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Abstract

Magnetic Resonance Imaging (MRI) is one of the most used imaging modalities 
for the identification and quantification of various types of cancers. MRI image 
analysis is mostly conducted by experts relying on the visual interpretation of the 
images and some basic semiquantitative parameters. However, it is well known that 
additional clinical information is available in these images and can be harvested using 
the field of radiomics. This consists of the extraction of complex unexplored features 
from these images that can provide underlying functions in disease process. In this 
paper, we provide a review of the application of radiomics to extract relevant information 
from MRI Diffusion Weighted Imaging (DWI) for the classification of cervix cancer. 
The main research findings are the presentation of the state of the art of this applica-
tion with the description of its main steps and related challenges.

Keywords: diffusion-weighted imaging, cervix cancer, tumor classification,  
machine learning, radiomics

1. Introduction

Cervical cancer (CC) has been determined to be the fourth leading cancer-induced 
cause of death in developed countries, and the second most common cause of death 
(due to cancer) in developing countries. It is also the second most occurring form of 
cancer among women [1]. Although, CC incidence is decreasing, thanks to human 
papillomavirus screening and vaccination programs, it remains a major health issue 
with around 604,000 new cases worldwide per year and more than 340,000 deaths 
per year [2, 3].

Treatment options for CC can be used separately or combined, and the choice 
of treatment methods depend on various prognostic risk factors including FIGO 
(Federation of Gynecology and Obstetrics) stage, histology, tumor volume, lymph 
node metastasis (LNM), and single-gene markers [4]. There are five main treatment 
methods that can be utilized for CC [5]. The first treatment option is surgery that 
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ranges from conization to total hysterectomies. Surgery is the gold standard for the 
treatment of early-stage CC (FIGO 1A1 IIA2). Other methods of treatment include 
external beam radiation therapy, which is often used with chemotherapy to target 
locally advanced CC (FIGO stage IIB IVA). In many cases, this is followed by internal 
beam radiation therapy (brachytherapy). Finally, immunotherapy and targeted 
therapy that have recently made some progress currently represent two clinical 
options for treating advanced recurrent CC. Despite the available treatment regi-
ments, the 5-year overall survival is only 66% with considerable differences according 
to tumor classification [6]. The classification of CC in terms of tumor stage, grade, 
and histological type is of great importance in the clinical decision-making.

Medical images are increasingly used for diagnostic, therapy planning, and follow-
up purposes by clinicians, thanks to the digitization of the information generated dur-
ing a clinical routine. Moreover, visual interpretation of the images is moving towards 
a new type of radiology that integrates quantitative data (radiomics) extracted from 
the images [7]. Radiomics can be used to predict clinical information from medical 
images. The clinical information could be prognostic information (such as grade, 
stage, subtype, …), a follow-up of pathological condition (such as tumor growth), or 
an assessment of treatment efficacy (such as patient survival) [8–10]. Furthermore, 
radiomics could be used to predict or decode hidden genetic and molecular traits for 
decision support [11–13].

Although several medical imaging modalities are available, MRI has become the 
modality of choice for the detection and quantification of various cancers due to its 
capability of acquiring excellent soft tissue contrast and functional images. As such, 
DWI, which allows for noninvasive analysis of tissues based on the random trans-
lational molecular motion of water molecules, presents various advantages for the 
characterization of the tumor and the understanding of its biology [14].

The purpose of this review is to present diffusion-weighted derived radiomics 
and their application for the classification of cervix cancer. The research findings 
represent the state of the art in the application of radiomics to the specific task of 
cervix cancer classification. A special focus was on the use of diffusion-weighted 
imaging and derived parameters. The feasibility of this task was demonstrated 
with a literature review of over 18 papers on the subject that were published in the 
last ten years. Furthermore, other findings of this review paper were the analysis of 
different challenges facing this application. Section 2 presents the physics of DWI 
and its major parameters and models are described. Section 3 gives a summary of 
the radiomics workflow. The description of the CC classification is given in section 
4. Finally, we discuss the challenges for the use of radiomics in particular those 
based on DWI and possible future directions to move toward their application in 
clinical practice.

2. Physics of diffusion-weighted imaging

DWI measures the diffusion of water molecules within cellular tissues [15]. 
Diffusion stands for the random movement of molecules such as water within tissues 
propelled by thermal energy. DWI is achieved by applying diffusion sensitization 
gradients on either side of the 180° refocusing pulse of a spin echo sequence. The 
contrast of DWI is a result of the variance in the water molecules mobility in different 
regions [16]. This makes DWI sensitive to smaller abnormalities in tissue; hence, it is 
able to provide a more detailed characterization of the tissue [15].
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In a DWI sequence, the parameter “b-value” measures the degree of diffusion and 
is expressed in s/mm2.The “b-value” is proportional to the square of the amplitude 
and duration of the gradient applied. The choice of b-values is crucial for the acquisi-
tion of DWI; Figure 1 demonstrates how the “b-value” impacts the acquisition and in 
particular the tumor contrast. It depends on the anatomical site of the tumor as well 
as the model chosen for quantitative analysis. DWI models include mono-exponential 
model, intravoxel incoherent motion (IVIM), the Kurtosis model, and the stretched 
exponential model. These models vary depending on the perfusion and diffusion 
information that are considered.

The mono-exponential model is the simplest and most used for the analysis 
of DWI. It assumes a mono-exponential decay of the signal S with increasing 
b-values [16],

 
0

ADC bS S e-=  (1)

The ADC parameter describes the water diffusion in the tissue when derived from 
high b-values (> 200 s/mm2) and describes perfusion information when derived from 
low b-values (0 – 50 s/mm2). However, when it is acquired from a mixture of low and 
high b-values, diffusion and perfusion effects are incorporated.

In the IVIM model, the signal decay is modeled using a bi-exponential function, 
where the diffusion and perfusion parameters are included separately,

 ( )( )- × - ×= + -*

0
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D b D bS S fe f e  (2)

f and *D are the perfusion fraction (of the received signal) and the pseudo-
diffusion coefficient (the diffusion caused by flowing blood), respectively, and D  is 
the diffusion coefficient (clear of perfusion effects). In general, the IVIM model can 
produce the decayed signal of DWI more accurately [16].

The Kurtosis model is a corrected model of the previous two models, which 
considers the non-Gaussian diffusion behavior by an extra fit parameter, which is the 
kurtosis fit parameter K. The mono-exponential and IVIM models assume an isotro-
pic Gaussian diffusion which is not always the case due to the interactions of the water 
molecules with micro components such as cell structures. The parameter K is comple-
mentary to the perfusion and diffusion parameters found in the mono-exponential 
and IVIM models, and DK is the kurtosis-corrected diffusion coefficient.

 
- +

=

2 21

6

0

K KbD b D K

S S e  (3)

Figure 1. 
(a) b = 0 no diffusion weighting. Image equivalent to T2 weighted image. The bladder is consequently brighter 
than the cervix tumor, (b) b = 100 intermediately diffusion-weighted image, and (c) b = 1000 strongly diffusion-
weighted image. The cervix tumor is brighter compared to the bladder.



Biomedical Signal and Image Processing - Advanced Imaging Technology and Application

4

The kurtosis model requires obtaining very high b-values that should exceed 
1000 s/mm2.

Finally, the stretched exponential model has the equation,

 ( )
a

-

=
0

bDDCS S e  (4)

where a is the stretching parameter that describes the non-mono-exponential 
decay curves, and it lies between 0 and 1, and DDC is the distributed diffusion 
coefficient [17].

For the models based on both perfusion and diffusion information, a range of low 
b-values and high b-values are needed. For a voxel-by-voxel analysis of DWI, given 
very high b-values, the signals could be impacted by a high level of noise. In order to 
select the optimal b-values for a specific model and a specific anatomical site, a care-
ful assessment of the signal decay curves is necessary [16].

The biological and physiological interpretation of the measurements that are 
extracted from DWI using a given model is not straightforward. In the literature, for 
cervix cancer, the mono-exponential model was mainly used with the interpretation 
of ADC values [18–28]. For instance, it was shown that the value of ADC for CC was 
lower than the value of normal cervix tissue (Chen et al. [15], McVeigh et al. [29], 
Naganawa et al. [20]). This reduction is expected to be due to hypercellularity within 
malignant tissues. These studies also determined that the completion of chemoradio-
therapy resulted in increased ADC values, which could be explained by the removal 
of hypercellular tumoral tissues as well as the presence of edema, hyaline degenera-
tion, and granulation tissue in the cervix post-therapy.

The impact of the choice of DWI models in differentiating between subtypes and 
grades of cervical tumors was studied by Winfield et al. [17]. The authors demon-
strated that ADC alone was sufficient to predict tumor grade whereas the non-mono-
exponential models (2), (3), and (4) provided a better characterization of tumor 
histological type. Therefore, Winfield et al. [17] concluded that the non-mono-expo-
nential model parameters described different aspects of the tumor microstructure.

The following section describes the steps leading to the implementation of 
radiomics analysis for the prediction of prognosis factors.

3. Radiomic workflow

Radiomics is an emerging research field, where medical images are converted 
automatically into large number of quantitative features (radiomic features) that can 
be used for the characterization of tumor phenotypes [11]. Several oncological studies 
showed that radiomics are significantly associated with various biological properties 
of the tumor ranging from genetic aspects to tumor grading or staging and also to the 
prediction of the response to treatment [30–35]. The radiomic analysis workflow is 
composed of five steps as seen in Figure 2.

The first step in the radiomics workflow is the selection of the images. MRI, which 
offers high contrast and additional functional characterization of the soft tissues, 
represents the method of choice for radiomics calculation. However, MRI radiomics 
have not been investigated extensively in comparison to popular modalities, such as 
CT and PET [36].

The tumor is conventionally delineated manually by the radiation oncologist 
during treatment planning, which is not only time-consuming but also a source of 
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interobserver variations. Automatic contouring of clinical target volume (CTV) and 
OARs has been clinically applied using atlas-based and model-based segmentation 
methods, which are now part of commercial radiotherapy planning devices. However, 
the automatic segmentation of the gross tumor volume (GTV) represents a difficult 
task and has no clinical applications so far. To the best of our knowledge, there is only 
one recent study that relies on deep learning for automatic segmentation of the GTV 
in CC from DWI [37].

Most frequently, open source software (such as LIFEx [38], MITK [39], 
PyRadiomics [13], or CERR [40]) or commercial ones (such as TexRAD [41]) is used 
to extract the radiomics features from the GTV. Three types of imaging features could 
be identified: shape, first order, and textural. Shape features describe the 3D geometric 
properties of the tumor while the first order features describe tumor intensity dis-
tribution. Texture features, which describe the intra-tumor heterogeneity, could be 
extracted from the gray level co-occurrence, gray level run length, gray level size zone, 
neighboring gray tone difference, and gray level dependence matrices. An image pro-
cessing such as wavelet decomposition could be performed prior to the calculation of 
the first-order statistics and the textural features, which gives supplementary features.

Finally, the last two stages of the radiomics workflow constitute the machine 
learning model (MLM). Many radiomic features could be extracted from images. 
However, some features could be simply noise or correlated to each other. Therefore, 
it is important to perform feature selection to consider the most useful and unique 
features, which increases the MLM performance and reduces the computation time 
of the classifier. There are three types of feature selection techniques: filter, wrap-
per, and embedded methods [42]. Filter methods are independent approaches while 
wrapper and embedded methods are classifier-dependent approaches. Filter methods 
are computationally efficient and have high generalizability and scalability. Filter 
methods can be supervised or unsupervised depending on the use of the targeted 
labels. Supervised filters can be categorized into univariate and multivariate methods. 
Univariate methods perform ranking of individual features according to specific 
statistical criteria without considering the interrelationship between features and 
select the N top-ranked features. Multivariate techniques consider dependency 
between features. Unsupervised filter methods are based on dimensionally reduction 
algorithm and do not require information about the targeted labels [43].

Figure 2. 
The five steps of MRI-based radiomics workflow for cervical cancer. It includes the selection of the images to be 
used, the delineation of the tumor, the extraction and selection of the radiomics features, and finally the prediction 
of given clinical data.
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Wrapper methods rely on a specific machine learning model that is fitted to 
data to find the optimal features. The best combination of features according to 
an evaluation criterion is selected. Wrapper methods suffer from high computa-
tion time for dataset with many features and a high chance of overfitting. Two 
techniques under wrapper methods are forward selection (FS) and bi-directional 
elimination (BDE) [42].

In embedded methods, the optimal subset of features is searched while building a 
classifier. Embedded methods are computationally efficient in comparison to wrap-
pers but use a strict classifier assumption and hence lack generalizability. Table 1 
summarizes the feature selection algorithms type cited above.

Following the filter or the wrapper features selection, the remaining, most signifi-
cant features are then fed into a machine learning classifier that can determine the 
probabilities of the tumor being in the different categories. This classifying procedure 
ends when the classifier of choice is trained on appropriate training data set with 
the resulting performance tested on validation and testing sets. The validation set is 
used to optimize the parameters of the model. The testing set is used to evaluate the 
performance of the trained/optimized model on data that was never used for training 
or validation.

4. Application of DWI-based radiomics to the classification of CC

The classification of CC consists of the determination of the histological type, 
the grade, and the stage of the tumor. The classification is important for the prog-
nosis of the disease and can provide information that can be used to predict future 
patient outcomes. A summary of the studies, published in the last ten years for the 
classification of CC from DWI using radiomics analysis, is given in Table 2. For each 
publication, the authors, the year of publication, the type of the study, the number 
of patients, the main conclusion, the evaluation metrics, the radiomic features, 
the machine learning model (MLM) and statistical analysis done, and the modal-
ity used are given. In these studies, multiparametric MRI (T1-weighted MRI (T1), 
T2-weighted MRI (T2), DWI, DCE-MRI), a single sequence, or derived images from 
the models of DWI were investigated.

Feature selection 

type

Learning type Descriptive 

statistics

Algorithm name

Filter Supervised Univariate Wilcoxon rank, ANOVA-F, Mutual information 

[44]

Filter Supervised Multivariate Minimum Redundancy, Maximum Relevance 

[45], ReliefF [46]

Filter Unsupervised N/A Principal Component Analysis [43], Independent 

Component Analysis [43]

Wrapper Supervised N/A Forward Selection [42], Bi-Directional 

elimination [42]

Embedded 

Methods

Supervised N/A Elastic net regression, Lasso regression [47]

Table 1. 
Examples of feature selection algorithms.
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Authors Year T NP Main Conclusion Evaluation metrics Radiomic features MLM and statistical 

analysis

MOD

Zhang et al. 

[48]

2021 p 76 Differentiation of cervical cancer 

subtypes and SCC grades possible 

with DKI features

AUC First-order texture features Mann-Whitney U test and 

ROC curve for features 

selection, multivariate 

logistic regression analysis

DKI, DWI

Wei Wang et 

al. [49]

2021 R 96 Promising methods to differentiate 

between AC and SCC

AUC, ACC, SE, SP 105 RF Clustering and logistic 

regression

T1c, T2, 

ADC

Jajodia et al. 

[50]

2021 R 83 Prediction of FIGO stage in addition 

to recurrence, distant metastasis, 

lymph node metastasis is feasible

AUC, Cohen’s Kappa 24 RF were selected (first-

order, texture, wavelet)

k- nearest neighbors, 

regularized random forest

DWI, ADC

Mandi 

Wang et al. 

[51]

2020 R 95 It is possible to discriminate 

histological subtypes, tumor grades, 

FIGO stages, and nodal status

AUC First-order texture features Elastic net for features 

selection, multivariable 

support vector machine 

model for prediction

T2, T1c, 

ADC

Yamada et 

al. [52]

2020 R 58 RF model helps in differentiating 

grade and stage of the tumor better 

than adc values

AUC 45 RF (Shape, histogram- 

based, textural)

Random forest ADC, DWI

Li et al. [53] 2020 R 63 The ADC values showed a significant 

difference in grade prediction

AUC, ACC, SE, SP Average values of ADC 

and T2 in the tumor

t-test, Wilcoxon signed-rank 

test, and the chi-square test 

used for comparison

T2, DWI 

ADC

Xiao et al. 

[54]

2020 R 233 A radiomics nomogram can predict 

the LNM in patients with early-stage 

CC

AUC, SE, SP, 

C-index, Hosmer–

Lemeshow test

first-order, shape-based, 

textural, and wavelet RF

Feature selection by LASSO, 

multivariate logistic 

regression analysis

T1, T2, T1c, 

DWI, ADC

Umutlu et 

al. [55]

2020 R 30 The prediction of N and M stages 

based on radiomic analyses is feasible

AUC, SE, SP 45 features from each 

modality (first-order, 

GLCM, GLRLM)

Prediction of M-stage 

(N-stage) using SVM 

(RBF-SVM) with SVM-RFE 

(MIFS) as feature selection

F-FDG PET/

MR, ADC

Kitajima et 

al. [56]

2020 R 62 pelvic MRI provides reliable imaging 

findings for T staging

AUC, ACC, SP, SE, 

PPV, NPV

Shape, intensity, and 

texture features

The stage is determined 

from MRI by experts based 

on [57]

T2, T1, T1c, 

DWI
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Authors Year T NP Main Conclusion Evaluation metrics Radiomic features MLM and statistical 

analysis

MOD

Liu et al.[14] 2019 P 160 Radiomics analysis of ADC map 

helps with differentiating tumor 

grade

Misclassification 

error

208 RF (histogram-based, 

textural, LoG)

Lasso regression T2, ADC, 

DWI

Wu et al. 

[58]

2019 R 189 MRI-based radiomics analysis may 

predict lymph nodes metastasis 

status

AUC, SE, SP 1299 RF (shape, intensity, 

texture, wavelet, LOG) 

features from intra- and 

peri-tumoral tissues

Feature selection by LASSO 

regression, prediction by 

SVM

T2, DWI, 

ADC

Ciolina et al. 

[59]

2019 R 28 RF may differentiate histological 

tumor types

SE, SP Mean, skewness Unpaired t-test T2, ADC

Panying 

Wang et al. 

[60]

2018 R 50 Differentiating grade and stage is 

feasible

AUC, ACC, SE, SP Mean values of ADC, Dapp 

Kapp

One way ANOVA test, 

Pearson’s correlation 

coefficient

DWI, DKI, 

ADC, Dapp, 

Kapp

Wu et al. 

[61]

2018 R 56 the radiomics analysis of 

multiparametric MRI features allows 

for the discrimination of tumor 

grade of CC.

ROC, AUC, ACC, SP, 

SE, PPV, NPV

histogram, first-order 

texture, GLCM, RLM

Mann–Whitney U-test, 

PCA, Logistic regression

T2, DWI, 

DCE

Becker et al. 

[62]

2017 P 23 GLCM features predictive of grade, 

histogram features predictive of 

stage

Correlation and 

statistical significance

Histogram-based and 

GLCM features

Spearman, Kruskal-Wallis 

for the assessment of 

correlation to clinical data

DWI, ADC

Duan et al. 

[63]

2016 R 116 The staging of neuroendocrine 

carcinoma (NEC) in uterine cervix 

can be reliably done with MRI

AUC, SE, SP Use of cutoff level that 

maximizes sum of SE 

and SP

Fisher and χ2 test for 

features comparison. Staging 

done by experts based on 

[57]

T2, DWI, 

ADC

Miccò et al. 

[64]

2014 R 49 There is a correlation between 

imaging parameters (ADCmean) and 

histopathological prognostic factors 

(grade, stage, and subtype)

Correlation and 

statistical significance

Mean ADC Wilcoxon Rank Sum test DWI, T1c, 

PET/ CT
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Authors Year T NP Main Conclusion Evaluation metrics Radiomic features MLM and statistical 

analysis

MOD

Downey  

et al. [65]

2013 P 60 RF may differentiate cervical 

tumors according to their histologic 

characteristic (subtype and grade)

Statistical 

significance

Histogram-based RF independent samples 

Student t-test for the 

comparison of RF 

differences

T2, DWI, 

ADC

For each study, the year of publication, the type (T), the number of patients (NP), the main conclusion, the evaluation metrics, the radiomic features, the machine learning model (MLM), and 
statistical analysis done and the modality (MOD) used are given.
Glossary: T, study type; R, retrospective; P, prospective; NP, number of patients; CAC, cervical adenocarcinoma; SCC, squamous cell carcinoma respectively; AUC, the area under the roc curve; 
SP, specificity; SE, sensitivity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; RF, radiomics features; LoG, laplacian of gaussian; GLCM, grey level co-occurrence 
matrix; RLM, Run Length Matrix features; SVM, support vector machine; SVM-RFE, Support vector machine recursive feature elimination; MIFS, mutual information feature selection; MOD, 
type of MRI used; T2, T2 weighted MRI; T1, T1 weighted MRI; T1c, contrast-enhanced T1; DWI, diffusion weighted images; ADC, apparent diffusion coefficient; DKI, Diffusdon kurtosis imaging; 
Dapp, apparent coefficient; Kapp, the apparent kurtosis; DCE, dynamic contrast-enhanced MRI.

Table 2. 
Summary of the papers found for the classification of cervical cancer from DWI using radiomics analysis.
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4.1 Prediction of histological type

Histopathology is a cornerstone in the diagnosis of cervical cancer. Squamous cell 
carcinoma is the predominant histological type with a 75% rate of all cervical cancers. 
Adenocarcinoma and adenosquamous cell carcinoma represent 10–15%, and other 
or unspecified histology represents the remaining 10–15% [66]. The histological type 
was found to be an important independent prognostic factor in CC based on a record 
of 30,989 cases between 1973 and 2002 in Ref. [66]. This study reported that small 
cell carcinoma and adenocarcinomas were associated with poorer survival and this 
emphasized the need to identify women at risk early [66].

Several studies have been done on the application of texture analysis in the 
prediction of histological type for CC. Zhang et al. [48] proposed a model based on 
first-order texture features extracted from functional maps of DWI; it gave accurate 
differentiation between cervical squamous cell cancer (SCC) and cervical adenocar-
cinoma (CAC) with an AUC=0.932. Wang et al. [49, 51] investigated multiparametric 
MRI including ADC. They demonstrated better differentiation capability between 
SCC and CAC in comparison to each MRI sequence alone when using clustering 
and regression model of 105 RF or SVM; an AUC above 0.84 was reported. Ciolina 
et al. [59] were able to discriminate SCC and CAC based on texture analysis that 
used the mean and skewness values. Similarly, Downey et al. [65] demonstrated that 
histogram-positive skew was lower in CAC compared to SCC and this was assumed to 
reflect the glandular content of adenocarcinoma.

4.2 Prediction of tumor grade

Tumor grade is important information that helps oncologists decide on the 
treatment strategies. Cancer grading describes the cellular phenotype of the tumor in 
comparison to healthy cells. There are three grades of tumor cells: grade 1 (well dif-
ferentiated), grade 2 (moderately differentiated), and grade 3 (poorly differentiated) 
from normal cells. Traditionally, the determination of the grade requires a biopsy: a 
sample of the cervix is taken and analyzed under a microscope. The treatment pro-
tocol differs from one grade to another, which is why grade identification is a crucial 
step in cancer treatment decisions [67, 68].

Several studies have been conducted on the prediction of cervix tumor grade from 
DWI [14, 48, 51, 52, 58, 60, 62, 64, 65] as described in Table 2. Liu et al. demon-
strated that whole-tumor volumetric 3D radiomics analysis had a better performance 
than using the 2D center-slice of tumor in stratifying the histological grade of cervical 
cancer [14]. In 2020, a paper by Yamada et al. [52] studied the prediction of histologic 
grade based on ADC maps from 58 CC patients. A random forest model using textural 
features demonstrated a significantly larger AUC in comparison to ADC values for 
the prediction of high-grade cervical carcinoma. Hence, it was concluded that texture 
analysis of ADC maps could be used for pretreatment prognostication and optimal 
treatment selection in patients with cervical carcinoma in the future. However, 
validation of more patients is still necessary.

4.3 Prediction of tumor stage

The first staging system for cervical cancer has been developed by the FIGO in 
1958 and since then several revisions have been issued [69]. The new FIGO sys-
tem consists of five different stages [70] and provides better guidance on cancer 
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management. The staging of the tumor determines the actual extent of the disease 
in the body and anticipates response to treatment. It is crucial for the determination 
of the treatment strategy and the prediction of patient survival. Several studies have 
shown that cervical cancer has a five-year survival rate of 65% for FIGO stage II, 40% 
for FIGO stage III, and 15% for FIGO stage IV-A [71].

Many studies have been conducted on the prediction of cervix tumor stage from 
DWI alone or combined with other MR sequences [50–52, 54–56, 60–64] as sum-
marized in Table 2. Lin et al. [72] investigated the application of histogram-based 
features that were computed on ADC for the differentiation of early-stage CC 
from normal cervix or cervical benign lesions; features were significantly different 
between both classes based on a prospective dataset of 73 patients. In their study, in 
which a dataset of 56 patients was investigated, Guan et al. [73] demonstrated that 
ADC first-order statistics (skewness, kurtosis, and entropy) and texture features 
derived from the grey-level co-occurrence matrix can be correlated significantly with 
the FIGO stages of CC.

5. Challenges

The use of DWI-based radiomics in the classification of CC has been shown to be 
effective. Many studies used DWI alone or in combination with other MRI sequences 
(such as T1 and T2) and image modalities (such as PET). DWI and derived maps were 
related to hypercellularity within malignant tissues as they describe the perfusion and 
diffusion phenomena in the tissues. Sophisticated radiomic analysis demonstrated 
better performance in comparison to the use of simple image values such as average 
intensities within the tumor. The application of radiomics was proven to enhance 
the performance of differentiating between different stages, grades, and histological 
types of CC. However, there are some challenges that still need to be overcome before 
the application in clinical practice. This section outlines some of the important chal-
lenges in utilizing radiomics in clinical diagnosis and prognosis.

5.1 DWI artifacts and the impact of image acquisition

DWI is obtained using rapid Echo-Planar Imaging (EPI). The challenge related 
to EPI sequences is that they are susceptible to geometric distortions, which arise in 
phase-encoding direction. System-related distortions come from the inhomogeneities 
of the static magnetic field and the nonlinearity of the gradient magnetic field while 
object-related distortions arise from susceptibility differences within the imaged 
patient. In addition to these issues, signal loss occurs and causes the quantification 
accuracy to decrease. Robust quantification of DWI-derived parameters is another 
important aspect that should be addressed. Noise and artifacts that accompany signals 
should be bounded within reasonable limits for the applied model (mono-exponential 
model, IVIM, and the Kurtosis model) [16].

In addition to image artifacts, the main challenge preventing the implementation 
of radiomics in routine practice is the lack of standardization of image acquisition 
protocols. The variance between data collection protocols, scanners, coils, and 
manufacturers can introduce a large variation of signal intensities and thus impact 
the stability of radiomic features. The robustness, reproducibility, and repeatability 
(defined in [74]) of derived radiomics are the criteria that need to be verified for dif-
ferent imaging protocols; some features may verify these criteria whereas others may 
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not. To the best of our knowledge, the robustness, reproducibility, and repeatability 
of radiomics features based on cervix DWI were not investigated.

5.2 Image segmentation

Most radiomics features are affected by tumor segmentation methods. When using 
manual or semiautomated contouring methods, radiomics may not be robust to intra 
and interobserver variations and this needs to be assessed so that only reproducible 
features are considered. Interobserver delineation variations offer better feature repro-
ducibility in comparison to other variations in imaging protocols [75]. Baeßler et al. [76] 
demonstrated that using FLAIR imaging, specifically at high resolutions resulted in more 
robust radiomics features to intra and interobserver variability in comparison to T1 and 
T2 weighted images and hence can be reliably applied in future clinical studies. They 
concluded that fully automatic image segmentation is crucial to reduce the high inter and 
intraobserver variability and thus reduce the effect of subjective bias. However, auto-
mated segmentation is often developed for organ delineation and not for GTV.

5.3 Radiomics calculation

The standardization of radiomics calculation approaches is an essential step 
toward their clinical implementation. A prior image processing is needed. Image 
processing techniques are very important as they allow for standardization and verifi-
able reference points and; therefore, allow for results to be reproduced in the future. 
Usually, images are resampled into isotropic voxel sizes, and their intensities rescaled 
and discretized [77]. The optimal choice of image processing parameters, such as the 
bin width and bin size, in case of discretization influences the value of radiomics, 
and it is still an open question, especially in the case of MRI. Furthermore, the 
feature calculation methods can differ between studies, which makes challenging the 
reproduction of the results. The adherence to the Image Biomarker Standardization 
Initiative (IBSI) guidelines is recommended as it allows (a) establishing a nomencla-
ture and definitions for commonly used radiomics features, (b) creating a radiomics 
imaging scheme to calculate features from images, (c) providing a set of reference 
values for verification and calibration of various software used, and (d) providing a 
set of reporting guidelines for studies dealing with radiomics analyses [77].

5.4 Prediction techniques

Although MRI-derived radiomics demonstrated predictive potential for differ-
ent cancer sites, the variance between the prediction techniques precluded their 
generalizability and the collective interpretation of the data [78]. The performance of 
machine learning models is conditioned by the noncorrelation between their inputs. 
This makes the feature selection/reduction step crucial in the radiomics workflow. 
For this step, machine learning approaches or statistical methods are performed, after 
an analysis of reproducibility, to remove the correlated clusters, and finally, model 
fitting is done [79]. The prediction approach is not only sensitive to the parameters 
used to compute the radiomics but also to the size of the training and validation 
set. In most publications, the prediction models are based on a hundred subjects or 
fewer. This may result in over-fitting especially when a high number of features is 
used. Hence, particular care must be taken on the selected features to have reasonable 
conclusions.
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The utilization of machine learning and deep learning methods in radiomics 
can allow for more personalized cancer treatments and more accurate prognoses. 
However, physicians in practice are hesitant to exploit such methods clinically because 
machine learning algorithms have long been known as “black boxes” as it is still 
unknown to data scientists the reasoning behind the model prediction [80].

6. Conclusion

The field of radiomics and its applications for cervix cancer is at a turning point. 
Over ten years of literature have given many proofs for the potential of the use of 
DWI-based features for cervix cancer classification. Nevertheless, the transition into 
clinical practice will not be possible unless various challenges are overcome.

Future research directions will consist of proposing in-house solutions for cervix 
cancer classification. A database will be built retrospectively by the collection of 
cervix cancer image data, tumor contours, and clinical information (grade, stage, and 
histology of the tumor). DWI-based radiomics and deep learning workflows will be 
implemented in-house for this task and compared.
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