05 0.10 0.06

Equity Risk

Beta(X15) 0.82 1.10 1.00 0.87 1.11 1.33 1.54

Idiosyncratic risk(X16) 0.06 0.07 0.08 0.08 0.12 0.14 0.17

Conflicts of Interest

MFOI � 10,000 (X17) 87.48 59.30 24.32 8.54 2.31 1.11 0.74

Num_SH(X18) 335.41 281.01 269.72 217.16 144.40 101.76 94.87

Num_large_SH(X19) 1.59 1.40 1.18 0.95 0.80 0.74 0.76

BRK(X20) 0.32 0.30 0.06 0.03 0.02 0.01 0.01

Table 3.
Descriptive statistics by rating categories.

5 In this study, we restrict our attention to tree-based resemble methods because decision trees are

extremely fast to train.
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seniority (binary). As displayed in Figure 1, the main components of a decision tree
model are nodes and branches, while the complexity of the decision tree is governed
by splitting, stopping, and pruning.

Nodes There are three types of nodes. (a) A root node, also called a decision node,
represents the most important feature (in this case, the level of log (firm asset)) that
will lead all subdivisions. (b) Leaf nodes, also called end nodes, represent the final
predicted rating outcome based on the sequence of divisions. (c) Internal nodes, also
called chance nodes, represent the intermediate sequence of features that guide the
classification.

Branches A decision tree model is formed using a hierarchy of branches, with the
more important features displayed closer to the root node. Each path from the root
node through internal nodes to a leaf node represents a classification decision
sequence. These decision tree pathways can also be represented as “if-then” rules,
with the left branch denoting the binary condition is met. For example, “if the natural
log of firm asset is less than 13.5 and the leverage ratio is less than 15%, then the bond
is rated as Baa.”

Splitting Measures that are related to the degree of “purity” of the subsequent
nodes (i.e., the proportion with the target condition) are used to choose between
different potential input variables; these measures include entropy, Gini index, clas-
sification error, information gain, and gain ratio. Normally not all potential input
variables will be used to build the decision tree model and in some cases a specific
input variable may be used multiple times at different levels of the decision tree.

Stopping and Prunning An overly complex tree can result in each leaf node 100%
pure (i.e., all bonds have the same rating), but is likely to suffer from the problem of
overfitting. To prevent this from happening, one may grow a large tree first and then
prune it to optimal size by removing nodes that provide less additional information.
One parameter that controls the complexity is the number of leaf nodes.

3.2 Bagging

The decision trees discussed above suffer from high variance, meaning if the
training data are split into multiple parts at random with the same decision tree
applied to each, the predictive results can be quite different. Bootstrap aggregation, or
bagging, is a technique used to reduce the variance of predictions by combining the

Figure 1.
Sample decision tree.
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result of multiple classifiers modeled on different subsamples of the same dataset.
When applying bagging to decision trees, usually the trees are grown deep and are not
pruned. Hence, each individual tree has high variance, but low bias. Averaging hun-
dreds or even thousands of trees can reduce the variance and improve the predictive
performance.

In practice, different subsamples are drawn from the training set with replacement
(See, [24] for a detailed discussion of the bagging sampling approach). Each subsam-
ple has the same size with the training set, but only contains 2/3 of the data of the
original data on average. The number of bootstrapped sample is therefore a
hyperparameter to be tuned. For each bootstrapped sample, we fit a “bushy” deep
decision tree with all 20 features considered at each splitting. Each tree acts as a base
classifier to determine the rating of a bond. The final prediction is done via “majority
voting” where each classifier casts one vote for its predicted rating, then the category
with the most votes is used to classify the credit rating.

3.3 Random forest

Random forest is another ensemble classification method developed by [25]. One
advantage of random forest (RF) over bagging is that it reduces the correlation among
trees by randomizing the number of features. RF combines the bagging sampling
approach of [24] and the random selection of features, introduced independently by
[26, 27], to construct a collection of decision trees with controlled variation. Specifi-
cally, [25] recommends to randomly select m ¼ log 2 pþ 1ð Þ features at any given
splitting, with p being the total number of features, to grow each individual tree.
Moreover, each tree is constructed using a subsample of the training set with
replacement.

For the purpose of illustration, in Figure 2, we consider an RF populated by three
trees that are similar to the one described in Figure 1. Note that the total number of
features is 3. In this case, m ¼ log 2 4ð Þ ¼ 2, so each tree is generated using two fea-
tures. For a bond with firm asset = 12, seniority = yes, and leverage = 12%, the majority
rule returns a predicted rating of Ba category. In practice, the complexity of the
random forest is governed by several hyperparameters, such as the number of trees
and the maximum features at each splitting.

Figure 2.
Sample random forest.
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3.4 Gradient boosting machines

Gradient Boosting Machines (GBMs) are a ensemble method, which recognizes the
weak learners and attempts to strengthen those learners in a recursive manner to
improve prediction. The key difference between GBM and Bagging is that the training
stage is parallel for Bagging (i.e., each tree is built independently), whereas GBM
builds the new tree in a sequential way. Specifically, when the first tree is generated,
the residual errors are calculated and used in the next tree as the target variable. The
predictions made by this last last tree are combined with the previous model’s pre-
dictions. New residuals are calculated using the predicted value and the actual value.
This process is repeated until the errors no longer decreased significantly.

During the prediction stage, bagging and RF simply average the individual pre-
dictions (the “majority rule”). In contrast, a new set of weights will be assigned to
each tree in GBM. The final predicted rating is an weighted average of individual
predictions. A tree with a good classification result on the training data will be
assigned a higher weight than a poor one. There is no consensus regarding to which
method is better than the other; the answer very much depends on the data and the
researcher’s objective. Some scholars have argued that gradient boosted trees can
outperform random forest [28, 29]. Others believe boosting tends to aggregate
the overfitting problem because repeatedly fitting the residuals can capture noisy
information.

4. Results

In this section, we begin by comparing the three aforementioned ensemble
methods (BDT, RF, and GBM) in terms of the out-of-sample predictive accuracy.
Three non-ensemble ML methods, the ordered-logit model, support vector machine,
and neural network, are also evaluated with the same dataset. For each employed
method, we discuss the relevant hyperparameters and how they are tuned empirically.

All ML methods were implemented using the software R. To be specific, BDT and
RF were implemented using the randomForest package. The number of features is
fixed at all 20 for BDT. For RF, each tree randomly selects m ¼ log 2 20þ 1ð Þ ¼ 5
features. GBM is implemented using the package gbm package. For the three non-
ensemble ML methods, ordered-logit model is implemented using the polr function
from theMASS package. Support Vector Machine is implemented via the svm function
from the e1071 package. The neural network is implemented using the neuralnet
package.

4.1 Predictive results

Bagged Decision Tree (BDT) To evaluate the predictive results, we report the
classification matrix in the holdout sample for each employed method. In the case of
BDT, the main hyperparameter needs to be tuned is the number of trees. We run three
BDTs, setting the number of trees to be 200, 500, and 800. It is found the model with
500 trees has the highest predictive accuracy (=69:1%). The full classification matrix
is reported in Table 4. The horizontal dimension represents the true rating received in
the holdout sample, whereas the vertical dimension represents the predicted rating
category. Therefore, the entries on the diagonal line capture the number of ratings
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correctly predicted for a particular category. For example, the numbers in the first
column shall be interpreted as 19 Aaa bonds are correctly classified as Aaa, whereas
four (14) are misclassified into A (Baa).

Random Forest (RF) The next predictive model under evaluation is the Random
Forest. In addition to the bagging technique, RF also randomizes the features set to
further decrease the correlation among the decision trees. As noted above, RF has five
hyperparameters that govern the complexity of the model. To decide these
hyperparameter values, we implement a five-dimensional grid search where every
combination of hyperparameters of interest is assessed. The hyperparameter grid is
generated by

G ¼ m�N � n� p� rf g, where (5)

• m∈ 3,4,5,6,7,8ð Þ is the number of features to consider at any given split.

• N ∈ 1,2,3ð Þ is the minimum number of Nodes in each tree

• n∈ 200,500,800ð Þ is the number of trees in the forest.

• p∈ 0:6,0:8,1ð Þ� (size of the training set) amount of data to generate each tree.

• r ¼ 1=0 (with or without replacement in the sampling).

Consequently, a total of 216 (= 6� 2� 3� 2� 3) specifications of RF are com-
pared in terms of the predictive accuracy in the holdout set. As shown in Table 5, the
best predictive model consists of 500 trees, with each tree generated from the entire
training set (p ¼ 1) with replacement. In each splitting, m ¼ 4 features are randomly
selected. The overall classification accuracy of the holdout data turned out to be 73.2%.
From the classification confusion matrix in Table 6, RF has a reliable predictive
performance in almost all rating categories.

To develop some sense of how RF make prediction, Figure 3 plots one decision tree
from the RF model. There are a total of six attributes used in this particular tree. MFOI

Actual Ratings

Predicted Aaa Aa A Baa Ba B C

Aaa 19 0 0 0 0 0 0

Aa 0 28 8 0 0 0 0

A 4 3 148 15 2 1 0

Baa 14 31 95 390 39 9 0

Ba 0 0 7 22 35 13 0

B 0 0 0 17 27 70 2

C 0 0 0 0 0 0 1

Total 37 62 258 444 103 93 3

Accuracy 69.1%

Table 4.
The classification confusion matrix of BDT with 500 trees in holdout sample.
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and idiosyncratic risk appear to be the two most important attributes. From the
rightmost terminal node, it is almost certain that bonds with MFOI < 1:7 and idiosyn-
cratic risk >0:1 can only receive high-yield ratings (25% Ba +57% B + 10% C = 91% of
high yield), irrespective of other features. This provides a remarkably parsimonious
yet robust decision rule to decide whether a bond is investment grade or not.

Gradient Boosting Machine (GBM) The classification confusion matrix of GBM is
reported in Table 7. The overall predictive accuracy is 64.4%, which is 5 percentage
point lower than BDT and nearly 10 percentage point lower than RF. As noted by
[30], predictive results from Boosting methods are usually more volatile. [14] also
made a conjecture that Boosting’s sensitivity to noise may be partially responsible for
its occasional increase in errors. As such, we recommend to always use RF or BDT for
predicting credit ratings.

Hyperparameters Evaluation

Model ID m N n r p RMSE % of correct prediction

158 4 1 500 TRUE 1 0.259 0.732

5 7 1 200 TRUE 0.6 0.283 0.729

80 4 3 200 TRUE 0.8 0.277 0.728

152 4 3 200 TRUE 1 0.271 0.728

146 4 1 200 TRUE 1 0.262 0.723

176 4 3 800 TRUE 1 0.266 0.723

3 5 1 200 TRUE 0.6 0.285 0.722

170 4 1 800 TRUE 1 0.261 0.722

112 6 1 200 FALSE 0.8 0.263 0.720

86 4 1 500 TRUE 0.8 0.270 0.719

Table 5.
The 10 best RF models from hyperparameters tunning.

Actual Ratings

Predicted Aaa Aa A Baa Ba B C

Aaa 19 1 0 0 0 0 0

Aa 0 38 9 0 0 0 0

A 18 23 171 15 2 0 0

Baa 0 0 78 413 49 16 0

Ba 0 0 0 7 33 20 0

B 0 0 0 9 19 57 2

C 0 0 0 0 0 0 1

Total 37 62 258 444 103 93 3

Accuracy 73.2%

Table 6.
The classification confusion matrix of the best RF in holdout sample.
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Ordered Logistic Regression (OLR) The OLR is a regression model where different

features affect the rating outcome through the logistic transformation. Let Zi ¼ β0 þ
P20

j¼1xijβj be a linear index summarizing the information of the 20 considered features

where the β coefficients are to be estimated from the data. The predicted probability
in OLR for each rating category, k ¼ 1,⋯,7, can be described as Pr Y ik ¼ 1jxið Þ ¼

1
1þ exp Zi�κkð Þ �

1
1þ exp Zi�κk�1ð Þ where κk is a series of threshold point separating the differ-

ent ratings with k0 ¼ �∞ and k7 ¼ ∞. While the model is easier to interpret, it is quite
rigid and cannot accomodate complex nonlinear relationships.

Figure 3.
Decision tree extracted from the RF model.

Actual Ratings

Predicted Aaa Aa A Baa Ba B C

Aaa 0 0 0 0 0 0 0

Aa 0 7 5 0 0 0 0

A 35 28 174 33 6 0 0

Baa 2 27 74 370 40 10 0

Ba 0 0 1 23 32 19 0

B 0 0 4 18 25 61 3

C 0 0 0 0 0 3 0

Total 37 62 258 444 103 93 3

Accuracy 64.4%

Table 7.
The classification confusion matrix of GBM in holdout sample.
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The classification matrix of OLR is reported in Table 8. The overall classification
accuracy is 53.9% for the holdout sample, which is much worse than RF. The model
also fails to correctly predict all 37 Aaa bonds. This is unsurprising: when fitting a
linear trend in the data (OLR belongs to the family of generalized linear model
because the logistic transformation is applied on a linear score function of features),
the fitness is usually worse in the tails of the distribution (Table 9).

Support Vector Machine (SVM) developed by [31] seeks to find the optimal sepa-
rating hyperplane between binary classes by following the maximized margin crite-
rion. When it comes to multiclass prediction where the outcome variables take k

distinct categories, one may induce k k�1ð Þ
2 individual binary classifiers and then use the

majority rule to determine the final predicted outcome. In order to find the separating
hyperplane, SVM uses a kernel function to enlarge the feature space using basis

Actual Ratings

Predicted Aaa Aa A Baa Ba B C

Aaa 0 3 0 0 0 0 0

Aa 23 21 3 0 0 0 0

A 14 18 140 110 2 0 0

Baa 0 20 115 322 69 27 0

Ba 0 0 0 7 17 25 0

B 0 0 0 5 15 38 2

C 0 0 0 0 0 3 1

Total 37 62 258 444 103 93 3

Accuracy 53.9%

Table 8.
The classification confusion matrix of OLR in holdout sample.

Actual Ratings

Predicted Aaa Aa A Baa Ba B C

Aaa 26 1 0 0 0 0 0

Aa 0 8 8 3 0 0 0

A 11 34 189 58 11 0 0

Baa 0 7 59 348 39 7 0

Ba 0 0 0 6 31 12 0

B 0 12 2 29 22 70 3

C 0 0 0 0 0 4 0

Total 37 62 258 444 103 93 3

Accuracy 67.2%

Table 9.
The classification confusion matrix of SVM in holdout sample.
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functions. Mathematically, SVM can be viewed as the following constrained maximi-
zation problem,

min α

1

2
αTQα� eTα (6)

s:t 0≤ α≤Ce, yTα ¼ 0 (7)

where e is the vector of all ones, Q is a N �N semi-positive definite matrix, Q ij ¼

yiyjK xi, xj
� �

with K being the kernel function.

This chapter follows [9] and employs the radial basis function (RBF):

k xi, xj
� �

¼ exp �γ xi � xj
�

�

�

�

2
n o

, where γ and C are hyperparameters to be selected. A

series of SVMs with C ¼ 2c and γ ¼ 2g are implemented. Based on a 10-fold cross-
validation, the best parameters are C ¼ 32 and γ ¼ 0:25. The overall classification
accuracy turns out to be 67.2% for SVM, which lies between ORL and RF.

Neural Network (NN) The artificial neural network (NN) models are proposed by
cognitive scientists to mimic the way that brain processes information. As noted by
[32], NN can be viewed as a nonlinear regression model in the following form,

f x, θð Þ ¼ ~x0αþ
X

q

s

G ~x0γsð Þβs (8)

where ~x ¼ 1, x0ð Þ0, q is a integer representing the number of hidden neurons, and
G �ð Þ is a given nonlinear activation function. NN processes information in a hierar-
chical manner: the signals from an input node xj (i ¼ 1,⋯,20) are first amplified or
attenuated by γjs and arrive at q hidden (intermediate) nodes. The aggregated signals,

in the form of tildex0γs, are then passed to the seven output nodes (e.g., the potential
rating outcome) by the operation of the activation function G ~x0γsð Þ. As in the previous
step, information at the hidden node s is amplified or attenuated by βs. Other than
through hidden nodes, signals are also allowed to affect the rating outcome directly
through weights α.

For simplicity, this study focuses on a three-layer NN and varies the number of
nodes in the hidden layer for training. In particular, 5, 10, 15, 20 hidden nodes are
used. For each case, we run the same model with 50 replications to tease out the
impact of bad starting values. In terms of the predictive accuracy, we find that the
model with five hidden nodes slightly outperforms the rest (57.3, 56.4, 56.3, and
55.4%). In Table 10, we report the classification matrix for one of the NN models,
with the network structure presented in Figure 4.

4.2 Sensitivity analysis

To explore which features are more important than others in predicting ratings, we
performed two sensitivity analyses. While the analyses can be applied to any afore-
mentioned ML methods, we decide to focus on RF due to its superior predictive
performance.

The first analysis is the variable importance plots (VIP). Loosely speaking, variable
importance is the increase in model error when the feature’s information is
“destroyed.” On the left panel of Figure 5, we show the impurity-based measure
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where we base feature importance on the average total reduction of the loss function
for a given feature across all trees. On the right panel, we show the permutation-based
importance measure6. A feature is “important” if shuffling its values increases the
model error, because in this case the model relied on the feature for the prediction.

Actual Ratings

Predicted Aaa Aa A Baa Ba B C

Aaa 11 3 3 0 0 0 0

Aa 0 7 5 0 0 0 0

A 26 51 171 73 2 0 0

Baa 0 1 79 319 47 9 0

Ba 0 0 0 19 21 12 0

B 0 0 0 33 33 71 2

C 0 0 0 0 0 0 1

Total 37 62 258 444 103 93 3

Accuracy 60.1%

Table 10.
The classification confusion matrix of NN in holdout sample.

Figure 4.
NN with five hidden nodes (A darker line means a stronger signal).

6 In the permutation-based approach, the values for each variable are randomly permuted, one at a time,

and the accuracy is again computed. The decrease in accuracy as a result of this randomly shuffling of

feature values is averaged over all the trees for each predictor [33].
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Both measures consistently identify the two most important attributes to be MFOI and
the idiosyncratic risk of the bond issuer’s stock. Eliminating the information contained
in MFOI, from the permutation-based metric, decreases the predictive accuracy by
about 20%.

The second sensitivity analysis is to compute the Partial Dependence (PD) for
important attributes. To describe the notion of partial dependence, let X ¼
x1, x2, ⋯, x20f g represent the set of the predictor variables in the RF model where the

prediction function is denoted by f̂ Xð Þ. The “partial dependence” of x1, for example, is
defined as

PD x1ð Þ ¼
∂

∂x1
Ex1 f̂ x1, xcð Þ

h i

¼
∂

∂x1

ð

f̂ x1, xcð Þpc xcð Þdxc (9)

where Xc ¼ x2, x3, ⋯, x20f g denote the other predictors and pc xcð Þ is the marginal

probability density of xc : pc xcð Þ ¼
Ð

p Xð Þdxc. This quantity, which resembles a mar-
ginal effect, can be estimated from a set of training data by

P̂D x1ð Þ ¼
1

n

X

i

∂

∂x1
f̂ x1, xc,ið Þ (10)

where xc,i are the values of xc that occur in the training sample; that is, we average
out the effects of all the other predictors in the model. In Figure 6, we report the PDs

Figure 5.
Variable importance plot of each attribute for the RF model. Note: the figure on the left (right) ranks importance
based on the Gini-impurity (permutation).

17

A Primer on Machine Learning Methods for Credit Rating Modeling
DOI: http://dx.doi.org/10.5772/intechopen.107317



for MFOI and idiosyncratic risk separately. From the left panel, a lower value of MFOI
has a negative impact on the rating outcome. As MFOI goes above 50, it starts to affect
the rating in a positive way (a higher degree of connectedness between Moody and the
issuer firm, as measured by MFOI, translates to a higher predicted rating). The
positive impact of MFOI increases with the level of MFOI and plateaues as MFOI goes
above 150, which is about the 99 percentile of its distribution. Conversely, we see that
a larger idiosyncratic risk has a more deteriorating impact on ratings. Both patterns
are economically sounding. Figure 7 represents the joint PD for MFOI and

Figure 6.
Partial dependence plot for MFOI and idiosyncratic risk from the RF model. Note: The black line depicts the PD at
specific values of MFOI/idiosyncratic risk. The blue line is the fitted value.

Figure 7.
Joint partial dependence plot for MFOI and idiosyncratic risk.
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idiosyncratic risk. The negative impact of idiosyncratic risk is only pronounced when
MFOI is low.

4.3 Discussion

The main message emerged from our empirical exercise is that conflicts of interest,
as measured by bond issuer’s connection with Moody’s shareholders, have a strong
predictive power in the credit rating outcome. This observation is consistent with
several previous studies. [16] found that Moody’s has been assigning more favorable
ratings (relative to that of S&P’s) to issuers related to its two largest shareholders—
Berkshire Hathaway and Davis Selected Advisors. [23, 34] showed that such bias is
more universal and apply to issuers associated with any large shareholders of Moody’s.

Although cross-ownership has been recognized in the literature as a important
driver of credit ratings, it has not been explicitly considered as a predictor variable in
any prior studies that focus on prediction. This study complements the above by
confirming that cross-ownership can be utilized to increase the predictability of credit
ratings.

5. Conclusions

In this chapter, we employ six machine learning methods to predict bond ratings
from a sample of US public firms. Other than the financial ratios employed by previ-
ous studies, this chapter expands the feature sets to include equity risk measures and
the bond issuer’s cross-ownership relation with the rating agency. Inclusion of the
latter source of information is unprecedented.

Several observations/conclusions emerge from the analysis. (1) Ensemble
methods, including the Random Forest, Bagged Decision Trees, and Gradient
Boosting Machines, generally outperform the ML methods with a single classifier. (2)
Among the three ensemble methods, random forest shows a significantly better per-
formance than the other (correctly predicting 5% more bonds than bagging and 10%
more bonds than boosting). (3) Sensitivity analyses reveals the firm’s idiosyncratic
risk and cross-ownership relation with the rating agency as the two most important
attributes in predicting ratings.
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