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Chapter

Multi-Robot Mapping Based on 3D
Maps Integration
Michał Drwiega and Elżbieta Roszkowska

Abstract

An unknown environment could be mapped more efficiently by a group of robots
than a single robot. The time reduction due to parallelization is crucial in complex area
mapping. There are two general solutions used in the multi-robot mapping. In the first
one, robots exchange raw data from sensors. The second approach assumes that each
robot creates a local map independently that is exchanged with other robots and
integrated. In this chapter, we present a 3D maps integration algorithm that utilizes
overlapping regions in the feature-based alignment process. The algorithm does not
need any initial guess about the transformation between local maps. However, for
successful integration, maps need to have a common area. We showed that the
implemented method is effective in various environments. The approach has been
verified in experiments with wheeled mobile robots and using public datasets with
octree-based maps.

Keywords: multi-robot mapping, MR-SLAM, feature-matching, octomaps, ICP

1. Introduction

The development of autonomous mobile robots is accelerated by various applica-
tions like underground exploration [1, 2], planetary exploration, autonomous cars,
search and rescue, reconnaissance, home cleaning, lawn mowing, or industrial appli-
cations. In many of these implementations, Multi-Robot Systems (MRS) have several
advantages over a single robot. First of all, task execution time may be reduced due to
parallelization. Moreover, the multi-robot system can provide a higher level of reli-
ability. Even in the case of a single robot failure, other robots can complete the task.
These features are crucial, for example, in search and rescue applications when robots
find survivors in the extreme underground environment after accidents.

The multi-robot mapping of unknown environments can also be performed more
efficiently than a single robot mapping. It is essential in the case of large and complex
area mapping. Moreover, the robots can be equipped with different kinds of sensors to
create more accurate world models. Nonetheless, several challenges specific to multi-
robot systems arise, for instance, proper coordination of robots or handling the com-
munication between them.

In general, there are two solutions used in multi-robot mapping. In the first one,
robots exchange raw data from sensors. The second approach assumes that each robot
creates a local map in the local coordinate system independently. Then local maps are
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exchanged between robots and integrated into one global map [3]. This chapter
focuses on the second solution.

The key part of the map merging process is an estimation of the transformations
between maps. The map alignment process is more challenging than consequent
sensor data frames matching because of larger displacement between maps or mea-
surements. There are several possible solutions on how to find this transformation.
One of them assumes using the robots’ initial poses and their local localization sys-
tems. However, it is not possible in all cases because of localization drift.

Another approach is to exchange and merge maps only during robot meetings. It
assumes the use of additional sensors or methods to detect other robots when they see
each other. Even partial information could be helpful during the transformation
estimation, so in some systems, only the distance between robots is calculated based
on the signal time-of-flight.

It is also possible to use a feature matching-based approach to get the relative poses
of robots. In this case, the features are extracted from maps and matched. However, the
transformation could be estimated successfully only if maps have an overlapping area.

This paper presents the design and implementation of the global 3D maps integra-
tion method with the alignment based on feature matching which does not require an
initial transformation estimation.

1.1 Related work

One of the basic tasks of multi-robot mapping is a merging of local maps from
individual robots into one global map [4–6]. As mentioned before, the most challeng-
ing part of the maps merging is finding the transformation between partial maps.

Some approaches use additional information about transformation between maps.
For instance, it can be acquired by visual or range measurements during the robots
meeting. In ref. [7], an approach has been presented that is based on the direct
measurements between robots. Each direct detection creates a hypothesis that is
validated during the next meetings of the same robots but in other locations. Maps are
merged only if robots meet again and the hypothesis is accepted.

Map merging methods are also based on the idea of finding and matching the
overlapping area in the maps. Such overlapping areas are not known before. In ref.
[8], the system for detection of overlapping regions in maps created with ceiling-
vision-based SLAM has been described. The algorithm can detect the overlapping
regions and estimate transformations between partial maps.

Another approach has been included in ref. [9]. It uses an omnidirectional visual
system and the initial version was intended for only one robot that creates partial
maps. Nevertheless, the method can be applied also to multi-robot systems. The
algorithm uses a vision system to generate coarse transformations between partial
maps. The additional level of validation is based on the calculated bounding boxes
with the Haar-based place recognition method.

The next group includes methods based on sensor measurements matching, for
example, scan matching. In [10], the 2D local maps were merged with SIFT (Scale-
Invariant Feature Transform) algorithm that allows to extract, describe and match fea-
tures. Another optimization technique that was used is the ICP (Iterative Closes Point)
[11, 12] which finds a rigid transformation between two point sets. It has been utilized
to find a transformation between consecutive 2D scans during the map creation process.

In ref. [13], it has been presented as a spectral information-based method dedi-
cated to 2D maps. It assumes that the map merging problem is a binary image
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matching problem. The algorithm allows using for instance Hough transforms to
decompose the transformation into separate rotation and translation. Another method
that uses geometric and topological similarities of vertices and edges to find a match
between two maps has been presented in ref. [14].

A major part of the mentioned methods was supposed to be used with 2D maps.
However, 3D maps have received much attention in recent years due to the growing
demand for robotics services in complex environments to coexist with humans but
also challenging extreme underground or underwater scenarios. The world represen-
tation in three dimensions allows robots to operate in multi-level buildings, in
cluttered rooms but also in rough terrain. Moreover, such maps have better perfor-
mance in heterogeneous multi-robot systems [15–17], especially when robots are
equipped with different sensors. Several studies, for example [18, 19], have proposed
solutions for the octomaps [20] integration problem with local alignment methods like
ICP. It is worth mentioning that the octomap [21] is a tree-based representation built
upon a multiple dividing of the world into eight cubic parts. Such representation is
memory efficient and could be successfully used for large environments.

The mentioned map integration methods have a significant drawback. They do not
optimize solutions in the background. It means that once maps are aligned the trans-
formation is not corrected anymore. To solve this issue graph-based methods were
developed [22] that benefit from backend graph optimization.

In ref. [23], local alignmentmethodNDT (Normal Distributions Transform) has been
presented.The comparisonofNDTwith ICP[24] shows that it ismore efficient and inmost
cases, it converges fromabroader rangeof initial poses.However, authorshavenoticedalso
that theNDT is less predictable than ICP in caseswith smaller initial pose errors.

The ref. [25] presents the 3D point sets alignment algorithm that utilizes the
transformation into the Radon/Hough domain.

As in opposition to the methods based on the local features description and
matching, in ref. [26], an approach with higher-level descriptors based on lines or
planes has been presented. Authors have noticed that higher-level descriptors improve
performance in the case of small maps overlapping.

1.2 Contribution

This chapter presents a developed global 3D maps integration algorithm with the
alignment based on feature matching. In contrast to many other approaches, it does
not require an initial transformation estimation and is not sensitive to the local min-
ima. The approach is based on a classic computer vision pipeline that has been mod-
ified and applied to the 3D maps integration. Moreover, the introduced model division
into submodels procedure improves the feature matching process performance and
increases the efficiency of data processing in many cases.

Themethod uses octree-basedmaps (octomaps) which allow to utilize the additional
information like nodes’ occupancyprobability in the alignment process. The approachwas
verified inmultiple test cases based on data from real robots. Furthermore, the algorithm
has been implemented in C++ and released as open-source software (3d_map_server [27]).

1.3 Problem statement

Let us consider a system ofN robots, in which each robot creates its partial mapMn

in a local coordinate system Tn. Each map consists of a set of Nn nodes
Mn ¼ m1, m2, … , mNnf g. The maps integration problem can be defined as the creation
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of the consistent model of the world M based on a set of k separate models M0 ¼
M1, …Mkf g (Figure 1).
In the next part of the chapter, the problem has been narrowed down to only two

input models. However, in the case of more than two maps, they can be integrated
sequentially.

2. Maps integration method

The presented maps integration algorithm consists of a few processing steps
(Figure 2). On the input, there are two 3D maps (octomaps). To integrate them
successfully, they must have an overlapping area. The map merging process consists
of two major steps: finding the transformation between maps and data aggregation.
On the output of the algorithm, there is an integrated map.

The most complex part of the algorithm is the process of the transformation
finding. It consists of three steps: model extraction, global alignment, and local align-
ment. In the presented pipeline, map 2 is used entirely but map 1 is used to extract n
models.

In the global alignment, there are common operations for both maps, like filtra-
tion, keypoints detection, and feature description. The feature descriptors from both
maps are matched to each other with dedicated algorithms. Because one map has
been divided into multiple models, the result of the initial alignment consists of n
hypotheses H ¼ h1, … , hnf g (each for a separate model).

Each hypothesis is validated with quality measures, for example, the fitness score.
Finally, the best solution is selected from the set of accepted hypotheses HA. If at least
one hypothesis is accepted then the maps merging process is continued and the final
result is the transformation that transforms one of the maps into the coordinate
system of the other map. Otherwise, the processing is stopped at this point.

If the solution has been found in the previous step, then it is corrected with a local
alignment algorithm. To generate the final map that consists of partial maps, it is
necessary to transform maps to the common coordinate system and aggregate data
from them into one model.

2.1 Models extraction

As mentioned before, one map is divided into multiple rectangular blocks that are
used as models. Several cases of relations between maps have to be considered
(Figure 3). The map integration can be finished successfully only in the first three
cases when the area that corresponds to the model could be found in another map. In

Figure 1.
Partial maps created by robots and merged into one model.
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the last case, the integration method will be stopped because there is no common area
that could be matched.

The maps integration process can be speeded up when robots start exploration
from the same place and explore separate parts of the environment. Therefore,
excluding the kidnapped robot problem, and a case when one of the maps is entirely
included in the second one, the overlapping area begins on the borders of both maps.

Figure 2.
The architecture of the developed maps integration algorithm.

Figure 3.
Maps overlapping cases (I-III) and the case when there is no common part between maps (IV).
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Because of that, the processing of the map starts from the outside part and proceeds in
a spiral toward the center of it. Concurrent models are processed in parallel until an
acceptable solution is found.

If robots move on a flat surface, maps are limited on the Z axis and wider in x and y
axes. In such a case, the map division in two dimensions is sufficient. Nonetheless, in
specific cases like multi-level building maps, the model can be extracted from one of
the maps based on the 3D grid (Figure 4).

2.2 Data preprocessing

The first step of data processing is pass-through filtration which rejects points that
are not inside the specific area. For instance, the maps are reduced in the z-axis to get
rid of the ground and reduce the number of points, and speed up further calculations.

Then, the point cloud is downsampled with a voxel grid filter. The idea behind it is
to divide space into voxels with specified sizes and represent each voxel by a center
point calculated as an approximation of all original points from this voxel.

The last step is outliers removal based on a statistical analysis of neighboring
points. The points that do not meet the requirements are removed from the set.

2.3 Keypoints selection

The feature description is a computationally expensive operation. Therefore, the
descriptors are computed only in carefully selected points - key points. The keypoints
should be distinctive and repeatable to deal with noises and different points of view.

In this work, the ISS (Intrinsic Shape Signatures) [28] detector has been used. The
ISS detector determines the relevance of the point based on eigenvalues of the matrix
created for the support (local neighborhood) of a specific point. Let X ¼
x1, x2, … , xNf g be a support of the keypoint k. Then,

Σk ¼
1

N

X

N

i¼1

xi � pk
� �

xi � pk
� �T

, (1)

be covariance matrix calculated for the support of k, where

pk ¼
1

N

X

N

i¼1

xi (2)

Figure 4.
The models extraction procedure with processing order - 2D (a), 3D case (b), and an example with real map (c).
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is a mean point. The keypoint is relevant only if

λ2

λ1
≤ γ12∧

λ3

λ2
≤ γ23, (3)

where γ12 i γ23 are arbitrary selected parameters and λ1 < λ2 < λ3 are eigenvalues of Σk.

2.4 Features description

Features description creates a local surface representation that could be easily
compared what is crucial in the process of similar features finding. Therefore, the local
descriptor is computed in each keypoint (Figure 5). Local descriptors describe a local
neighborhood of a query point.

A local descriptor that was used is a SHOT (Signature of Histograms of Orientations)
descriptor [29]. It uses the spherical support that is divided into spatial segments
(Figure 6). For each segment, it is calculated a histogram representing the distribu-
tion of the cos θi, where θi is the angle between the surface normal in each point from
the support and the surface normal vector n in the query point. Finally, all local
histograms are combined into a vector that is the descriptor. It is also possible to
utilize texture information like a point color received from the RGB-D sensor.

Figure 5.
Points on the example map, for which descriptors were calculated.

Figure 6.
The spherical support of SHOT descriptor divided into 32 spatial parts and histogram of cos θi .
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2.5 Feature matching

To estimate the transformation between maps, it’s necessary to find similar fea-
tures in two maps and matched them to each other. The first feature descriptors set

DM is created for the keypoints of the model M0 ¼ mijmi ∈
3, i ¼ 1, … , NM

� �

and

the second set Ds for the scene S0 ¼ sijsi ∈
3, i ¼ 1, … , NS

� �

. During the matching

process, for each keypoint from the set M0, it should be found the point in S0 with a
similar feature descriptor. Finally, it is calculated a transformation that minimizes
distances between pairs of descriptors.

Two matching methods were used. The first is a randomized algorithm SAC
(Sample Consensus) [30]. The idea behind it is to use a random search of
corresponding features in two sets. The algorithm in each iteration consists of three
steps:

• Randomly select k points from the set M0 and add them to set

P ¼ pijpi ∈
3, i ¼ 1, … , k

� �

,

• For each pi ∈P, find points with similar descriptors in S0 and randomly select
from them the one that will make a pair with the point from P,

• For each pair of corresponding points, compute the transformation between
points and check the error metric.

The second global alignment method is a GCC (Geometry Consistency Clustering)
[31]. It uses the correspondences grouping based on the geometrical distances
between them (Figure 7).

2.6 Local alignment

Finally, to improve the previous solution, the local alignment is applied. For this
purpose, the scene is cropped to the size of the model inflated by a distance dm
(Figure 8). Then, the ICP-based algorithm is used to correct a transformation

between the scene S ¼ sijsi ∈
3, i ¼ 1, … , NS

� �

and the model

M ¼ mijmi ∈
3, i ¼ 1, … , NM

� �

. The method matches one map (scene) S to the
second one M called model in a way that minimizes distances between pairs of points

Figure 7.
Correspondences c1,… ,cn grouping in GCC method based on distances between point features in two sets.
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(nearest neighbors) from both sets. It is done in multiple iterations and a single k-th
iteration consists of the following steps:

• ∀mk
i ∈M find the closest point (nearest neighbor) ski ∈ S,

• Minimize distances between corresponding points pairs with the least squares
method

E R, tð Þ ¼
1

NM

X

NM

i¼1

Rmi þ t� ski
�

�

�

�

2
, (4)

• Transform model according to estimated rotation R and translation t

Mkþ1 ¼ RMk þ tk, (5)

• Terminate if the error value is below the threshold τ.

Also, other methods were used for the local corrections. The first is the OICP
(Occupancy Iterative Closest Point) which is a variant of ICP that utilizes additional
information - occupancy in minimized goal function. Such information is included in
occupancy-based maps like octomaps. The second method was the NDT [23] which
divides space into voxels and estimates normal distribution parameters in each voxel.
Parameters of the normal distributions are calculated with Eqs. (1 and 2).

2.7 Transformation evaluation

The solutions have been evaluated with a computed fitness score

f s ¼
P

n

i¼1

pi � qi
�

�

�

�

2

nw
wi, if nw ≥ nth

þ∞, otherwise

8

>

<

>

:

: (6)

It represents the mean error between n pairs of corresponding points pi, qi
� �

from

two data sets P ¼ pijpi ∈
3, i ¼ 1, … , n

� �

and Q ¼ qijqi ∈
3, i ¼ 1, … , n

� �

. Never-
theless, the basic fitness score that is a mean distance is not very robust, for instance, it

Figure 8.
The scene cropped to the size of the inflated model. On the right side, there is a model matched to the scene.
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can be calculated on the basis of a small number of pairs. Because of that, binary
weights

wi ¼
1, if pi � qi

�

�

�

�≤ dth
0, otherwise

(

, (7)

were calculated for each pair depending on the maximum distance between
corresponding points dth. Due to that, only pairs with smaller distances are considered
in calculations. Also, if the number of pairs with a positive weight

nw ¼
X

n

i¼1

wi (8)

is below the threshold value nth, the fitness score is set to infinity. The presented
metric avoids false good nodes matching because of the use of a threshold. Without it,
it is possible to get a low fitness score only based on a small number of points pairs.

3. Validation

The presented maps integration method has been validated in numerous experi-
ments. The first set of experiments was based on data from public datasets from
Freiburg University. Another experiment contains data from two Tuerlebot robot
runs. Finally, different map alignment methods were compared.

3.1 Experiments with public datasets

The dataset prepared at Freiburg University has been released under the Creative
Commons Attribution License CC 3.0 [32]. It contains maps created with a 2D SICK
LMS laser scanner that was placed on a pan-tilt unit to get the additional dimension.
As a result, the accuracy of maps is quite better than the accuracy of maps created
with the RGB-D sensor but they do not provide information about the surface color.

Figure 9.
Global alignment example. A model (yellow) has been extracted from the one map (red) and it was matched to
the second map (blue).
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Figure 9 shows the example of the global alignment process. The selected results of
the maps integration have been placed in Figures 10 and 11. Other results are shown
in Table 1, where:

• n1 and n2 are sizes (a number of nodes) of input maps,

• TR is a real transformation between maps in format x, y, z, roll, pitch, yawð Þ,

• r is an approximated size of an overlapping area of both maps as a percentage of
the full map,

• f s is a fitness score,

Figure 10.
Indoor maps integration (a) and an integrated map (b).

Figure 11.
Outdoor maps integration (a) and the integrated map (b).

n1 n2 TR x, y, z, R, P, Y
� �

r f s [m] Terr t [s]

51k 67k (10, 1.5, 0.1, 3°, 2°, 25°) 12% 0.02 0.6 4.3

(10, 1.5, 0.1, 3°, 2°, 25°) 24% 0.002 0.16 2.1

(10, 1.5, 0.1, 0,0,0°) 36% 0.0006 0.10 1.9

(12, 6, 0.5, 5°, 5°, 60°) 24% 0.0009 0.21 2.4

Table 1.
Results of transformations estimation.
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• Terr is an error value between real and estimated transformation and is calculated

as matrix norm Terr ¼ ∥Test � T�1
R � I4∥F,

• t is a processing time in seconds.

3.2 Experiment with turtlebots robots

To validate the integration algorithm with data captured with RGB-D sensor, the
experiments with two mobile robots Turlebots (Figure 12) were carried out. The
Turtlebots were equipped with an odometry system, lidar Hokuyo UST-10LX and
RGB-D sensor Intel RealSense D435.

The system used for the octomaps creation (Figure 13) was built upon the ROS
framework and the GMapping SLAM. During the online session, the 2D SLAM

Figure 12.
Turtlebot robot equipped with multiple sensors used for localization and mapping.

Figure 13.
The high-level control system of the mobile robot used to create the octomap.
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algorithm estimated robot pose based on data from IMU, lidar, and odometry. On the
other hand, the offline 3D map creation (octomap) used data from RGB-D sensor and
pose estimated by SLAM.

The experiments with mobile robots were carried out in a robotics laboratory and
corridor localized on the campus of Wrocław University of Science and Technology
(Figure 14). Experiments results have been shown in Figures 15 and 16.

Figure 14.
The paths of two robots followed during the experiment. The paths are presented on the 2D map created for the
same localization with lidar and GMapping SLAM.

Figure 15.
An experiment with a mapping of the laboratory in WrocÅ‚aw University of Science and Technology. The figure
shows maps before merging (a) with extracted (yellow) and matched model (green). On the other side, there is a
merged map (b).

Figure 16.
Integration of maps from the same location but with different initial poses of robots.
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3.3 Comparison of the alignment methods

The performance of alignment algorithm variants has been evaluated in
multiple testing cases which contain distinctive maps. The mean value Terr has
been calculated for all testing cases. Additionally, it was verified if a division of one
map into models (model extraction process) could speed up the alignment
procedure. Therefore, there are the comparison of two kinds of methods, with DIV
postfix and without it. Added postfix means that method uses a model extraction
procedure.

The diagram (Figure 17) shows mean errors for different local alignment and
global alignment methods checked separately. On the other hand, the diagram
(Figure 18) contains mean errors for combinations of local and global alignment
methods. Additionally, Figure 19 shows how map overlapping percentage affects the
alignment error.

Figure 17.
Mean error between real and estimated transformations for (a) local alignment methods, and global alignment
methods.

Figure 18.
Mean error between real and estimated transformations for combination of global, and local alignment methods.
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4. Conclusions

The chapter presents a 3D maps integration algorithm that does not need initial
knowledge about the relative poses of robots. Instead, it uses the feature extraction
and matching idea. Therefore, the algorithm needs an overlapping area between maps
to integrate them successfully.

The algorithm validation is based on public datasets with octomaps and experi-
ments with two mobile robots. Multiple variants of the method have been validated
and compared, especially different combinations of local and global alignment
methods, but also additional model extraction procedure.

The results show that the approach is effective in various environments, especially
if maps have at least 15% of common area. The best results have been noticed for
probabilistic SAC method with local alignment OICP and enabled models extraction
procedure.

On the other hand, the maps integration method has some limitations. The com-
putational cost of the data processing is significant, especially the cost of the global
alignment step that is necessary always during the first maps exchange between
specific pair of robots. The whole integration process takes about 5 seconds in the case
of two maps with sizes about 20m� 20m� 2m and resolution equal to 5 cm. It has
been also noticed that it is hard to find a transformation between maps that contain a
ground plane because the ground plane does not contain enough distinctive features.
Nonetheless, it can be easily improved, by removing the ground plane from maps. The
scaling also needs some attention, as the method was already tested only with two
robots.

A significant drawback of the approach that is still not addressed is the loop closure
problem. In the current version, it was assumed that local alignment errors are small
enough and their influence is negligible. However, it is not true and multiple maps
integrations lead to increased errors, what has an impact on the quality of the output
map. This issue may be solved by providing a high-level graph-based approach with
graph optimization to manage multiple partial maps from robots.

Figure 19.
Comparison of mean error depending on maps overlapping percentage.
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