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Chapter

Improved Smell Agent
Optimization Sizing Technique
Algorithm for a Grid-Independent
Hybrid Renewable Energy System
Akawu Shekari Biliyok and Salawudeen Ahmed Tijani

Abstract

This chapter discuss an improvement on the novel computational intelligent
algorithm using the smell phenomenon. In the standard smell agent optimization
algorithm, the olfactory capacity is constant thereby assuming that every smell agent
has the same sensing capacity. In the improved smell agent optimization algorithm,
that is changed to account for the difference in smell agent capacity. The algorithm
was run against the standard smell agent optimization on Matlab to find the best
HRES design using annual cost, Levelized cost of electricity (LCE), loss of power
supply probability (LPSP) and excess energy. It was shown after the comparative
analysis that there was a 79%, 99.9% and 53.4% improvement for annual cost, LCE
and LPSP respectively. Statistically, results showed that the iSAO obtained the most
cost effective HRES design compared to the benchmarked algorithms.

Keywords: smell agent optimization (SAO), improved smell agent optimization
(iSAO), hybrid renewable energy system (HRES)

1. Introduction

Technological and societal developments can be observed as the drivers of the
changes in interconnected systems like Mini-grids or hybrid renewable energy sys-
tems (HRES). HRES consists of two or more renewable sources used to provide
system efficiency as well as create better balance in energy tied to the conventional
grid or off-grid with battery storage [1, 2] and there are various optimization sizing
techniques for such systems namely;

i. Dynamic programming.

ii. Graphical construction technique.

iii. Probabilistic approach.
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iv. Multi-objective design.

v. Linear programming.

vi. Iterative technique.

vii. Artificial intelligence.

Over the years, optimization has developed into an established field of computa-
tion intelligence (CI) inspired by various natural behavioral rules. Some of these
natural behavioral based optimization methods of imitating evolution, ecology, ani-
mal activities and apparatus of human culture were established to ease solving several
categories of complicated social, economic, scientific and engineering design prob-
lems. Such as:

i. Weak problems with little or no area information.

ii. Problems for which a near-ideal solution can be satisfactory.

iii. Non-deterministic Polynomial (NP) complete problems.

iv. Problems with non-smooth and noisy search space.

v. Problems whose environments are uncertain/changes or both [3, 4].

Each branch has a comprehensive theoretical basis and is highlighted by a collec-
tion of sophisticated algorithms and software like Genetic Algorithm (GA) which is a
heuristic search technique used in artificial intelligence and computing. In this
approach, evolution is performed through Elitism, Crossover, Mutation [5].

Artificial intelligence (AI) techniques are suitable as substitute methods to con-
ventional techniques or as mechanisms of integrated systems. These are applied in
solving complicated practical problems in various areas and are popular nowadays.
AI-techniques have the following features;

i. They learn from previous examples.

ii. They are fault-tolerant and can handle noisy and incomplete data.

iii. They deal with non-linear problems.

iv. Once trained, they can perform forecasts at high speed.

The smell agent optimization technique (SAO) is a newly developed meta-
heuristic algorithm using the phenomenon of smell perceptions. The concept of SAO
is developed in three distinct modes; sniffing, trailing and random mode [6].

One of the five senses through which the world is perceived is the sense of smell
(olfactory). Through the sense of smell, humans and other animals can perceive a
large number of chemicals in the external world which enables us to perceive the
molecular concentration or smell and intuitively trace this concentration in order the
identify the source [7]. In the conventional SAO, the olfaction capacity is set to a
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constant value which assumes that the smell agent sense of smell cannot change and
this assumption comes with certain drawbacks like longer computational time.

2. Case study

This case study proposed an improved SAO technique algorithm that makes the
olfaction capacity a dynamic variable thereby improving speed and precision of solv-
ing the combinatorial problem of selecting the optimal combination between a hybrid
renewable energy system at best annual cost, loss of power supply probability (LPSP)
and levelized cost of energy (LCE) (Figures 1, 5, 6–10).

A mathematical model may fail due to any or all of the following reasons:

i. The problem or process may be too complex for mathematical reasoning.

ii. The problem or process may be dynamic and stochastic in nature.

iii. The solution space of the problem may be too large for mathematical
computation.

iv. The problem or process may contain some uncertainties.

All these characteristics are exhibited by most real-life problems [8]. To address
this challenge, researchers have employed computational intelligence techniques
under different environments and promising results have been achieved.

To achieve the stated aim, the following objectives were adopted.

i. Collection of load data and weather data such as solar insolation, solar
temperature and wind speed from questionnaires and the NASA website.

ii. To model the hybrid energy system considering PV/Battery, Wind/Battery,
PV/Wind/Battery configurations and load.

Figure 1.
Illustrates schematic diagram of the proposed hybrid renewable energy system [1].

3

Improved Smell Agent Optimization Sizing Technique Algorithm for a Grid-Independent…
DOI: http://dx.doi.org/10.5772/intechopen.105489



iii. To develop an improved Smell Agent Optimization iSAO and optimize the
developed hybrid model in 2, using the iSAO and the standard SAO.

iv. To validate by comparing the performance of iSAO with SAO on Matlab
Simulink.

2.1 Significance of study

A lot of research has been done on efficient sizing utilizing artificial intelligence
however, this research proposes an artificial intelligence smell agent optimizing sizing
technique for a solar PV, wind turbine and battery storage system. The contributions
are as follows;

i. This algorithm is based on the creation of a surface with smell trails and
iteration of the agents in finding a path. It can be applied in various
computational constraints that use path-based problems and this is useful in
solving NP-hard constraints that are related to path discovery [9].

ii. The economic enticement of distribution companies around the world
(DISCOs) is to minimize losses in the network. So, when real losses are
greater than the standard losses, the DISCOs loses economically or profit
when the opposite occurs. This loss minimization in distribution systems is
well-suited for researchers [10].

iii. Improving the smell agent optimization sizing technique for a hybrid
renewable energy system.

Load data was collected with the help of questionnaires to understand energy
demand patterns and from a reputable independent power provider (IPP).

The algorithm was modeled for the following configurations:

i. PV, wind turbines and battery storage configurations.

ii. PV and battery storage configurations.

iii. Wind turbines and battery storage configurations.

In the end, the modified smell agent optimization technique was validated on
Matlab Simulink and compared to the standard smell agent optimization technique
with annual cost of maintenance, Levelized cost of energy, loss of power supply
probability and excess energy as the unit of measure.

3. Smell agent optimization

The Smell Agent Optimization (SAO) is a recently developed algorithm from the
idea of how a smelling agent learns to identify a smell source. The authors of the
algorithm argue that, with a well-developed olfaction capacity, an organism (includ-
ing humans) can perceive smell substance and intuitively follows the smell substance
to identify its source [11, 12]. This idea is modeled into three classifiable modes
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namely; the sniffing, trailing and random modes. These modes interact together to
form the smell agent optimization. The detailed information about these modes is
discussed as follows:

i. Sniffing Mode

The idea of sniffing mode hinges on the ability of a smell agent (i.e. human) to first
perceive the presence of smell molecules around its surrounding while the molecules
constantly diffuse from its smell source. This analogy can be further portrayed as,
when a smell molecule evaporates from a smell source in the direction of an agent, the
agent sniff (sense or perceive) and decide whether it’s a pleasant smell or a harmful
smell. After this decision is made, the agent either moves towards the direction of the
smell molecules or moves away from the smell molecules. Assuming N is the total
number of smell molecules evaporating from a smell source and D is the size of the
search spacing where the smell molecules have occupied (dimension). The initial
positions of smell molecules can be generated as follows:

xti ¼ xtN,1, x
t
N,2, … , xtN,D

� �

(1)

Meanwhile, the smell molecule’s evaporation from the source is in Brownian form,
to sustain this Brownian evaporation, each molecule is assigned an initial velocity
to aid their movement in the search space. This is achieved using the following
equation

vti ¼ vtN,1, v
t
N,2, … , vtN,D

� �

(2)

From Eqs. (1) and (2), the evaporation of smell molecules can therefore be
represented as follows:

xtþ1
i ¼ xti þ vtþ1

i � Δt
� �

(3)

where vtþ1
i is the change in velocity and Δtis the change in time? Note that for the

optimization process, change in time is always 1, i.e., an algorithm moves from one
iteration to another with a constant step of 1.

For the molecules to evaporate from one point to another, the velocity of every
molecule is updated as follows:

vtþ1
i ¼ vti þ α1 �

ffiffiffiffiffiffiffiffiffi

3kT

m

r

(4)

Thus,

xtþ1
i ¼ xti þ vtþ1

i (5)

where α1 is a random number generator, k is Boltzmann’s constant given by 1.38
x10�23JK�1,T and m are the temperature and mass of smell molecules respectively.

The agent snorts these smell molecules by estimating the fitness of Eq. (5) and
decide whether to track the source of the smell molecules or not.
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ii. Trailing Mode

From the implementation of the sniffing mode, the fitness of each smell molecule
is evaluated, then the position of the agent xtagent and the position of worst

moleculesxtworst are determined as the positions of molecules with best and worst
sniffing fitness respectively. These positions are used to model the trailing behavior of
the agent towards the smell source as follows:

xtþ1
i ¼ xti þ α2 � η� xti � xtagent

� �

� α3 � η� xti � xtworst
� �

(6)

where η which is also called olf is the olfaction capacity of the agent, α2 and α3 are
random numbers used to penalize the influence η xtagent on and xtworst respectively.

iii. Random Mode

The random mode, which is like a savior strategy the agent employed to avoid
getting stuck in local minima. This mode only becomes active when the agent could
not obtain the global solution to the optimization problem after implementing the
trailing mode. The model is expressed as:

xtþ1
i ¼ xti þ α4 �Φ (7)

where Φ a constant step taking by the agent andα4 is a random number used to
penalize the influence ofΦ.

3.1 Objective function formulation

The objective function considered in this work is a tri-objective optimization
problem where the aim is to minimize the Levelized Cost of Energy (LCOE), Loss of
Power Supply Probability (LPSP) and Excess Energy Generated. This is expressed in
Eq. (8):

minf ¼ min ⋌LCOEþ⋌LPSPþ⋌EEð Þ (8)

Where: ⋌is penalty factor.
These individual objective functions can be expressed as follows:

LCOE ¼
CA_total

Etotal
(9)

LPSP ¼

PT
0PLoad � Ppv � Pwind � PSOCM

PT
0PLoad

(10)

EE ¼
X

T

0

PLoad � Ppv � Pwind

Ppv þ Pwind
(11)

where; CA_total is the total cost of the hybrid systems, Etotal is the total cost of energy
generation, PLoad is the load demand, Ppv is the output power from the PV generation
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units, Pwind is the output power from the wind turbine generation unit and T is the
total time.

To achieve these tri-objectives, the total annual cost given in equation Eq. (12)
must also be minimized.

TAC ¼
X

N

i¼1

AMCþ
X

N

i¼1

ACC (12)

where N is the total hours considered, TAC is the total annual cost, AMC is the
annual maintenance cost and ACC is the annual capital cost. The annual maintenance
cost is expressed as:

AMC ¼ npvPpvm þ nwtPwtm (13)

Whereas, the total capital cost is calculated as:

ACC ¼ CFR� npvCpv þ nwtCwt þ nBatCBat þ nInvCInv

� �

(14)

where npv is the number of PV panels, Cpv is the unit cost of PV panel, nwt is the
number of wind turbines, Cwt is the unit cost of a wind turbine, nBat is the number of
batteries, CBat is the present worth of battery, nInv is the number of converters/
inverters, CInv is the present worth of converter/inverter and CRF is the Capital
Recovery Factor.

The system implemented for hybrid system design consisting of PV/Wind/Battery
configuration. The order configurations considered in the study include PV/Battery
and Wind/Battery. For PV/Battery systems design, the wind turbine generators shut
down and equation Eqs. (15) and (16) is modified as:

AMC ¼ npvPpvm (15)

Whereas, the total capital cost is calculated as:

ACC ¼ CFR� npvCpv þ nBatCBat þ nInvCInv

� �

(16)

Similarly, for the Wind/Battery hybrid system design, the equations are
modified as:

AMC ¼ nwtPwtm (17)

Whereas, the total capital cost is calculated as:

ACC ¼ CFR� nwtCwt þ nBatCBat þ nInvCInv½ � (18)

In all the configurations, the number of each hybrid component is selected as the
decision variables using the following boundary constraints:

npv�max ≤npv ≤npv�min (19)

nwt�max ≤nwt ≤nwt�min (20)

nBat�max ≤nBat ≤nBat�min (21)
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The number of inverters is selected as 4 and 3 for PV/Wind/Battery and the other
two configurations respectively.

3.2 Constrain formulation

The optimization problem of the hybrid renewable system is to determine the right
combination of PV panels, wind turbines and batteries which gives the minimum ACC
and AMC. The ACC and AMC should, in turn, minimize the TAC given in Eq. (22)
while satisfying the following constraints:

npv_min ≤ npv ≤ npv_max nwt_min ≤ nwt ≤ nwt_max nBat_min ≤ nBat ≤ nBat_max

and,

npv, nwtandnBat ¼ Integer

(22)

From Eq. (10), npv_min and npv_max are the lower and upper limit of npv;
nwt_min andnwt_max are the lower and upper bound of nwt and, nBat_min and nBat_max are
the lower and upper bound ofnBat.

The charge quantity of the battery bank at any time should satisfy the following
constraints

SOC tminð Þ≤ SOC tð Þ≤ SOC tmaxð Þ (23)

The SOC whose maximum and minimum charge quantity is defined by
SOC tminð Þ and SOC tmaxð Þ and is the battery State of Charge, determined by Eq. (8)

SOC tð Þ ¼ SOC t� 1ð Þ � 1� ωð Þ þ
PL tð Þ

ηInv

� PPV tð Þ � PWT tð Þð Þ

	 


� ηBC (24)

where ω is the hourly self-discharge rate of the battery, ηBC is the battery bank
discharge efficiency, ηInv is the inverter efficiency.

The maximum charge quantity of the battery bank SOC (tmax) takes the value of
the nominal capacity of the battery (SBat) and the minimum charge quantity of the
battery bank SOC (tmin) is obtained from the maximum Depth of Discharge (DOD) as
in Eq. (9).

SOC tminð Þ ¼ 1�DODð Þ � SBat (25)

4. Modified smell agent optimization

Studies have shown that one of the control parameters which affect the overall
performance of smell agent optimization is the olfaction capacity of the agent. Since
the ability of the agent to perceive a smell molecule largely depend on the size of the
olfactory lobe, proper choice of olfaction capacity will influence the searching ability
of Smell Agent Optimization positively. Unlike in the original SAO, where the olfac-
tion capacity is selected arbitrarily, this research developed a model to select the
olfaction capacity dynamically. This is to ensure that, the olfaction capacity changes as
the algorithm iterate through the optimization process. Assuming the initial olfaction
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capacity assigned to an agent is given as olf, then the dynamic olf which is donated as
olf dyn can be calculated as

olf dyn ¼ olf � e
itr

itrmaxð Þ (26)

The dynamic olfaction capacity given in Eq. (26) is formulated such that, the
perception capability of the agent exponentially as the agent approaches the object
generating the smell molecules (i.e., optimal solution). The equation is used to modify
the trailing mode solution search of SAO. The flow chart for the implementation of the
dynamic SAO called the iSAO is given in figure below.

Note: From Figure 2, the part highlighted in red shows the improvement added to
the standard smell agent optimization.

Step 1: The parameters required to implement the algorithm are initialized. These
parameters are the population (positions) of the smell molecules, the initial velocity,
search dimension, temperature, Boltzmann constant, random mode step movement
and the number of iterations.

Figure 2.
Illustrates improved smell agent optimization flow chart [1].
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Step 2: Randomly generate the initial position of the smell molecules in the search
space and assign the velocity of each molecule.

Step 3: The fitness of the generated molecules position and velocity in step 2 are
evaluated.

Step 4: The velocity of each molecule is updated.
Step 5: The fitness of the sniffing mode and position of the agent in step 2 with the

position of the molecule having the best sniffing fitness are evaluated.
Step 6: The dynamic olfaction capacity is calculated, the position of the molecules

with the worst sniffing fitness is determined and the trailing mode behavior is
performed.

Step 7: The fitness of the trailing mode is evaluated.
Step 8: The fitness of the trailing mode with the fitness obtained during the fitness

mode are compared.
Step 9: If the trailing mode fitness is better than the sniffing mode fitness, step 6 is

repeated to step 8 until the smell source is determined. If the sniffing mode fitness is
better than the trailing mode fitness, then move to step 10.

Step 10: Random mode behavior is performed.
Step 11: The fitness of the random mode is evaluated.
Step 12: If the fitness of the random mode is better than the fitness of the trailing

mode, then determine the new random position of the agent and the worst random
position of the molecule and perform the trailing mode again, otherwise repeat step 4
to step 9.

Step 13: Terminate if the stopping condition is satisfied else repeat step 1 to step 12
until the stopping criteria are met.

5. Important assumptions

Highlighted below are some of the important assumptions adopted for the devel-
opment of the proposed iSAO;

i. The smell molecules evaporate from the smell source constantly in the
direction of the agent until the smell object is found.

ii. The velocity of the object evaporating the smell molecules is negligible
compared to the velocity of the smell agent. In other words, the object
originating the smell is in a fixed position and cannot move.

iii. The smell source could be more than one and each source evaporate the same
number of smell molecules with varying concentration [13].

iv. The olfaction capacity is dynamic in nature.

6. Overview of data collection

The data from Table 1 were compiled from first a questionnaire distributed
around Abuja environs to understand the energy behavior of the Nigerian household
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and from data collected by Sunergy, the renewable energy department of Anjeed
Innova group.

Table 1 is the data for the daily wind speed, solar insolation and the required daily
load. The load peaks at 22.2 kW with a minimum of 5.8 kW.

The graph of Figure 3 shows a plot of the load required in kW on the y-axis against
and the hours of the day. The load steadily climbs from about 6 am at 7.3 kW and
maintains by 9 am at about 13 kW then starts to rise again at 5 pm to 16.3 kW then
peaks at 22.3 kW by 7 pm then drops till around 6 kW till the next day. This is typical
of the average Nigerian family activity.

The graph Figure 4 below shows a plot of wind speed in m/s and the solar
insolation in W/m2 on the y-axis against the hours of the day on the x-axis. Because of
the intermittent nature of solar and wind energy, sunlight is to be expected for about
12 hours and the wind speed rises and falls rapidly throughout the day.

Solar (W/m2) Wind speed (m/s) Load (kW)

0 22 6.4

0 23 6.2

0 25 5.8

0 26 5.8

0 26 6

0 26 7.3

198 26 9.1

562 24 12.5

830 22 13.4

800 20 13.4

811 19 13.2

813 17 13.8

403 15 13.2

803 16 13.7

844 16 13.2

678 17 14

322 12 16.3

0 7 18.9

0 3 22.2

0 4 17.9

0 5 12.5

0 6 9.1

0 13 7.5

0 19 6.8

Table 1.
Data collected for the project.
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7. Results and discussion

The algorithms attempt to find the optimum number of PV panels, wind turbines,
and batteries (NBatt) in PV/WT/battery, PV/battery and WT/battery configurations.
The minimum and maximum numbers of each component are set to 0 and 100 for the
solar PV and wind turbines, respectively the 50 for the battery storage.

Also, the olfaction capacity is dynamic with a total of 100 iterations and to calcu-
late the accuracy of results, 10 independent runs are performed and the results are
reported below.

8. Analysis

i. Standard smell agent optimization

Table 2 illustrates the iterations 7for the PV, wind turbine and battery and from
the results, the algorithm finds the best and the worst combination economically with
optimum reliability.

This program was run on Matlab R2017a and the graph is plotted with the annual
cost on the y-axis with the iteration number on the x-axis (Figure 5).

Figure 3.
Illustrating hourly load requirement [1].

12

Renewable Energy - Recent Advances



Table 3WT and battery using the improved smell agent optimization. and battery.
From the results, the algorithm finds the best and the worst combination economically
with optimum reliability and the graph is plotted with the annual cost on the y-axis
with the iteration number on the x-axis (Figure 6).

Table 4 illustrates the iterations for the wind turbine and battery. From the
results, the algorithm finds the best and the worst combination economically with
optimum reliability and the graph is plotted with the annual cost on the y-axis with
the iteration number on the x-axis (Figure 7).

ii. Improved smell agent optimization

Table 5 illustrates the iterations for the PV/WT and battery using the improved
smell agent optimization. From the results, the algorithm finds the best and the
worst combination economically with optimum reliability and the graph is
plotted with the annual cost on the y-axis with the iteration number on the x-axis
(Figure 8).

Table 6 illustrates the iterations for the PV and battery using the improved
smell agent optimization. From the results, the algorithm finds the best and the
worst combination economically with optimum reliability and the graph is
plotted with the annual cost on the y-axis with the iteration number on the x-axis
(Figure 9).

Table 7 illustrates the iterations for the WT and battery using the improved
smell agent optimization. From the results, the algorithm finds the best and the

Figure 4.
Illustrating daily wind speed and solar insolation [1].
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S/no Npv Nwt Nbat pvCost CwtCost Bat_Cost Conv_Cost Total_Cost LCE LpSP E_Ex

1 16 34 50 1.28E+04 5.59E+03 3.23E+02 1.07E+02 2.04E+04 0.039754 0.173659 93.64366

2 80 61 8 6.42E+04 1.00E+04 51.62501 1.07E+02 7.59E+04 0.02212 0.173659 1.68E+02

3 0 0 3 0 0 19.35938 1.07E+02 1.63E+03 Inf 0.187702 -0.01159

4 92 100 12 7.38E+04 1.65E+04 77.43751 1.07E+02 9.19E+04 0.013504 0.173659 2.76E+02

5 25 71 50 2.01E+04 1.17E+04 3.23E+02 1.07E+02 3.37E+04 0.019042 0.173659 1.96E+02

6 47 100 38 3.77E+04 1.65E+04 2.45E+02 1.07E+02 5.60E+04 0.013517 0.173659 2.75E+02

7 61 82 26 4.89E+04 1.35E+04 1.68E+02 1.07E+02 6.42E+04 0.016474 0.173659 2.26E+02

8 48 75 17 3.85E+04 1.23E+04 1.10E+02 1.07E+02 5.26E+04 0.018016 0.173659 2.07E+02

9 95 68 50 7.62E+04 1.12E+04 3.23E+02 1.07E+02 8.93E+04 0.019839 0.173659 1.88E+02

10 55 100 11 4.41E+04 1.65E+04 70.98439 1.07E+02 6.23E+04 0.013514 0.173659 2.75E+02

Table 2.
Summary of the results for the hybrid systems obtained by SAO algorithm for 10 runs of the PV/WT/BAT configurations.
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worst combination economically with optimum reliability and the graph is
plotted with the annual cost on the y-axis with the iteration number on the x-axis
(Figure 10).

Figure 5.
Illustration of annual cost against iteration number for PV/wt/battery configurations [1].

S/no Npv Nbat pvCost Bat_Cost Conv_Cost Total_Cost LCE LpSP E_Ex

1 95 18 7.62E+04 1.16E+02 8.00E+01 7.75E+04 6.851904 0.173659 0.531792

2 67 18 5.37E+04 1.16E+02 8.00E+01 5.51E+04 9.715386 0.173659 0.371637

3 45 35 3.61E+04 2.26E+02 8.00E+01 3.75E+04 14.46513 0.173659 0.2458

4 57 50 4.57E+04 3.23E+02 8.00E+01 4.73E+04 11.41984 0.173659 0.314438

5 90 16 7.22E+04 1.03E+02 8.00E+01 7.35E+04 7.232565 0.173659 0.503192

6 99 33 7.94E+04 2.13E+02 8.00E+01 8.08E+04 6.575059 0.173659 0.554671

7 88 0 7.06E+04 0 8.00E+01 7.18E+04 7.396941 0.173659 0.491753

8 43 50 3.45E+04 3.23E+02 8.00E+01 3.60E+04 15.13793 0.173659 0.234361

9 78 0 6.26E+04 0 8.00E+01 6.38E+04 8.345267 0.173659 0.434555

10 84 0 6.74E+04 0.00E+00 8.00E+01 6.86E+04 7.749177 0.173659 0.468874

Table 3.
Summary of the results for the hybrid systems obtained by SAO algorithm for 10 runs of the PV/BAT
configurations.
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Figure 6.
Illustration of annual cost against iteration number for PV/battery configurations [1].

S/no Nwt Nbat CwtCost Bat_Cost Conv_Cost Total_Cost LCE LpSP E_Ex

1 29 17 4.77E+03 1.10E+02 8.00E+01 6.09E+03 0.046654 0.093959 7.98E+01

2 61 28 1.00E+04 1.81E+02 8.00E+01 1.14E+04 0.02218 0.093959 1.68E+02

3 100 30 1.65E+04 1.94E+02 8.00E+01 1.79E+04 0.01353 0.093959 2.75E+02

4 16 22 2.63E+03 1.42E+02 8.00E+01 3.98E+03 0.084561 0.093959 4.40E+01

5 30 28 4.94E+03 1.81E+02 8.00E+01 6.32E+03 0.045099 0.093959 8.25E+01

6 94 32 1.55E+04 2.07E+02 8.00E+01 1.69E+04 0.014393 0.093959 2.59E+02

7 100 50 1.65E+04 3.23E+02 8.00E+01 1.80E+04 0.01353 0.093959 2.75E+02

8 17 50 2.80E+03 3.23E+02 8.00E+01 4.33E+03 0.079587 0.093959 4.68E+01

9 53 29 8.72E+03 1.87E+02 8.00E+01 1.01E+04 0.025528 0.093959 1.46E+02

10 33 16 5.43E+03 1.03E+02 8.00E+01 6.74E+03 0.040999 0.093959 9.08E+01

Table 4.
Summary of the results for the hybrid systems obtained by SAO algorithm for 10 runs of the WT/BAT
configurations.
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9. Comparative analysis

It should be noted from the table that only the best results obtained by each
algorithm are used as a metric for comparing the performance of the algorithm.
The algorithm is developed by the phenomenon of smell and the trailing
behavior of agents in identifying smell sources. The results showed that the
improved SAO is efficient and can compete with other computational intelligent
algorithms.

Table 8 illustrating the best, average and the standard deviation values for the total
annual cost, Levelized cost of energy, loss of power supply probability and excess
energy of the standard SAO PV/WT/batt configurations.

Table 9 illustrating the best, average and the standard deviation values for the
total annual cost, Levelized cost of energy, loss of power supply probability and excess
energy of the standard SAO PV/batt configurations.

Table 10 illustrating the best, average and the standard deviation values for the
total annual cost, Levelized cost of energy, loss of power supply probability and excess
energy of the standard SAO WT/batt configurations.

Table 11 illustrating the best, average and the standard deviation values for the
total annual cost, Levelized cost of energy, loss of power supply probability and excess
energy of the improved SAO PV/WT/batt configuration.

Figure 7.
Illustration of annual cost against iteration number for wt/battery configurations [1].
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S/no Npv Nwt Nbat pvCost CwtCost Bat_Cost Conv_Cost Total_Cost LCE LpSP E_Ex

1 0 45 41 0 7.40E+03 2.65E+02 1.07E+02 9.28E+03 0.030066 0.093959 1.24E+02

2 63 100 28 5.05E+04 1.65E+04 1.81E+02 1.07E+02 6.88E+04 0.013512 0.173659 2.76E+02

3 92 36 48 7.38E+04 5.92E+03 3.10E+02 1.07E+02 8.16E+04 0.037384 0.173659 99.58211

4 95 100 22 7.62E+04 1.65E+04 1.42E+02 1.07E+02 9.44E+04 0.013503 0.173659 2.76E+02

5 72 100 41 5.78E+04 1.65E+04 2.65E+02 1.07E+02 7.61E+04 0.01351 0.173659 2.76E+02

6 36 64 50 2.89E+04 1.05E+04 3.23E+02 1.07E+02 4.13E+04 0.021116 0.173659 1.76E+02

7 14 0 15 1.12E+04 0 96.79689 1.07E+02 1.29E+04 46.49506 0.173659 0.068486

8 31 92 50 2.49E+04 1.51E+04 3.23E+02 1.07E+02 4.19E+04 0.014696 0.173659 2.53E+02

9 17 88 22 1.36E+04 1.45E+04 1.42E+02 1.07E+02 2.99E+04 0.015369 0.173659 2.42E+02

10 100 3 50 8.02E+04 4.94E+02 3.23E+02 1.07E+02 8.26E+04 0.421769 0.173659 8.816014

Table 5.
Summary of the results for the hybrid systems obtained by improved smell agent algorithm for 10 runs of the PV/WT/BAT configurations.
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Table 12 illustrating the best, average and the standard deviation values for the
total annual cost, Levelized cost of energy, loss of power supply probability and excess
energy of the improved SAO PV/batt configurations.

Figure 8.
Illustration of annual cost against iteration number for PV/wt/battery configurations using the improved smell
agent optimization [1].

S/no Npv Nbat pvCost Bat_Cost Conv_Cost Total_Cost LCE LpSP E_Ex

1 19 17 1.52E+04 1.10E+02 1.07E+02 1.70E+04 34.25952 34.25952 0.097085

2 78 35 6.26E+04 2.26E+02 1.07E+02 6.44E+04 8.345267 0.173659 0.434555

3 32 46 2.57E+04 2.97E+02 1.07E+02 2.76E+04 20.34159 0.173659 0.171443

4 19 33 1.52E+04 2.13E+02 1.07E+02 1.71E+04 34.25952 0.173659 0.097085

5 36 30 2.89E+04 1.94E+02 1.07E+02 3.07E+04 18.08141 0.173659 0.194322

6 33 40 2.65E+04 2.58E+02 1.07E+02 2.83E+04 19.72518 0.173659 0.177163

7 100 47 8.02E+04 3.03E+02 1.07E+02 8.21E+04 6.509308 0.173659 0.560391

8 100 46 8.02E+04 2.97E+02 1.07E+02 8.21E+04 6.509308 0.173659 0.560391

9 100 29 8.02E+04 1.87E+02 1.07E+02 8.20E+04 6.509308 0.173659 0.560391

10 34 13 2.73E+04 83.89064 1.07E+02 2.90E+04 19.14502 0.173659 0.182882

Table 6.
Summary of the results for the hybrid systems obtained by improved smell agent algorithm for 10 runs of the
PVBAT configurations.
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Table 13 illustrating the best, average and the standard deviation values for the
total annual cost, Levelized cost of energy, loss of power supply probability and excess
energy of the improved SAO WT/batt configurations.

Figure 9.
Illustration of annual cost against iteration number for PV/battery configurations using the improved smell agent
optimization [1].

S/no Nwt Nbat CwtCost Bat_Cost Conv_Cost Total_Cost LCE LpSP E_Ex

1 56 29 9.21E+03 1.87E+02 1.07E+02 1.10E+04 0.02416 0.093959 1.54E+02

2 44 3 7.24E+03 19.35938 1.07E+02 8.87E+03 8.87E+03 0.093959 1.21E+02

3 1 14 1.65E+02 90.34376 1.07E+02 1.86E+03 1.352972 0.093959 2.740283

4 0 16 0 1.03E+02 1.07E+02 1.71E+03 Inf 0.187702 -0.01159

5 12 3.10E+01 1.97E+03 2.00E+02 1.07E+02 3.78E+03 0.112748 0.093959 33.0109

6 8 50 1.32E+03 3.23E+02 1.07E+02 3.25E+03 0.169122 0.093959 22.0034

7 99 28 1.63E+04 1.81E+02 1.07E+02 1.81E+04 0.013666 0.093959 2.72E+02

8 14 26 2.30E+03 1.68E+02 1.07E+02 4.08E+03 0.096641 0.093959 38.51465

9 100 15 1.65E+04 96.79689 1.07E+02 1.82E+04 0.01353 0.093959 2.75E+02

10 100 50 1.65E+04 3.23E+02 1.07E+02 1.84E+04 0.01353 0.093959 2.75E+02

Table 7.
Summary of the results for the hybrid systems obtained by improved smell agent algorithm for 10 runs of the WT/
BAT configurations.
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Figure 10.
Illustration of annual cost against iteration number for wt/battery configurations using the improved smell agent
optimization [1].

Total annual cost LCE LPSP Ex.Energy

Best 1.63E+03 0.013504 0.175063 �0.01159

Avg 5.48E+04 0.017578 0.175063 190.4398

SD 2.91E+04 0.009886 0.004441 87.82577

Table 8.
Illustrating the best, average and the standard deviation values for the total annual cost, Levelized cost of energy,
loss of power supply probability and excess energy of the standard SAO PV/WT/batt configurations.

Total annual cost LCE LPSP Ex.Energy

Best 3.75E+04 6.575059 0.173659 0.234361

Avg 6.12E+04 9.488919 0.173659 0.415107

SD 1.63E+04 3.157008 2.92569E-17 0.117073

Table 9.
Illustrating the best, average and the standard deviation values for the total annual cost, Levelized cost of energy,
loss of power supply probability and excess energy of the standard SAO PV/batt configurations.
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10. Findings of the study

The findings of this study are as follows:

i. The percentage of improvement for the total annual cost and loss of power
supply probability between the standard smell agent optimization and the
improved smell agent optimization is 79% and 53.4% respectively.

ii. The sizing technique is suitable for off-grid and grid configurations.

Total annual cost LCE LPSP Ex.Energy

Best 1.29E+04 0.013503 0.093959 0.068486

Avg 5.39E+04 4.707598 0.165689 1.73E+02

SD 3.07E+04 14.68316 0.025204 1.09E+02

Table 11.
Illustrating the best, average and the standard deviation values for the total annual cost, Levelized cost of energy,
loss of power supply probability and excess energy of the improved SAO PV/WT/batt configuration.

Total annual cost LCE LPSP Ex.Energy

Best 1.70E+04 6.509308 0.173659 0.171443

Avg 4.60E+04 17.36854 3.582245 0.303571

SD 2.81E+04 10.66591 10.77889 0.200066

Table 12.
Illustrating the best, average and the standard deviation values for the total annual cost, Levelized cost of energy,
loss of power supply probability and excess energy of the improved SAO PV/batt configurations.

Total annual cost LCE LPSP Ex.Energy

Best 1.10E+04 0.01353 0.1877 �0.1159

Avg 8.92E+03 886.9933 0.103333 1.19E+02

SD 7.05E+03 2804.288 0.029644 1.18E+02

Table 13.
Illustrating the best, average and the standard deviation values for the total annual cost, Levelized cost of energy,
loss of power supply probability and excess energy of the improved SAO WT/batt configurations.

Total annual cost LCE LPSP Ex.Energy

Best 1.01E+04 0.01353 0.093959 1.46E+02

Avg 1.02E+04 0.038606 0.093959 1.47E+02

SD 5.60E+03 0.026223 0 9.32E+01

Table 10.
Illustrating the best, average and the standard deviation values for the total annual cost, Levelized cost of energy,
loss of power supply probability and excess energy of the standard SAO WT/batt configurations.
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iii. The technique can be used for various component configurations.

iv. The improved SAO is better at detecting and discriminating scent agents in
the environment due to varying olfactory capacity.

v. The improved SAO has a better capacity to follow a scent or odor plum.

11. Conclusions

Unlike in the original SAO, where the olfaction capacity is selected arbitrarily, this
research developed a model to select the olfaction capacity dynamically. This is to
ensure that, the olfaction capacity changes as the algorithm iterate through the opti-
mization process.

This simple modification improved the trailing and tracking to obtain the cost
effective HRES design.

12. Recommendations

The improved SAO has both constant and dynamic variables which play a signifi-
cant role in the general performance of the algorithm. For this reason, the following
areas are highlighted for consideration.

i. Practically, an increase in the temperature of gas molecules increases its
evaporation and the velocity of the gas. In this study, these values are
constant and since smell molecules in SAO are considered as gas molecules, a
method to adaptively select temperature can be considered that the
temperature has a decreasing value as the algorithm moves towards the
optimum solution. This will enable the algorithm to converge faster and
eventually terminate the process when the minimum value of the
temperature is attained.

ii. In this work, all gas molecules are assumed a fixed mass. That is not always
the case so making the mass of the gas molecules adaptive can be considered.
E.g., larger values of mass favor the exploitation capability of the agent while
the smaller value will favor exploration capability.

iii. This suggests the possibility of developing a novel algorithm using other
sensory systems such as sense of taste, sense of feel and sense of hearing. It is
logical to suggest that an algorithm can be developed using other senses like
the use of the senses of smell and taste coordinated through the chemo-
sensation process.

iv. The improved SAO can be hybridized or cascaded with similar computational
intelligent algorithms for improved performance.

v. The improved SAO can be applied to problems related to other fields like
image and signal processing, power systems and sensor networks etc.
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13. Limitations

The aim of the research is the development of an improved smell agent optimiza-
tion sizing technique algorithm for a hybrid renewable energy system for off-grid use
to obtain the most cost effective HRES design. This was achieved by modifying the
smell agent optimization technique and this has been successfully achieved. However,
it could not establish that all the molecules evaporating from a smell source are
accounted for by the agent. It is assumed that the agent only makes its decision on the
smell molecules it perceived.

Author details

Akawu Shekari Biliyok1* and Salawudeen Ahmed Tijani2

1 Department of Elect/Elect Engineering, Nile University of Nigeria, Abuja, Nigeria

2 Department of Elect/Elect Engineering, University of Jos, Nigeria

*Address all correspondence to: scottyonline36@gmail.com

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

24

Renewable Energy - Recent Advances



References

[1] Biliyok AS. Developing an Improved
Smell Agent Optimization Sizing
Technique for a Grid-Independent
Hybrid Renewable Energy System
[thesis]. Abuja, Nigeria: Department of
Electrical Electronic Engineering, Nile
University of Nigeria, Abuja; 2021

[2]Wikipedia. Hybrid Renewable Energy
System. 2020. Available from: https://
en.wikipedia.org/wiki/Hybrid_renewable_
energy_system [Accessed: 09 November
2020]

[3] Chung CJ. Knowledge-Based
Approaches to Self-Adaptation in
Cultural Algorithms [thesis]. MI, USA:
Wayne State University; 1997

[4] Baba Yachilla Alhaji. Development of
an Intelligent Pid Controller Using an
Improved Artificial Fish Swarm
Optimization Algorithm for the Control
of DC-Motor [thesis]. Abuja, Nigeria:
Department of Computer Engineering,
Nile University of Nigeria, Abuja;
2016

[5] Chedid R, Sawwas A. Optimal
placement and sizing of photovoltaics
and battery storage in distribution
network. Energy Storage. 2019;1:e46

[6]Maleki A, Khajeh MG, Ameri M.
Optimal sizing of a grid-independent
hybrid renewable energy system
incorporating resource uncertainty, and
load uncertainty. International Journal of
Electrical Power and Energy Systems.
2016;83:514-524

[7] Vinod Chandra SS. Smell detection
agent-based optimization algorithm.
Journal of the Institution of Engineers
(India). 2016;97(Issue 3):431-436

[8] Iwayemi A. Nigeria’s Dual Energy
Problems: Policy Issues and Challenges.

International Association for Energy
Economics; 2008

[9] Sambaiah KS, Jayabarathi T. Loss
minimization techniques for optimal
operation and planning of distribution
systems: A review of different
methodologies. International
Transactions on Electrical Energy
Systems. 2019;30(Issue 2):e12230

[10] Okanlawon L. The Potential of
Nigeria's Residential Solar Rooftop
Systems. 2015. Available from: https://
www.renewableenergyworld.com/
storage/the-potential-of-nigerias-reside
ntial-solar-rooftop-systems/#gref
[Accessed: 04 March 2021]

[11] Salawudeen AT, Mu'azu MB, Yusuf
A, Adedokun AE. A novel smell agent
optimization (SAO): An extensive CEC
study and engineering application.
Knowledge-Based Systems. 2021;232:
107486

[12] Salawudeen AT, Mu'azu MB, Yusuf
A, Adedokun AE. From smell
phenomenon to smell agent optimization
(SAO): A feasibility study. In:
Proceedings of ICGET. 2018

[13] Salawudeen AT. Development of a
Smell Agent Optimization Algorithm for
Combinatorial Optimization Problems.
Zaria, Nigeria: Department of Computer
Engineering, Faculty of Engineering,
ABU Zaria; 2018

25

Improved Smell Agent Optimization Sizing Technique Algorithm for a Grid-Independent…
DOI: http://dx.doi.org/10.5772/intechopen.105489


