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Chapter

Efficient Simulation Tools (EST)
for Sediment-Laden Shallow Flows
Sergio Martínez-Aranda and Pilar García-Navarro

Abstract

Rapid flows of water-sediment mixtures are probably the most challenging and
unknown geophysical gravity-driven processes. The fluidized material in motion
consists of a mixture of water and multiple solid phases with different specific
characteristics. Modeling sediment transport involves an increasing complexity
due to the variable bulk properties in the sediment-water mixture, the coupling
of physical processes, and the presence of multiple layer phenomena. Two-
dimensional shallow-type mathematical models are built in the context of free
surface flows and are applicable to most of these geophysical surface processes.
Their numerical solution in the finite volume framework is governed by the
dynamical properties of the equations, the coupling between flow variables and the
computational grid. The complexity of the numerical resolution of these highly
unsteady flows and the computational cost of simulation tools increase consider-
ably with the refinement of the non-structured spatial discretization, so that the
computational effort required is one of the biggest challenges for the application of
depth-averaged 2D models to large-scale long-term flows. Throughout this chap-
ter, the combination of 2D mathematical models, robust numerical methods, and
efficient computing kernels is addressed to develop Efficient Simulation Tools
(EST’s) for environmental surface processes involving sediment transport with
realistic temporal and spatial scales.

Keywords: sediment-laden flows, depth-averaged rheological models, bed-material
entrainment, shallow flow models, GPU high-performance-computing

1. Introduction

Sediment transport is ubiquitous in environmental water bodies such as rivers,
floods, coasts and estuaries, but also is the main process in natural ladslides, debris
flows, muddy slurries or mining tailings (Figure 1). These are considered highly solid-
laden fluids, where the density of the water-solid mixture can be more than twice or
three times the water density and the bulk solid phase represents about 40–80% of the
flow volume [1].

The presence of the solid phases, especially the fine material as silt or clay, affects
the rheological behavior of the mixture. The water-sediment mixture rheology begins

1



to be affected by fine solid particle transported in the flow when the volumetric
concentration of fine sediment particles reaches about 4% by volume [2], creating a
slight shear strength within the fluid. For higher concentrations, the mixture shows a
marked non-Newtonian rheology. Mud and debris flows lie between hypercon-
centrated flows and wet avalanches [3]. High concentrations of solids generate a
critical yield stress which allows that gravel particles can be suspended indefinitely
into the fluidized material.

The mass exchange between mud/debris mixtures and erodible beds involves
complicated physical processes and the understanding of its theoretical basis remains
unclear. Experiments in large-scale channel [4, 5] and field observations in real debris
events [6, 7] indicate that the entrainment volume in steep beds can be in the same
order of magnitude as the initial volume mobilized. Debris and mud flows gain much
of their mass and momentum as they move over steep slopes as a consequence of the
material entrainment from the erodible bed, before deposition begins on flatter ter-
rain downstream.

The mathematical modeling of solid-liquid mixture flows and their numerical
resolution is still a challenging topic, especially when dealing with realistic appli-
cations. When liquid and solid phases are well-mixed, assuming that the solid
phase is distributed uniformly over the flow column allows the use of depth-
averaged models derived from the vertical integration of the Navier-Stokes equa-
tions [8]. Shallow-type mathematical models represent a simplified formulation,
derived from the general 3D Navier-Stokes equations, which is applicable to a large
number of these geophysical surface processes involving sediment transport. The
simplest models, used in river and coastal dynamics, assume small enough sedi-
ment concentrations throughout the flow to consider the bulk density constant and
uniform. Most of the numerical models reported for highly solid-laden flows also
use this one-single-phase approach, neglecting the bulk density in the shallow-flow
mass and momentum equations [9, 10]. Nevertheless, even small density gradients
influence importantly the mixing dynamics in flow confluences [11] and larger

Figure 1.
Geophysical surface flows involving sediment transport.
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gradients can also generate numerical oscillations and instabilities throughout
mixing interfaces.

Modeling sediment transport involves an increasing complexity with respect to
rigid-bed shallow water models [12] due to the presence of variable sediment-fluid
mixture properties, coupling of physical processes and multiple layers phenomena
[13]. One of the biggest challenges for the application of depth-averaged models to
realistic large-scale long-term flows is the computational effort required. New strate-
gies to reduce the computational effort have been developed in the last decade
through the use of parallelization techniques based on Multiprocessing (OpenMP) or
Message Passing Interface (MPI), which allow to run simulations on multi-CPU clus-
ters. Their main drawback is the associated hardware cost and energy requirements,
which are directly proportional to the number of CPU-cores available and limit their
efficiency. In the last years, the usage of Graphics Processing Units (GPU) hardware
accelerators for sequential computation has demonstrated to be an efficient and low
cost alternative to the traditional multi-CPU strategies [14]. GPU-accelerated algo-
rithms have been developed for real-time floods forecasting [15], real-scale bedload
erosive shallow-flows [16] or tsunami prediction [17]. GPU devices are oriented to
perform arithmetical operations on vector-based information. Unlike the conven-
tional shared-memory multi-CPU implementations, the GPU solution must be
designed taking into account the fact that the GPU is an independent device with its
own RAM memory. This means that the memory transfer between the conventional
RAM memory and the GPU device memory plays a key role in the performance of
GPU-accelerated software.

2. Depth-integrated equations for shallow flows

2.1 Mass and linear momentum conservation

The flow of a water-sediment mixture can be mathematically described assuming
the movement of the solid particles as a diffusion phenomenon into the liquid phase.
Then, the continuity and momentum conservation for the mixture, supplemented
with the transport equation for the solid phase, can be established for modeling these
two-phase flows. Although both solid and liquid phases are incompressible when
considered independently, the bulk behavior of the solid-liquid mixture is the same as
that of a compressible material depending on the local solid phase volumetric concen-
tration. It possible to define the bulk density ρ ¼ ρwnþ ρsϕ and linear momentum
ρu ¼ ρwnuw þ ρsϕus of the mixture, being ρw and ρs the density of the fluid and solid
phases, respectively, ϕ the volumetric solid-phase concentration and n ¼ 1� ϕ the
volumetric fluid-phase fraction or mixture porosity, uw the velocity of the pore-fluid
and us the advective sediment particle velocity.

The 3D time-averaged Navier-Stokes equations for mass and momentum
conservation of a two-phase mixture can be written in the Cartesian coordinate
system X ¼ x, y, zð Þ as

∂ρ

∂t
þ ∇ � ρuð Þ ¼ 0 (1)

∂ ρuð Þ
∂t

þ ∇ � ρu⊗uð Þ ¼ F� ∇pþ ∇ � τ (2)
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where u ¼ ux, uy, uz
� �

is the bulk velocity in any point of the fluidized material,

F ¼ Fx, Fy, Fz

� �
are the external forces, such as gravity and p denotes the pressure of

the mixture. The term τ ¼ τij i, j ¼ x, y, zð Þ is the deviatoric stress tensor. With low
solid-phase concentrations, the water-sediment mixture behaves as a Newtonian
fluid, with a constitutive relation given by the Navier-Poisson law [8]. Nevertheless,
for high sediment concentrations the mixture becomes a kind of non-Newtonian fluid
with a complex constitutive law, which depends on multiple factors, relating stresses
and deformation rates.

In order to develop a shallow-type depth-averaged mathematical model, the
Navier-Stokes system (1) and (2) is integrated between the free surface zs ¼ zs t, x, yð Þ
and the bottom surface of the flow column zb ¼ zb t, x, yð Þ, which is also considered a
movable interface. The kinematic conditions at these boundaries can be expressed as

∂zs
∂t

þ uxð Þs
∂zs
∂x

þ uy
� �

s

∂zs
∂y

¼ uzð Þs (3)

∂zb
∂t

þ uxð Þb
∂zb
∂x

þ uy
� �

b

∂zb
∂y

¼ uzð Þb þNb (4)

beingNb the net volumetric flux through the bed interface along the z�coordinate,
being positive for net entrainment conditions and negative for net deposition fluxes.
The subscripts �ð Þs and �ð Þb indicate the value of the corresponding variable at the flow
free surface and the bottom bed interface respectively.

The mass conservation Eq. (1) is integrated along the water column as

ðzs

zb

∂t ρð Þ dzþ
ðzs

zb

∂x uxρð Þ dzþ
ðzs

zb

∂y uyρ
� �

dzþ
ðzs

zb

∂z uzρð Þ dz ¼ 0 (5)

Applying Leibnitz’s rule to each term of (5) and using (3) and (4) leads to

∂ ρhð Þ
∂t

þ ∂

∂x
ρhuð Þ þ ∂

∂y
ρhvð Þ ¼ � ρð ÞbNb (6)

where the depth-averaged of the mixture bulk density ρ and velocities are
defined as

ρh ¼
ðzs

zb

ρdz u ¼ 1

ρh

ðzs

zb

uxρdz v ¼ 1

ρh

ðzs

zb

uyρdz (7)

being h ¼ zs � zb the flow depth and ρð Þb the mixture bulk density at the bed
interface zb.

Regarding the momentum depth integration, the volumetric force components in
(1) and (2) are considered for the sake of simplicity as Fx ¼ Fy ¼ 0 and Fz ¼ �ρg.
Moreover, the z-momentum equation in (2) can be simplified by assuming
shallow-flow scaling and neglecting temporal, convective and stress terms, leading to
a hydrostatic pressure distribution along the flow column.

The x-momentum in (2) is integrated throughout the flow depth in the
following way
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ðzs

zb

∂t ρuxð Þ dzþ
ðzs

zb

∂x uxρuxð Þ dzþ
ðzs

zb

∂y uyρux
� �

dzþ
ðzs

zb

∂z uzρuxð Þ dz

¼ �
ðzs

zb

∂x pð Þ dzþ
ðzs

zb

∂xτxx þ ∂yτxy þ ∂zτxz
� �

dz

(8)

Applying Leibnitz’s rule and considering the kinematic boundary conditions at
both the free surface (3) and the bed interface (4), the left hand side of (8) is
integrated as

∂ ρhuð Þ
∂t

þ ∂

∂x
ρhu2 � ρhDxx

� �
þ ∂

∂y
ρhuv� ρhDxy

� �
þ ρuxð ÞbNb (9)

with Dxx, Dxy

� �
accounting for the depth-averaged dispersion momentum trans-

port due to the non-uniformity of the vertical velocity profile, and defined as

Dxx ¼ � 1

ρh

ðzs

zb

ρ ux � uð Þ2dz (10)

Dxy ¼ � 1

ρh

ðzs

zb

ρ ux � uð Þ uy � v
� �

dz (11)

On the right hand side of (8), using the hydrostatic pressure distribution and
assuming that the vertical density gradient is negligible compared with those along the
horizontal plane, as occurs in natural debris and mud slurry flows, the integral of the
pressure gradient along the x�coordinate can be expressed as

�
ðzs

zb

∂x pð Þdz ¼ �g

ðzs

zb

∂

∂x

ðzs

z

ρdz

0

@

1

Adz ¼ � ∂

∂x

1

2
gρh2

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Conservative term

�gρh
∂zb
∂x

|fflfflfflfflffl{zfflfflfflfflffl}

Bed�pressure term

(12)

separating the pressure gradient term into a conservative component plus a bed-
pressure component.

The stress terms on the right hand side of (8) are also integrated along the flow
column, leading to the final expresion for the depth-integrated momentum equation
along the x�coordinate

∂ ρhuð Þ
∂t

þ ∂

∂x
ρhu2 þ 1

2
gρh2

� �

þ ∂

∂y
ρhuvð Þ ¼ �gρh

∂zb
∂x

þ τsx � τbx

þ ∂

∂x
ρh Txx þDxxð Þð Þ þ ∂

∂y
ρh Txy þDxy

� �� �

� ρuxð ÞbNb

(13)

and, similarly, for the y�coordinate. The boundary stress terms in (13) at the free
surface zs and the bed interface zb are
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τsx ¼ τxzð Þs � τxxð Þs
∂zs
∂x

� τxy
� �

s

∂zs
∂y

(14)

�τbx ¼ � τxzð Þb þ τxxð Þb
∂zb
∂x

þ τxy
� �

b

∂zb
∂x

(15)

where τsx denotes the x�coordinate component of the wind action at the free
surface, whereas τbx represents the x�coordinate component of the boundary shear
stress at the bed interface, opposing to the flow movement. Furthermore, the depth-
integrated stress terms along the flow column Txx, Txy

� �
are defined as

Txx ¼
1

ρh

ðzs

zb

τxxdz Txy ¼
1

ρh

ðzs

zb

τxydz (16)

2.2 Depth-integrated solid transport equation

The solid-phase transport process is governed by

∂ ρsϕð Þ
∂t

þ ∇ � ρsϕusð Þ ¼ 0 (17)

where us ¼ usx, usy, usz
� �

is the local velocity of the solid particles. Because the

solid-phase velocity is not included in the dependent variables of the fluid dynamic
system, and assuming that the sediment particles are incompressible and non-porous,
(17) is rewritten as

∂ϕ

∂t
þ ∇ � ϕuð Þ ¼ ∇ � u� usð Þϕ½ � (18)

where the term on the right hand side accounts for the drag effects caused by the
liquid phase on the advective solid flux. Due to the definition of the bulk linear
momentum of the mixture, this term is usually neglected and the approximation u≈us

is actually assumed.
The transport equation (18) must also be integrated throughout the entire flow

column defining the total solid phase being transported in the flow column as

ϕh ¼
ðzs

zb

ϕ dz (19)

where ϕ is the dept-averaged volumetric solid concentration. Therefore, applying
the Leibnitz’s integration rule to (18) and considering the kinematic boundary condi-
tions at both the free surface (3) and the bed interface (4), the depth-integrated
equation for the solid phase in the flow column reduces to

∂ ϕh
� �

∂t
þ ∂

∂x
ϕhu
� �

þ ∂

∂y
ϕhv
� �

¼ � ϕð ÞbNb þ
∂

∂x
ϕhDsx

� �
þ ∂

∂y
ϕhDsy

� �
(20)

where ϕð Þb denotes the solid concentration in the bed layer surface zb and

Dsx, Dsy

� �
account for the depth-averaged dispersive flux due to the non-uniformity
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of both the velocity and solid concentration profiles throughout the flow column,
defined as

Dsx ¼ � 1

ϕh

ðzs

zb

ρ ux � uð Þ ϕ

ρ
� ϕ

ρ

� �

dz (21)

Dsy ¼ � 1

ϕh

ðzs

zb

ρ uy � v
� � ϕ

ρ
� ϕ

ρ

� �

dz (22)

Furthermore, assuming that the volumetric solid concentration in the bed layer is
1� ξ with ξ denoting the bulk porosity of the bed layer, the solid mass conservation in
the bed layer requires that

1� ξð Þ ∂zb
∂t

¼ ϕð ÞbNb (23)

2.3 Constitutive model for complex viscoplastic flows

So far, there is not a universal closure relation for representing the viscous terms in
complex non-Newtonian flows. Constitutive formulations used for environmental
sediment-water mixtures are mainly derived from 3D general rheological models
which, assuming isotropic material and isochoric flow, allow to express the deviatoric
component of the stress tensor σ in the material as

τ ¼ Φ1 I2Dð ÞD (24)

where D � Dij ¼ 1
2 ∂jui þ ∂iuj
� �

i, j ¼ x, y, zð Þ is the rate of deformation tensor and

Φ1 is a scalar function of the second invariant I2D ¼ 1
2 tr D2
� �

of the rate of deformation
tensor D [18] and depends on multiple factor, such as cohesive stress, pore-fluid
pressure or flow initial regime. The generalized viscoplastic model, also called
Herschel-Bulkley model, assumes dependence of Φ1 on the three parameters: τ0 the
cohesive-frictional yield strength, K a consistency coefficient, and m a parameter
characterizing the rheological response of the mixture [13, 18], known as behavior
index. It is worth mentioning that the dimensions of consistency coefficient K
depends on the behavior index m. Therefore, the function Φ1 is expressed as

Φ1 I2Dð Þ ¼ τ0
ffiffiffiffiffiffiffi
I2D

p þ 2K 4I2Dð Þm�1
2 (25)

Considering simple shear state along the flow direction, the velocity vector
throughout the flow column is expressed as u ¼ U zð Þnux, U zð Þnuy, 0

� �
, where U zð Þ

is the modulus of the bulk mixture velocity and nu ¼ nux, nuy
� �

is the velocity unit

vector. Therefore

D ¼

0 0
1

2

dU

dz
nux

0 0
1

2

dU

dz
nuy

1

2

dU

dz
nux

1

2

dU

dz
nuy 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

I2D ¼ 1

4

dU

dz

� �2

(26)
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Replacing (26) and (25) into (24) leads to

τ ¼
0 0 τ zð Þnux
0 0 τ zð Þnuy

τ zð Þnux τ zð Þnuy 0

0

B
@

1

C
A (27)

being τ zð Þ the shear stress along the flow direction, which depends on the fluid
rheology function (25). For the Newtonian constitutive model, the yield strength τ0 is
null, K Pa � s½ � is the dynamic viscosity of the fluid μ and m ¼ 1. The generalized

model reduces to τ zð Þ ¼ μ dU
dz for viscous Newtonian fluids. A widespread non-

Newtonian constitutive relation for geophysical surface flows in laminar regime is the
Bingham model, which considers a pure cohesive yield stress τ0 ¼ τy for the flow
initiation, K ¼ μB Pa � s½ � the Bingham plastic viscosity and m ¼ 1. In this case, the

generalized model reduces to τ zð Þ ¼ τy þ μB
dU
dz .

The frictional non-linear viscoplastic model considers a Coulomb-Terzaghi linear
relation between the effective normal stress σe zð Þ and the shear stress, hence

τ0 ¼ σe zð Þ tan δf ¼ ρg zs � zð Þ � P zð Þ½ � tan δf (28)

where P zð Þ denotes de pore-fluid pressure and δf accounts for the effective friction

angle bewteen solid particles [19]. Estimation of the pore pressure distribution P zð Þ is
a challenging task [1, 19, 20], although its effects on the reduction of the intergranular
shear stress seem to be demonstrated [5, 21, 22]. The simplest models divide the pore
pressure into a hydrostatic component plus a dynamic additive component
P zð Þ ¼ 1þ Eð Þρwg zs � zð Þ, being ρw the density of the pore-liquid and E a tunning
coefficient which usually takes values from about 0.4 to 0.8.

Using (28), and considering a plastic viscosity K ¼ μP Pa � sm½ �, the generalized
model reduces to

τ zð Þ ¼ σe zð Þ tan δf þ μP
dU

dz

� �m

(29)

Formulation of closure models for the bottom shear stress requires to integrate the
deviatoric stress tensor (24) throughout the flow column. This is not a trivial problem
since the structure of the flow along the vertical direction is lost and only the averaged
quantities are available. Assuming the deviatoric stress tensor (27), all the depth-

averaged stress terms Txx, Txy

� �
and Tyx, Tyy

� �
(16) are null, and

τbx ¼ τxzð Þb � τxxð Þb
∂zb
∂x

� τxy
� �

b

∂zb
∂y

¼ τbnux (30)

τby ¼ τyz
� �

b
� τyx
� �

b

∂zb
∂x

� τyy
� �

b

∂zb
∂y

¼ τbnuy (31)

where τb ¼ τ zbð Þ is the shear stress at the basal interface along the flow direction.
In order to obtain a depth-averaged formulation for the basal shear stress τb, the
distributed shear stress function τ zð Þ must be integrated along the flow column. This
allows to obtain both the velocity distribution along the vertical direction and the
basal resistance τb expressed as a function of the depth-averaged flow variables. If the
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pore-pressure excess in (28) is considered linear, the the constitutive eq. (29) can be
rewritten as

τ zð Þ ¼ τf 1� z� zb
h

� 	

þ μP
dU

dz

� �m

(32)

being τf ¼ ρgh� Pbð Þ tan δf the value of the frictional yield stress at the basal

surface and Pb is the pore-pressure at the bed surface (Figure 2).
Therefore, assuming the induced shear distribution along the flow column follows

τ zð Þ ¼ τb 1� z� zb
h

� 	

(33)

the velocity derivative along the vertical direction can expressed as

dU

dz
¼

τb � τf

μP
1� z� zb

h

� 	
 �1=m

(34)

and integrating (34) leads to the velocity vertical distribution

U zð Þ ¼ m

mþ 1

τb � τf

μP

� �1=m

h 1� 1� z� zb
h

� 	mþ1
m


 �

(35)

for the non-linear viscoplastic model. Note that the velocity at the free surface

U zsð Þ � Uh and the depth averaged velocity U can be expressed as

Uh ¼
m

mþ 1

τb � τf

μP

� �1=m

h U ¼ mþ 1

2mþ 1
Uh (36)

Integrating (35) throughout the flow column allows to obtain the basal shear stress

τb as a function of the flow depth h, the averaged flow velocity U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

and the
basal frictional yield strength τf using

τb ¼ τf þ
2mþ 1

m

� �m

μP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

h

 !m

(37)

Figure 2.
Velocity and stress distribution for the generalized non-linear frictional model.
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It is worth mentioning that (37) represents a generalized depth-integrated formu-
lation for viscoplastic flows (Figure 3) which encompasses: pseudoplastic or shear-
thinning behavior for m< 1, reducing the apparent viscosity as the induced shear rate
increases; linear viscoplastic behavior for m ¼ 1, with a linear relation between shear
stress and shear rate; and dilatant or shear-thickening behavior for m> 1, increasing
the apparent viscosity as the induced shear rate grows.

2.4 Net mass exchange between bed and flow layers

The net volumetric exchange Nb between the underlying bed layer and the mix-
ture flow column at the bed surface zb t, x, yð Þ, appearing in (6), (20) and (23), is
usually modeled as the balance between the entrainment and the deposition vertical
solid fluxes, Eb and Db respectively, leading to

Nb ¼
1

ϕð Þb
Db � Ebð Þ (38)

involving the bed surface solid concentration ϕð Þb ¼ 1� ξ.
The deposition rateDb is commonly related to the solid particles settling velocity in

the mixture ωsm and to the near-bed solid concentration in the flow ϕz!zb
, which is

usually related to the depth-averaged solid concentration in the flow as ϕz!zb
¼ αϕ,

being α an adaptation or recovery coefficient, leading to Db ¼ αωsmϕ.
The settling velocity of the solid particles ωsm in highly concentrated

mixtures is influenced by the presence of other solid particles. Furthermore, in
dense-packed mixtures with moderate plastic fine fractions in the flow column
such as muddy slurries, the particle settling velocity can be strongly reduced by
the development of internal yield stresses in the pore-fluid. Richardson and

Zaki [23] proposed ωsm ¼ 1� ϕ
� �m

ωs, being ωs the settling velocity of the
sediment particles in clear water and m a hindering empirical exponent
depending on the Reynolds particle number ( Re p ¼ ωsds=ν, with ν the clear
water kinematic viscosity) which usually takes values close to m ¼ 4. Therefore

Figure 3.
Basal resistance behavior for the generalized frictional non-linear viscoplastic model.

10

Modeling of Sediment Transport



Db ¼ αDωsϕ 1� ϕ
� �4

(39)

where αD is a dimensionless parameter which accounts for mulple factor and
requires calibration.

The erosion solid flux Eb is directly related to the turbulent fluctuation of the
volumetric solid concentration and flow velocity near the bed surface. We assume that
this near-bed erosion rate is at the capacity of the flow to entrain solid material from
the underlying bed layer, hence it is related to the settling velocity of the particles in
clear water ωs and the near equilibrium concentration ϕ ∗

z!zb
. The near-bed equilibrium

concentration is related to the depth-averaged equilibrium concentration ϕ ∗ as

ϕ ∗
z!zb

¼ α ∗ϕ ∗ , being α ∗ an adaptation coefficient under equilibrium conditions.

When equilibrium solid transport states are reached, the adaptation coefficients α and
α ∗ coincide but in non-equilibrium states α ∗ 6¼ α generally. Therefore, for the sake of
simplicity, we assume that the vertical erosion rate Eb is expressed as

Eb ¼ αEωsϕ
∗ (40)

where αE is a dimensionless empirical parameter which requires calibration. The

capacity solid concentration is usually computed as ϕ ∗ ¼ q ∗
s = h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p� 	

, where q ∗
s

accounts for the value of the solid transport throughout the flow column in capacity or
equilibrium condition, which can be estimated using the multiple empirical relation-
ships from the local hydrodynamic variables [8].

3. Efficient numerical tools for multi-grain mud/debris flows

Considering a multi-grain mixture flow, the resulting system is composed by 3þ
N þ 1 conservation equations accounting for the bulk mass (6) and momentum (13),
the transport of the N sediment classes (20) and the bed elevation evolution (23). The
dimensionless bulk density r can be expressed by defining a new variable ϕχ, referred
to as buoyant solid concentration

r ¼ ρ

ρw
¼ 1þ ϕχ with : ϕχ ¼

XN

p¼1

ρs,p � ρw

ρw
ϕp (41)

where ρs,p and ϕp are the density and depth-averaged volumetric concentration of

the pth solid phase respectively. Using (41), the equations forming the system can be
recast as five conservation laws and rewritten in vector form as

∂U

∂t
þ ∇ � E Uð Þ ¼ Sb Uð Þ þ Sτ Uð Þ þ Eb Uð Þ (42)

where U is the vector of conservative variables and E Uð Þ ¼ F Uð Þ, G Uð Þð Þ are the
convective fluxes along the X ¼ x, yð Þ horizontal coordinates, respectively,
expressed as
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U ¼

rh

rhu

rhv

hϕχ

zb

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

F Uð Þ ¼

rhu

rhu2 þ 1

2
grh2

rhuv

huϕχ

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

G Uð Þ ¼

rhv

rhuv

rhv2 þ 1

2
grh2

hvϕχ

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

(43)

The vector Sb Uð Þ accounts for the momentum source term associated to the vari-
ation of the pressure force on the bed interface, whereas Sτ Uð Þ is the momentum
dissipation due to the basal resistance. Finally, the source term Eb Uð Þ accounts for the
bulk mass exchange between the mixture flow and the bed layer.

Sb Uð Þ ¼

0

�grh
∂zb
∂x

�grh
∂zb
∂y

0

0

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

Sτ Uð Þ ¼

0

� τb

ρw
nux

� τb

ρw
nuy

0

0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

Eb Uð Þ ¼

� ρb

ρw 1� ξð Þ
XN

p¼1

Db � Ebð Þp

0

0

�
PN

p¼1

ρs,p � ρw

ρw
Db � Ebð Þp

1

1� ξ

XN

p¼1

Db � Ebð Þp

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(44)

3.1 Finite volume method in unstructured meshes

System (42) is time dependent, non linear and contains mass and momentum
source terms. Under the hypothesis of dominant advection it can be classified as
belonging to the family of hyperbolic systems. In order to obtain a numerical solution,
the spatial domain is divided in computational cells using a fixed-in-time mesh and
system (42) is integrated in each cell Ωi. Applying the Gauss theorem leads to

d

dt

ð

Ωi

UdΩþ
XNE

k¼1

E � nð Þk lk ¼
ð

Ωi

Sb Uð ÞdΩþ
ð

Ωi

Sτ Uð ÞdΩþ
ð

Ωi

Eb Uð ÞdΩ (45)

being NE the number of edges for the i cell, n ¼ nx, ny
� �

k
the outward unit normal

vector, lk the length of the edge and hence E � nð Þk the value of the normal flux
through the kth edge (Figure 4).

The left hand side of (42), also called homogeneous part, satisfies the rotation
invariant property [24] and hence the conservative normal flux vector can be rewrit-
ten as

E � nð Þk ¼ F Uð Þnx þG Uð Þny
� 

k
¼ R�1

k F RkUð Þ (46)

being R a rotation matrix which projects the global orthogonal framework X ¼
x, yð Þ into the local framework X̂ ¼ x̂, ŷð Þ of the kth cell edge (Figure 4),
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corresponding to the normal and the tangential directions to the edge respectively.

The rotation matrix Rk and its inverse R�1
k are defined as

Rk ¼

1 0 0 0 0

0 nx ny 0 0

0 �ny nx 0 0

0 0 0 1 0

0 0 0 0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

k

R�1
k ¼

1 0 0 0 0

0 nx �ny 0 0

0 ny nx 0 0

0 0 0 1 0

0 0 0 0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

k

(47)

and the set of local conservative variables Û and fluxes F Û
� �

is defined as

Û � RkU ¼

rh

rhû

rh v̂

hϕχ

zb

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

F Û
� �

k
� F RkUð Þ ¼

rhû

rhû2 þ 1

2
gnrh

2

rhûv̂

hûϕχ

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

(48)

where û ¼ unx þ vny and v̂ ¼ �uny þ vnx are the components of the flow velocity û
in the local framework.

The value of the fluxes through the kth cell edge can be augmented incorporating
the contribution of the momentum source terms Sb and Sτ into the homogeneous

normal fluxes F Û
� �

[25]. The momentum terms can be included within the local
framework x̂, ŷð Þ using the spatial discretization

ð

Ωi

Sb Uð ÞdΩ ¼
XNE

k¼1

R�1
k H Û

� �

k
lk

ð

Ωi

Sτ Uð ÞdΩ ¼
XNE

k¼1

R�1
k T Û

� �

k
lk (49)

where H Û
� �

k
and T Û

� �

k
are the integrated bed pressure [26] and basal resistance

[27] throughout the kth cell edge, expressed in the local framework, being

H Û
� �

k
¼ 0, �grh Δzb, 0, 0, 0ð ÞTk (50)

Figure 4.
Computational cells in triangular meshes and local coordinates at the kth cell edge.
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T Û
� �

k
¼ 0, � τb

ρw
nuxΔxþ nuyΔy
� �

, 0, 0, 0

� �T

k

(51)

Using (46) and (49), the augmented flux at the kth edge can be defined as

F Û
� �

k
¼ F Û

� �
�H Û

� �
� T Û

� �� �

k
(52)

The net exchange flux term Eb Uð Þ is discretized in space as
ð

Ωi

Eb Uð ÞdΩ≈AiEb Uið Þ (53)

and, assuming a piecewise uniform representation of the variables at the i cell for the
time t ¼ tn and using explicit temporal integration for the mass and momentum source
terms, the updating formulation for the conservative variables U is expressed as

Unþ1
i ¼ Un

i �
Δt

Ai

XNE

k¼1

R�1
k F Û

n

i , Û
n

j

� 	↓

k
lk þ ΔtEb Un

i

� �
(54)

being Δt ¼ tnþ1 � tn the time step, Ai the discrete cell area and F Û
n

i , Û
n

j

� 	↓

k
the

numerical flux through the kth cell edge computed as a function of the local conser-
vative variables at the neighboring cells i and j. The numerical fluxes are here upwind
computed using a fully-coupled Roe-type Riemann solver (RS) adapted to compress-
ible two-phase shallow flows. Note that the flow density and depth remain coupled in
both the conservative variables and fluxes on the left hand side of the equations,
improving the robustness and accuracy of the solution when large density gradients
appear in the flow [28]. The RS formulation is based on the augmented Roe strategy
[25], ensuring the well-balance in steady states and the correct treatment of wet-dry
fronts without requiring additional time step restrictions. A detailled explanation of
this fully-coupled RS can be found in Aranda et al. [29].

3.2 High-performance-computing in GPU’s

Graphics Processing Units (GPU’s), were developed to control and manage the
graphic operations for video games but currently they have become a powerful tool for
solving engineering problems. The main advantage resides in the high number of com-
putation nodes available for workload distribution, leading to higher speed-ups without
an increment of investment in large facilities. The main drawback is that GPU-kernels
usually require an intensive programming effort compared with multi-CPU strategies,
such as OpenMP or other shared-memory strategies. There exist several platforms for
High-Performance-Computing (HPC). NVIDIA developed the CUDA (Compute Uni-
fied Device Architecture), a computing platform and programming environment which
incorporates directives for massive parallel operations. To ensure the applicability of the
model to realistic large-scale mud/debris flows, the updating eq. (54) is solved using a
GPU-based algorithm implemented in the NVIDIA CUDA/C++ framework.

The preprocess step and CPU-GPU memory transfer are implemented to run on
one CPU core, whereas the time loop computation is accelerated using GPU. How-
ever, some tasks inside the time loop are controlled yet by the CPU, such as the time
advance control, the boundary conditions application and the output data dump.
Therefore, it is necessary to transfer information from/to the GPU at each time-step.
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While the computational effort required for the time and boundaries transference is
considerably smaller than that of each kernel function, in order to dump the interme-
diate output information, all the variables in the domain must be transferred from
GPU device to CPU host.

The CUDA toolkit allows that all the processed elements can be distributed by
threads and blocks of threads. Each thread uses its own thread index to identify the
element to be processed, launching several execution threads at the same time (parallel
computation). As computing GPU devices are well designed to work efficiently with
ordered information, the variables needed for computation are stored in the GPU
memory as structures of arrays (SoA), improving the spatial locality for memory
accesses. Only the kernel functions, which require a higher computational effort, have
been implemented to run on the GPU device. Some tasks in the GPU kernel are opti-
mized using the CUBLAS library included in CUDA. The memory transfer between the
CPU host and the GPU device has been reduced as much as possible for each time step.

4. Application to the mine tailings dam failure in Brumadinho (Brasil)

In this section, the proposed methodology is applied to the catastrophic large-scale
mud flow occurred Brumadinho (Minas Gerais, Brazil, 2019). The sudden failure of a
mine containing dike resul in an extremely violent tailings flow which traveled
downstream more than 10 km and reached the Paraopeba River. This disaster caused
more than 260 deaths and important economic and environmental losses. The dam

contained almost 12 � 106m3 mining waste tailings with a height of 70� 80m and

covering an area of 4:13 � 105m2. Figure 5 shows an aerial image of the mine site after

Figure 5.
Aerial image of the area affected by the mud.
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the dam collapse. The thalweg elevation along the area covered by the mud varies
between 860m:o:s:l at the dam-toe and 720m:o:s:l at the Paraopeba River, with an
averaged longitudinal bed slope S0 ¼ 0:0165m=m. The area affected by the mud was

3:3 � 106m2.
The dike material and the tailings rapidly became a heavy liquid that flowed

downstream at a high speed. Tailings were composed by a mixture of water, sedi-
ments and heavy metals, mainly iron, aluminum, manganese and titanium [30]. The
size distribution consisted basically of a mineral sand fraction (38%) and a fines
fraction (62%), accounting for mineral silt-clay and metals particles. The water con-
tent before the failure was estimated around 50% by volume with a specific weight of
22� 26 kN=m3 (Table 1).

The spatial domain is discretized using a unstructured triangular mesh with 6 � 105

cells approximately and four control cross-sections are placed downstream of the dam
(Figure 5), corresponding to (CS-1) the mine stockpile area, (CS-2) the railway
bridge, (CS-3) the national road and (CS-4) the gauge station in the river. Further-
more, the base regime water depth and velocities in the Paraopeba River before to the
mud arrival is assessed by a previous simulation. The initial tailings depth at the dam
is estimated by comparing the terrain elevation before and after the dam failure using
1 � 1 m DTM’s. Six different solid phases are set for characterizing the fully saturated
tailings material, including mineral sand, mineral silt, iron (Fe), aluminum (Al),
manganese (Mn) and titanium (Ti), with initial bulk volumetric concentration ϕ0 ¼
0:5 and normalized density r≈2:25. The deposition porosity ξ for the bed layer is
estimated using the Wu relation [8] and the hiding-exposure effects on the critical
Shields stress for the incipient motion of each solid phase θc,p are estimated using the
Egiazaroff formula [31]. Also, the solid transport capacity of the flow q ∗

s is computed
using the Wu relation [8]. The simulated time was 3 h from the dam collapse.

The mining tailings in the dam showed a low plasticity and high values of pore-
fluid pressure [30] before the collapse. Assuming the turbulent behavior of the flow,
the behavior index is set m ¼ 2, setting a quadratic relation in (37) and allowing to
calculate the apparent consistency parameter μP as a function of the Manning’s

roughness coefficient of the terrain (nb ¼ 0:065 sm�1=3). The basal stability angle is

estimated in δf ¼ 5°. The basal pore pressure is estimated as Pb ¼ 1þ Ebð Þρwgh, being
Eb a basal pressure factor which tends to Eb ! ∞ for totally fluidized materials.
Therefore, the total frictional-turbulent basal shear stress is estimated as

Dam capacity 12 � 106 m3

Dam area 4:13 � 105 m2

Solid concent. ϕ0 50%

Specific weight 22� 26 kN=m3

Size distr. Sand Fines

Rel. content 38% 62%

Heavy metals Fe Al Mn Ti

Weight conc. 264.9 mg=g 10.8 mg=g 4.8 mg=g 0.5 mg=g

Table 1.
Brumadinho’s dam and tailings features.
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τb

ρw
¼ r� 1� Ebð Þghþ rg

n2b
h1=3

u2 þ v2
� �

(55)

where the first term on the right hand side accounts for the frictional yield stress
whereas the second term denotes the turbulent shear component.

In order to assess the influence of the basal pressure in the numerical results, the
entrainment term Eb Uð Þ in (42) is neglected and the value of Eb is varied from Eb !
∞ (pure Newtonian turbulent behavior) to Eb ¼ 0:9 (medium frictional yield
strength). Figure 6 shows the temporal evolution of the wave-front location and the
total flow rate at the control section CS-2. Note that, for each value of Eb, the wave
front loses velocity progressively as it moves downstream. As Eb decreases, the fric-
tional shear stress is enhanced and the mobility of the flow decreases considerably.
That it is clearly shown in the marked reduction of the flow rate at the control section
CS-2 as the pore pressure factor is increased. Setting Eb ¼ 1:05 allows to predict the
observed arrival time (32� 47 min ) of the tailings wave to the Paraopeba river at
8:5 km downstream the dam (gray rectangle in Figure 6).

Figure 7 shows the mud depth at t ¼ 0 min , t ¼ 5 min , t ¼ 15 min and t ¼
45 min after the dam collapse for Eb ¼ 1:05. The numerical results show that practi-
cally the whole initial tailing volume flows out of the dam in the first 5 min after the
dam collapse, as it was observed in the available videos. The mud wave moves down-
stream with a computed height larger than 20 m in some zones during the first
minutes. After this initial stage, the numerical results show that the dambreak wave is
still higher than 10 m when the wave-front reaches the railway bridge (CS-2). During
the real event, the mud wave impact caused the collapse of the railway bridge struc-
ture. At t ¼ 45 min , the mud wave-front has reached the Paraopeba River and the
flow is practically stopped.

Furthermore, in order to assess the influence of the solid material entrainment
from the erodible bed to the flow layer, the pore-pressure factor is set to Eb ¼ 1:05 but
the entrainment term Eb Uð Þ in (42) is now considered. The relation αE=αD, which
controls the balance between the erosion component Eb and the deposition compo-
nent Db of the vertical bed-flow exchange flux, is varied to αE=αD ¼ 1%, αE=αD ¼ 5%,
αE=αD ¼ 10% and αE=αD ¼ 50%. Figure 8 depicts the predicted temporal evolution of
both the mud wave-front location and the total volume of the fluidized material in the
domain as the entrainment parameter is varied. The higher the relation αE=αD, the
larger the fluidized mass involved in the flow as the dambreak wave progresses.
Hence, the entrainment of bed material leads to a greater flow mobility, causing the
wave-front to reach the Paraopeba River faster as the entrainment parameter αE=αD

Figure 6.
Temporal evolution of (left) the wave-front location and (right) the total flow rate at the control section CS-2.
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increases. Even, for αE=αD ¼ 50%, the mobilized mass becomes more than 150% of
the initial mass and the wave-front reaches the river faster than the fixed-bed pure-
turbulent case (dashed gray line).

Furthermore, the entrainment of bed materials also leads to the segregation of the
solid phases along the flow. As αE=αD is increased, horizontal gradients in the concen-
tration of the different solid classes composing the mixture tend to appear (Figure 9).
These gradients depends on the temporal evolution of the class-specific erosion and
deposition vertical fluxes, Ep and Dp respectively, along the tailings flow.

The increment of the flow mobility caused by the bed material entrainment is
clearly shown in the temporal evolution of the flow rate at the control sections CS-2
and CS-3 (Figure 10). At CS-2 the increment of the entrainment relation αE=αD is
mainly appreciated in the increment of the flow rate peak from 7500 m3=s for the

Figure 7.
Mud depth at t ¼ 0 min , t ¼ 5 min , t ¼ 15 min and t ¼ 45 min after the dam collapse.

Figure 8.
Temporal evolution of (left) the wave-front location and (right) the total fluidized volume as the relation αE=αD is
increased.
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fixed-bed simulation to almost 15,000m3=s for the movable bed case with
αE=αD ¼ 50%. Furthermore, at CS-3, the entrainment of bed material does not only
increase the flow rate peak respect to the fixed-bed assumption, but also leads to a
noticeable decrease in the arrival time of the mud wave from 40 min to 25 min
approximately.

Finally, the computational efficiency of the GPU-accelerated kernel is shown in
Table 2 for different GPU devices. The performance obtained with the GPU-based
code is compared with the single-core CPU simulation time. Note that the speed-up
obtained respect to the single-core performance has increased progressively as the
devices have been developed in the last 5 years. Currently, the speed-up obtained with

Figure 9.
Bulk solid concentration in the flow at t ¼ 25 min after the dam collapse for (a) αE=αD ¼ 1%, (b) αE=αD ¼ 5%,
(c) αE=αD ¼ 10% and (d) αE=αD ¼ 50%.

Figure 10.
Temporal evolution of the flow rate at (left) the control sections CS-2 and (right) the control section CS-3 as
αE=αD is increased.
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the GPU accelerated kernel is about 280 (Nvidia A100), more than 8 times the Nvidia
Tesla K40c performance. That means that for achieving the GPU-parallelized code
performance with a CPU-based algorithm, a cluster with at least 280 CPU cores is
required (see speed-up in Table 2).

5. Conclusions

The numerical modeling of geophysical surface flows involving sediment
transport must be addressed using a comprehensive strategy: beginning with the
derivation of proper shallow-type mathematical models, following by the develop-
ment of robust and accurate numerical schemes within the Finite Volume (FV)
framework and ending with the implementation of efficient HPC algorithms. This
integrated approach is required to release Efficient Simulation Tools (EST) for
environmental processes involving sediment transport with realistic temporal and
spatial scales.

The derivation of the generalized 2D system of depth-averaged conservation laws
for environmental surface flows of water-sediment mixtures over movable bed con-
ditions is a fundamental step to understand the physical consequences of the mathe-
matical shallow-type simplification. From the mathematical modeling approach, the
fluidized material in motion is contained in a flow layer consisting of a mixture of
water and multiple solid phases. This flow layer usually moves rapidly downstream
steep channels and involves complex topography. The liquid-solid material can be
exchanged throughout the bottom interface with the underlying static bed layer,
hence involving also a transient bottom boundary for the flow layer. These features
lead to an increasing complexity for the mathematical simplification of sediment
transport surface flows.

The 2D shallow-type system of equations for variable-density multi-grain water-
sediment flows can be solved using a Finite Volume (FV) methods, supplemented
preferable with upwind augmented Riemann solvers which provide a robust and
accurate computation of the intercell fluxes even involving highly transient density
interfaces and ensure the well-balanced character of the solution in quiescent and
steady states. The usage of GPU-accelerated kernels for sequential computation of the
FV solution is an efficient and low cost alternative to the traditional multi-CPU
strategies. The GPU solution must be designed taking into account the fact that the
GPU is an independent device with its own RAM memory. This means that the
memory transfer between the conventional RAM memory and the GPU device
memory plays a key role in the performance of GPU-accelerated software.

Computational time Speed-up

CPU Intel i7-10700F 59.43 h —

Nvidia Tesla K40c 1.79 h � 33

Nvidia GTX 1080 Ti 58.2 min � 61

Nvidia Tesla V100 26.5 min � 135

Nvidia A100 40GB 12.8 min � 279

Table 2.
Computational times with GPU-based and CPU-based algorithms.
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GPU-accelerated codes are mandatory for large-scale sediment-laden flow models
since they allows the calibration of the multiple processes involved in the movement
of the fluidized water-sediment material without spending weeks or even months
waiting results. Probably, the most challenging and unknown process involved in
sediment-laden surface flows is the development of pore-fluid pressure, hence its
estimation requires careful calibration procedure. This pore pressure affects the fric-
tional shear stress between solid particles, reducing the basal resistance and affecting
the flow mobility. Furthermore, special attention has to be paid to the calibration of
the entrainment/deposition parameters. The entrainment of material from the under-
lying movable bed to the mixture layer increases the mass and momentum of the
fluidized material in movement, enlarging the mobility of the flow and reducing the
arrival time of the mud waves.
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