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Chapter

Dissipative Quantum System and
Energy Balance
Jishad Kumar

Abstract

We discuss how various parts of a quantum many-body system exchange energies
at thermal equilibrium. To show this, we assume a quantum system is coupled to a
many-body environment (at thermal equilibrium with a bigger environment)
consisting of a large number of independent and non-interacting quantum harmonic
oscillators above a stable ground state. Once the coupling to a large environment is
switched on, the system dissipates its energy continuously to the environment until it
reaches equilibrium with the latter. We use the Quantum Langevin equation to show
such energy exchange at equilibrium. We conclude that different parts of a physical
system can exchange energies even at absolute zero temperature.

Keywords: open systems, quantum dissipation, fluctuations, instantaneous power,
the charged oscillator in a magnetic field

1. Introduction

Isolating a quantum system from its environment is not possible since the coupling
energy plays a pivotal role in the low-temperature properties of the system. Moreover,
a complete understanding or control of the huge environment is also not feasible. How
one will study the properties of the quantum system? A working method is to partition
the whole system into two different parts, viz., the system and the environment or heat
bath, and eliminate the bath degrees of freedom after carefully considering the effects
of the heat bath on the system parameters. This makes the system essentially an open
one and the study of open systems has been very crucial in many applications of
quantum mechanics [1]. There are consequences due to the establishment of a cou-
pling between the system and the heat bath. Firstly, there may be an irreversible
transfer of energy from the system to the environment (dissipation), next there is
Brownian motion - fluctuations in the system’s degrees of freedom due to the noisy
force exerted on the system by the environment. There is decoherence, a purely quan-
tum mechanical phenomenon where the system-bath coupling destroys the coherent
superposition of states. The first two processes have classical counterparts which have
been extensively studied by many authors in the literature. A more detailed under-
standing shows that the fluctuating force from the environment induces decoherence
and damping in the system properties.
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The well-known model of the system-plus-bath approach to open quantum
systems stems from classical physics. The underlying phenomenon is the classical
Brownian motion where a test system undergoes random motion due to the “kicks”
received by the former from the surrounding particles when immersed in a suitable
medium (Figure 1). In the classical setting, dissipation is introduced in the system “by
hand” by inserting a time-dependent damping term into the equation of motion.
However, this naive approach never works in the quantum domain where everything
is governed by certain principles like Heisenberg’s uncertainty relation. Moreover, the
physical quantities are operators in quantum mechanics and these operators must
satisfy certain commutation relations. The damping term inserted in the equation of
motion violates the uncertainty principle. The role of fluctuating/random forces is
crucial in order to preserve the canonical structure. The knowledge of the details of
the processes including dissipation in the system may not be explicitly known so
sometimes the dissipation mechanism is globally described by friction, resistance,
viscosity, etc. These parameters are introduced in order to compensate for the infor-
mation loss due to dissipation. In this microscopic system-bath model, friction comes
about by the irreversible transfer of energy from the system to its environment. The
environment is modeled such that no energy, which is transferred, may come back to
the system within any physically relevant time periods. That means the so-called
Poincaré recurrence time is infinity. A really necessary condition for the full Hamil-
tonian is that, under certain conditions, the known classical results must be recovered.
Quantum dynamics at arbitrarily low temperatures and (or) with strong damping can
be studied within the system-plus-bath approach, regardless of whether the bath is
ohmic, sub-ohmic, or super-ohmic. The key thermodynamical quantity of a quantum
dissipative system is the reduced density operator ρ tð Þ ¼ trBρT tð Þ, i.e., the partial trace
of the total system plus bath density operator ρT over the bath degrees of freedom.
Here t denotes time. Quantum dissipation theory describes not only the evolution of

ρ tð Þ but also the equilibrium behavior of the reduced system as ρ t ! ∞ð Þ ¼

ρeq Tð Þ∝trBe
�HT=kBT, where T is the temperature, kB is the Boltzmann constant and HT

is the total Hamiltonian. The latter property is also referred as the detailed balance

Figure 1.
(a) Schematic representation of Brownian motion. The jittering motion of a large mass immersed in the medium
containing a large number of particles/molecules is the phenomenon of Brownian motion. The random kicks the
mass received from its environmental particles make the motion stochastic. (b) The famous system-plus-bath
arrangement. The test system with one or few degrees of freedom is assumed to be in contact with its environment
containing a large number of independent and identical harmonic oscillators. The individual masses of the
oscillators in the environment m1, m2, m3:…mN are assumed to be smaller than the mass M of the test system.
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relation of the quantum dissipation theory [2]. The description of the dissipative
system is recovered by the reduced density matrix obtained by eliminating the bath
degrees of freedom which imparts damping and fluctuations.

The system plus reservoir (bath) approach to open quantum systems, was origi-
nally introduced by many authors [3–9] and popularized later in the literature by
many others [10–12]. The idea here is to couple a system with a finite degree of
freedom (system under study) with a reservoir consisting of an infinite number of
independent and non-interacting harmonic oscillators. This model has been discussed
in the literature both for harmonic systems [7, 8, 13, 14] and anharmonic systems [15].
Once the coupling is established the reservoir imparts fluctuations in the system
coordinates which thereby causes the system under observation to lose energy rapidly
(and is irrevocable) to the bath. Because of this fluctuating or random force, the
system undergoes Brownian motion. The reservoir is commonly known as a heat bath
because the system dissipates its energy continuously and the former distributes this
dissipated energy it its various energy-infusing modes. The relevant variables of the
heat bath are averaged out later from the larger Hilbert space of the full system-plus-
bath setup, to obtain an effective description of the test system alone. The projected
dynamics of the test quantum system belonging to the truncated Hilbert space
appear dissipative due to the bath-induced decoherence effects. Usually, either a
formal path integral approach in the Schrödinger picture [16] or the quantum
Langevin equation in the Heisenberg picture [12] is used to eliminate the heat bath
degrees of freedom.

2. Theoretical framework

The system-plus-bath model for dissipative quantum systems is described as
follows. A quantum system of a finite degree of freedom is coupled to a heat bath
consisting of independent and non-interacting harmonic excitations above a stable
ground state. The interaction between the quantum system and an individual oscilla-
tor of the heat bath is inversely proportional to the total volume V of the bath, thereby
ensuring that the individual coupling is a linear function of bath coordinates. This nice
property further allows one to eliminate the bath degrees of freedom easily. Because
the number of oscillators in the bath is very large, the weak perturbation of any
individual bath oscillator on the quantum system does not necessarily mean that the
coupling of the system and the bath is weak. This model, even if the individual
oscillators of the bath couple weakly to the system, allows the inclusion of strong
damping also [11].

We write the total Hamiltonian for the “full” system as

H ¼ HS þHB þHSB, (1)

where the system Hamiltonian is given by

HS ¼
p2

2M
þ V qð Þ, (2)

where M is the mass of the quantum system which is moving in a potential V qð Þ,
with q being the coordinate of the system. The heat bath Hamiltonian is written as the
sum of N non-interacting oscillators
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HB ¼
X

N

j¼1

p2j
2mj

þ
mj

2
ω2
j x

2
j

 !

: (3)

The possibility of revival of the initial state after a course of time, since one can
pass on to the normal coordinates with the heat bath consisting of harmonic oscillators
and V qð Þ as a harmonic potential, can be overcome with heat bath having sufficiently
many oscillators so that the Poincaré recurrence time becomes infinity [17]. The third
contribution, the interaction Hamiltonian can be written as

HSB ¼ �q
X

N

j¼1

Cjxj þ q2
X

N

j¼1

C2
j

2mjω
2
j

, (4)

which is bilinear in the system and bath coordinates. The last term (which depends
on the coupling constants Cj and only contains an operator in the system Hilbert
space) in the interaction Hamiltonian is included as a counter term to ensure that the
dissipation is homogeneous in all spaces. Since the coupling is via the position
variables, if this term is not included, then the coupling becomes different wherever
the quantum particle is located. Or in other words, the model is not translationally
invariant and that will result in an unphysical renormalization of the potential.
Therefore, one must understand that the counter term in the interaction Hamiltonian
is included to make sure of the fact that dissipation has been introduced solely by the
coupling to the reservoir not by a renormalization of V qð Þ. If it was not included, then

the minimum of the potential surface of the global system for a given q is at xj ¼

Cjq=mjω
2
j for all j . This result in an ‘effective’ potential renormalized by the coupling

which is given by

Veff qð Þ ¼ V qð Þ �
X

N

j¼1

C2
j q

2

2mjω
2
j

: (5)

This becomes clear if we consider the minimum of the Hamiltonian with respect to
the system and environment coordinates. From the requirement

∂H

∂xj
¼ mjω

2
j xj � Cjq ¼ 0, (6)

we obtain

xj ¼
Cj

mjω
2
j

q: (7)

Using this result, we determine the minimum of the Hamiltonian with respect to
the system coordinate and is given by

∂H

∂q
¼

∂V

∂q
�
X

N

j¼1

Cjxj þ q
X

N

j¼1

C2
j

mjω
2
j

¼
∂V

∂q
: (8)
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The second term in Eq. (4) thus ensures that this minimum is determined by the
potential V qð Þ only. Before we start writing equations of motion, for simplicity, we
write the full Hamiltonian as

H ¼
p2

2M
þ V qð Þ þ

X

N

j¼1

p2j
2mj

þ
1

2
mjω

2
j xj �

Cjq

mjω
2
j

 !2
8

<

:

9

=

;

: (9)

2.1 Quantum mechanical derivation

We need to look at the reduced equation of motion for the system coordinate.
In this section, we derive the quantum Langevin equation for our test system
coordinate under the influence of the heat bath induced fluctuation effects. In
the quantum domain, all the parameters are quantum variables and are operators.

In the literature, Magalinski i
^

[14] showed that the elimination of the environmen-
tal degrees of freedom leads to a damped equation of motion for the system
coordinate. The time evolution of an operator A, in the Heisenberg picture, is
given by

dA

dt
¼

i

ℏ
H, A½ �: (10)

From Eq. (9) we obtain the equations of motion for the bath degrees of freedom

_pj ¼ �mjω
2
j xj þ Cjq (11)

_xj ¼
pj
mj

, (12)

and, similarly, the equations of motion for the system degree of freedom are
given by

_p ¼ �
∂V

∂q
þ
X

N

j¼1

Cjxj � q
X

N

j¼1

C2
j

mjω
2
j

, (13)

_q ¼
p

M
: (14)

We treat the system coordinate q tð Þ as if it were a given function of time, we
then solve the environmental equations of motion and it turns out to be an
ordinary second order linear inhomogeneous differential equation with the solution
of the form

xj tð Þ ¼ xj 0ð Þ cos ωjt
� �

þ
pj 0ð Þ

mjωj
sin ωjt
� �

þ
Cj

mjωj

ðt

0
ds sin ωj t� sð Þ

� �

q sð Þ: (15)

Inserting Eq. (15) into Eq. (13), we obtain an effective equation of motion for the
system coordinate
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M€q�

ðt

0
ds
X

N

j¼1

C2
j

mjωj
sin ωj t� sð Þ
� �

q sð Þ þ
∂V

∂q
þ q

X

N

j¼1

C2
j

mjω
2
j

(16)

¼
X

N

j¼1

Cj xj 0ð Þ cos ωjt
� �

þ
pj 0ð Þ

mjωj
sin ωjt
� �

" #

:

This is further simplified by partially integrating the second term of the LHS and
that yields

M€qþM

ðt

0
dsγ t� sð Þ _q sð Þ þ

∂V

∂q
¼ f tð Þ, (17)

where the damping kernel is given by

γ tð Þ ¼
1

M

X

N

j¼1

C2
j

mjω
2
j

cos ωjt
� �

: (18)

It can also be expressed alternatively as

γ t� t0ð Þ ¼ Θ t� t0ð Þ
1

M

X

N

j¼1

C2
j

mjω
2
j

cos ωj t� t0ð Þ
� �

: (19)

The operator-valued random force in Eq. (17) takes the form

f tð Þ ¼
X

N

j¼1

Cj xj 0ð Þ �
Cj

mjω
2
j

q 0ð Þ

 !

cos ωjt
� �

þ
pj 0ð Þ

mjωj
sin ωjt
� �

" #

: (20)

The statistical average of this fluctuating force vanishes when the average is taken
over the total density matrix of the bath degrees of freedom and the coupling. That is

f tð Þh iρ BþSBð Þ
¼

TrB f tð Þ exp �β HB þHSBð Þð Þ½ �

TrB exp �β HB þHSBð Þð Þ½ �
¼ 0, (21)

where ρ BþSBð Þ is the shifted canonical equilibrium distribution of the heat bath

which is given by

ρB ¼ Z�1
B exp �β

X

j

pj 0ð Þ2

2mj
þ
mjω

2
j

2
xj 0ð Þ �

Cj

mjω
2
j

q 0ð Þ

 !2
0

@

1

A

2

4

3

5, (22)

where ZB is the partition function of the bath oscillators. Also

f tð Þf t0ð Þh iρ BþSBð Þ
¼ MkBTγ t� t0ð Þ: (23)

This is the fluctuation-dissipation relation. For weak coupling, we seperate the
transient term (or the initial slip) Mγ tð Þq 0ð Þ which is of second order in the coupling
constant Cj and write the random force as [18].

f tð Þ ¼ ζ tð Þ �mγ tð Þq 0ð Þ: (24)
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Therefore the generalized Langevin equation takes the form

M€q tð Þ þM

ðt

0
dt0γ t� t0ð Þ _q t0ð Þ þ V 0 qð Þ ¼ ζ tð Þ �Mγ tð Þq 0ð Þ, (25)

where

ζ tð Þ ¼
X

j

Cj xj 0ð Þ cos ωjt
� �

þ
pj 0ð Þ

mjωj
sin ωjt
� �

 !

: (26)

The integration in the forward direction of time in Eq. (25) ensures that it breaks
the time reversal invariance explicitly thereby introducing irreversibility in the prob-
lem. When taken an average of the Eq. (26) with respect to the canonical classical
equilibrium density operator of the unperturbed bath

ρB 0ð Þ ¼ Z�1
B exp �β

X

j

pj 0ð Þ2

2mj
þ
mjω

2
j

2
xj 0ð Þ2

 !" #

, (27)

we obtain

ζ tð Þh iB ¼
TrB ζ tð Þ exp �βHBð Þ½ �

TrB exp �βHBð Þ½ �
¼ 0, (28)

and the unequal time correlation

ζ tð Þζ t0ð Þh iρB 0ð Þ ¼ MkBTγ t� t0ð Þ: (29)

From Eq. (20), it is clear that the force operator depends explicitly on the initial
conditions of the bath positions and momenta and also on an inhomogeneous slip term
Mγ tð Þq 0ð Þ. Usually, this term is neglected under the Markovian/Ohmic limit, when
the friction assumes the ohmic form γ tð Þ ! 2γδ tð Þ [18].

Now, we calculate the correlation function of the random force. We may use either
f tð Þ with respect to ρ BþSBð Þ or equivalently ζ tð Þ with respect to ρB. Eqs. (20) and (24)

gives

ζ tð Þζ 0ð Þh iB ¼
X

j, l

CjCl xj 0ð Þ cos ωjt
� �

þ
pj 0ð Þ

mjωi
sin ωjt
� �

 !

xl 0ð Þ

* +

B

: (30)

At thermal equilibrium, the second moments of the position and momentum of the
bath are calculated and yields

xj 0ð Þxl 0ð Þ
� �

B
¼ δjl

ℏ

2mjωj
coth

ℏβωj

2

� 	

, (31)

pj 0ð Þxl 0ð Þ
D E

B
¼ �

iℏ

2
δjl: (32)

Incorporating Eqs. (31) and (32), the noise correlation in Eq. (30) can be expressed as

ζ tð Þζ 0ð Þh iB ¼
X

N

j¼1

ℏC2
j

2mjωj
coth

ℏβωj

2

� 	

cos ωjt
� �

� i sin ωjt
� �


 �

: (33)
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It is to be noted that the noise correlation contains an imaginary part. This is due to
the fact that ζ tð Þ and ζ 0ð Þ are now operators in quantum mechanics and, in general, do
not commute with each other. We have obtained all the relations corresponding to the
classical counterparts, here. Now, we need the reduced description of the quantum
system alone and to get such an expression we have to eliminate the bath degrees of
freedom from the total picture. The formal way of doing that is to introduce the
“spectral density” of the bath oscillators which contains all the information about the
heat bath. The spectral density is given by

J ωð Þ ¼ π
X

N

j¼1

C2
j

2mjωj
δ ω� ωj

� �

, (34)

so that the damping kernel takes a form

γ tð Þ ¼
1

M

X

N

j¼1

C2
j

mjω
2
j

cos ωjt
� �

¼
2

M

ð

∞

0

dω

π

J ωð Þ

ω
cos ωtð Þ: (35)

The most widely used form of the spectral density is of the following form

J ωð Þ ¼ Mγω, (36)

which is called the ohmic and it apparently produces a memoryless friction

γ tð Þ ¼ 2γδ tð Þ: (37)

But this is an ideal situation. In real physical situations, the spectral density falls off
in the ω ! ∞ limit. The above form (cf. Eq. (36)) of the spectral density, in the large
ω limit, gives divergences in certain physical quantities like the momentum disper-
sion. It is then customary to introduce a cut-off to the spectrum with which the
specturm vanishes above that cutoff. Such a spectrum is known as a Drude regularized
spectral density [1] and is given by

J ωð Þ ¼ Mγω
ω2
D

ω2 þ ω2
D

, (38)

where ωD is a cutoff to the spectrum of bath oscillators above which the spectral
density vanishes. From Eq. (35), for positive arguments t>0, the damping or memory
kernel takes a form

γ tð Þ ¼ γωD exp �ωDtð Þ: (39)

We need ~γ ωð Þ, the Fourier transform of Eq. (39), for our forthcoming calculations
and is written as

~γ ωð Þ ¼
γωD

ωD � iω
, and ℜ ~γ ωð Þ½ � ¼

γω2
D

ω2
D þ ω2

: (40)

The “tilde” sign is used to denote the Fourier transform of a function throughout
the chapter. One can still use the terminology “ohmic damping” even if the Eq. (38)
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does not hold above a critical frequency, provided all the typical frequencies
appearing in the dynamics should be much lower than this critical frequency. In the
strict ‘Ohmic’ limit the generalized Langevin equation becomes memoryless and cor-
responds to the classical Langevin equation.

3. The model and the calculation of instantaneous power

We discussed the theoretical descriptions to understand how a dissipative system
behaves when connected to a heat bath at equilibrium. The quantum system was
considered to be not in equilibrium prior to the coupling. Once the coupling is
established the quantum system continuously transfers its energy to the equilibrium
bath and eventually, the system reaches thermal equilibrium (asymptotically) with
the heat bath. Thermal equilibrium is said to have reached when a quantum system
explores its phase-space fully. From here onwards we discuss the various energy
exchanges that happen in a many-body system at equilibrium. The thermal properties
of the quantum system can be calculated by assuming that the entire system-plus-bath
arrangement is embedded in an infinitely large environment which provides the
working temperature. Therefore, from here onwards we denote the quantum system
as a subsystem of the bigger bath. Of course, the heat bath withN oscillator modes can
also be considered as a subsystem of the bigger bath. Put it differently, the quantum
system of our interest and the heat bath with which it is connected became the
constituents of a large environment (Figure 2). Now we discuss how the energy
exchange processes within this ‘envelope’. We show here how the random force
balances the energy lost by the quantum subsystem to the heat bath. It is enough to
calculate the work done by the random force to that it compensates for the energy lost
from the subsystem. Moreover, this work done by the random force is necessary to
maintain equilibrium.

To proceed further, we need a working model for the subsystem. We choose the
charged oscillator in a magnetic field as our quantum subsystem. Hence our system of

Figure 2.
Pictorial representation of various constituents of a bigger bath. The quantum system as well as the heat bath are
now two different parts of the larger environment. The terminology “subsystem” makes better sense in this context.
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study is the dissipative charged oscillator in a magnetic field not the uncoupled
charged oscillator in a magnetic field. A damped harmonic oscillator was used as a
quantum subsystem in the literature [19, 20]. Magnetic field effects in the domain of
dissipative quantum physics are of great interest in various phenomena including the
quantum Hall effect [21] and superconductivity [22]. Studies on the dissipative
charged oscillator in a magnetic field using the system-plus-reservoir approach were
originally carried out by Li et al. [23, 24]. This model, later, was used by many others
[25–30] in different contexts (Figure 3).

HS represents the Hamiltonian of the charged magneto-oscillator. It is given by

HS ¼
1

2M
p�

eA

c

� 	2

þ
1

2
Mω2

0r
2, (41)

where M is the mass of the quantum subsystem. The two dimensional vectors p
and r represent the momentum and position coordinates of the subsystem respec-
tively. Here A is denotes the magnetic vector potential, e is the charge of the electron,
and c is the velocity of light. The Hamiltonian for the bath and the coupling, i.e.,
HB þHSB, can be expressed as

HB þHSB ¼
X

N

j¼1

p2
j

2mj
þ

1

2
mjω

2
j xj �

Cjr

mjω
2
j

 !2
8

<

:

9

=

;

: (42)

mjs and ωjs are the masses and frequencies of the individual bath oscillators
respectively. Cjs are the coupling between the system and the heat bath oscilators. The
two dimensional vectors pjs and xjs represent the momentum and the position

coordinates of the bath oscillators respectively. The position and momentum vectors
of the subsystem and the heat bath are operators and they satisfy the following
commutation relations

Figure 3.
(a) Electron motion under a perpendicular uniform magnetic field. The trajectories are helical in nature, but the
projection of an individual electron’s trajectory onto a two-dimensional plane shows a circular motion around the
magnetic line of force. (b) The mexican-hat potential. We take this potential to confine the electron under
perpendicular magnetic field and the whole arrangement can be simply called a “charged oscillator in a magnetic
field”. This real physical model is very useful and studied extensively in the condensed matter realm in various
contexts. Studies on quantum dots and wires rely on this model heavily.
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ri, pk

� �

¼ iℏδik, xji, plk

� �

¼ iℏδjlδik: (43)

Following the steps given in the previous section, we use the Heisenberg equations
of motion from the total Hamiltonian, we obtain the equations of motion for the
subsystem and the bath coordinates. Eliminating the bath variables yields the general-
ized equation for the system coordinate (which is an operator) and that is given by [30]:

M€rþ

ðt

0
dt0 _r t0ð Þγ t� t0ð Þ �

e

c
_r� Bð Þ þMω2

0r ¼ �Mγ tð Þr 0ð Þ þ F tð Þ: (44)

This is an initial value equation and has an exact solution as well [30, 31]. Like we
saw in the previous section, the spurious initial slip term is here as well. We may
define an auxiliary random force K tð Þ ¼ �Mγ tð Þr 0ð Þ þ F tð Þ just for esthetics. The
Langevin equation is shown to be independent of any particular choice of gauge since
it does not explicitly contain the magnetic vector potential A. The appearance of
external magnetic field is via the quantum version of the Lorentz force term in the
equation. The memory friction function γ tð Þ is defined already in the previous section.
The stochastic Brownian noise F tð Þ, depends explicitly on initial coordinates and the
momenta of the bath oscillators, is given by

F tð Þ ¼
X

j

Cjxj 0ð Þ cos ωjt
� �

þ
Cjpj 0ð Þ

mjωj
sin ωjt
� �

( )

: (45)

It is necessary to note that the damping γ tð Þ and the operator valued Gaussian
random force remain unchanged by the external magnetic field. The random force
(45) satisfies the following relations [23, 24, 26, 28–30].

Fα tð Þ, Fκ t0ð Þf gh i ¼ δακ
2

π

ð

∞

0
dωℜ ~γ ωþ i0þð Þ½ �ℏω

�coth
ℏω

2kBT

� 	

cos ω t� t0ð Þ½ �, (46)

Fα tð Þ, Fκ t0ð Þ½ �h i ¼ δακ
2

iπ

ð

∞

0
dωℜ ~γ ωþ i0þð Þ½ �ℏω

� sin ω t� t0ð Þ½ �, (47)

where α, κ ¼ x, y, z and ~γ zð Þ ¼
Ð

∞

0 dt exp iztð Þγ tð Þ, ℑz>0ð Þ. For the Drude regular-

ized Ohmic spectral density, using Eq. (38), the Eqs. (46) and (47) can be written as

Fα tð Þ, Fκ t0ð Þf gh i ¼ δακ
2γω2

D

π

ð

∞

0
dω

ℏω

ω2
D þ ω2

�coth
ℏω

2kBT

� 	

cos ω t� t0ð Þ½ �, (48)

Fα tð Þ, Fκ t0ð Þ½ �h i ¼ δακ
2γω2

D

iπ

ð

∞

0
dω

ℏω

ω2
D þ ω2

� sin ω t� t0ð Þ½ �: (49)
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The anti-symmetric correlation can also be written as

Fα tð Þ, Fκ t0ð Þf gh i ¼ 2δακ

ð

∞

0
dωG ωð Þ cos ω t� t0ð Þ½ �, (50)

where G ωð Þ is called the power spectrum, and is given by

G ωð Þ ¼
γω2

D

π

ℏω

ω2
D þ ω2

coth
ℏω

2kBT

� 	

¼
2γω2

D

π ω2
D þ ω2

� �

ℏω

2
þ

ℏω

eℏω=kBT � 1

� 	

: (51)

The fluctuation dissipation theorem ensures that the symmetric combination and
the commutator structure of the random force are (i) proportional to the friction
constant γ, and (ii) are independent of the external potential V rð Þ. From Eq. (52), we
observe that the power spectrum of the random force is the Planck spectrum, with an
extra term due to the zero point fluctuations. Needless to say, in the limit of ℏ ! 0 the
spectrum becomes the flat spectrum of the white noise.

We now calculate the expectation value of the instantaneous power supplied by
the random force. Since we work with operators, we use the symmetric form of the
power. The power can be written as

PF ¼
1

2
v tð ÞF tð Þ þ F tð Þv tð Þh i, (52)

with v tð Þ ¼ _r tð Þ. We define the variables Z ¼ xþ iy, F ¼ Fx þ iFy, and

γ tð Þ ¼ γ tð Þ
m þ iωc, to re-write the Langevin equation given in Eq. (44) as [30].

€Z þ

ðt

0
dt0γ t� t0ð Þ _Z t0ð Þ þ ω2

0Z ¼ �γ tð ÞZ 0ð Þ þ
F tð Þ

M
, (53)

where ωc ¼ eB=mc is the magnetic cyclotron frequency. The new position
coordinate is Z and its derivative with respect to time represents the velocity operator.
Using Laplace transform and with the aid of fundamental solutions, we find the
solution of the Langevin equation given in Eq. (53) as [30, 31].

Z tð Þ ¼ M _χ tð ÞZ 0ð Þ þMχ tð Þ _Z 0ð Þ þ

ðt

0
dτχ t� τð ÞF τð Þ, (54)

where χ tð Þ is called the response function of the system and is defined as [30, 31].

χ t� τð Þ ¼
1

2πi

ðþi∞

�i∞
dsχ̂ sð Þ exp s t� τð Þð Þ: (55)

The Laplace transform of the response function is written as

χ̂ sð Þ ¼
1

M

1

s2 þ ω2
0 þ sγ sð Þ

, (56)
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with the Fourier transform

χ t� τð Þ ¼
1

2π

ðþ∞

�∞

dω~χ ωð Þ exp �iω t� τð Þð Þ, (57)

where the dynamical susceptibility is given by

~χ ωð Þ ¼
1

M

1

�ω2 þ ω2
0 � iωγ ωð Þ

: (58)

We have, here, γ ωð Þ ¼ iωc þ ~γ ωð Þ. The memory kernel γ tð Þ typically falls to zero in
the bath relaxation time. As a result, the initial slip term in Eq. (44) (and subsequently
in Eq. (53)) vanishes for very long times (can be experimental time scales) compared
to the system’s characteristic decay time. Therefore, for longer times compared to the
system’s relaxation time, the quantum Langevin equation (cf. Eq. (53)) becomes a
stationary one with the lower limit of integration �∞, i.e., [30]

€Z þ

ðt

�∞

dt0γ t� t0ð Þ _Z t0ð Þ þ ω2
0Z ¼

F tð Þ

M
, (59)

with the solution, which is a stationary process, is given by

Z tð Þ ¼

ðt

�∞

dτχ t� τð ÞF τð Þ: (60)

We note from the expressions (Eqs. (53) and (57)) that, so long as ω0 remains non-
zero, the response function χ t� τð Þ vanishes exponentially for longer times. This, in
fact, is in close proximity with the Tauberian theorem which states the asymptotic
behavior of a function depends on the low frequency behavior of its Fourier trans-
form. Hence for very longer times, the dependence of Z tð Þ on the initial values (cf.
Eq. (54)) completely disappears and that yield [30, 31].

Z tð Þ ¼

ðt

0
dτχ t� τð ÞF τð Þ: (61)

Upon comparing Eq. (61) with Eq. (60), we conclude that Z tð Þ in Eq. (61) is the
solution of the stationary Langevin equation in Eq. (59). With these remarks in mind,
we write the Langevin equation in Eq. (44) as

M€rþM

ðt

�∞

dt0 _r t0ð Þγ t� t0ð Þ �
e

c
_r� Bð Þ þMω2

0r ¼ F tð Þ: (62)

Using Eqs. (52) and (62), we write the power as

PF ¼
d

dt

1

2M
P�

eA

c

� 	2

þ
1

2
Mω2

0r
2

* +

þ

ðt

�∞

dt0γ t� t0ð Þ
1

2
_r tð Þ _r t0ð Þ þ _r t0ð Þ _r tð Þh i: (63)
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Since the Langevin equation describes a stationary process the first term is zero
because for a stationary process the expectation values of time dependent quantities
must be time translational invariant or, in other words, they are constant. This
becomes clear when we evaluate the expectation value of an arbitrary time dependent
operator W tð Þ . We write [19].

W tð Þh i ¼
Tr e�βHeiHt=ℏW 0ð Þe�iHt=ℏ
� 

Tre�βH
¼

Tr W 0ð Þf g

Tre�βH
, (64)

where β ¼ 1=kBT. The cyclic property of the Trace operation is used to get the
desired result. Thus it becomes clear that W tð Þh i is time independent for a
canonical ensemble and the derivative of it must be zero. Our task is just to find the
second term in Eq. (64). We use Eq. (61) to compute the velocity autocorrelation

function. It is to be noted that the real part of the quantity 1
2

_Z tð Þ, _Z
†
t0ð Þ

n oD E

is

equivalent to 1
2
_r tð Þ _r t0ð Þ þ _r t0ð Þ _r tð Þh i.

We write [30].

1

2
Z tð Þ, Z† t0ð Þ
� � �

¼
1

2m2

ðt

0
dτ

ðt0

0
dτ0χ t� τð Þχ ∗ t0 � τ0ð Þ F τð Þ, F† τ0ð Þ

� � �

, (65)

where, using (47), we write [30].

F τð Þ, F† τ0ð Þ
� � �

¼ Fx τð Þ, Fx τ0ð Þf gh i þ Fy τð Þ, Fy τ0ð Þ
� � �

,

¼
4

π

ð

∞

0
dωℜ ~γ ωþ i0þð Þ½ �ℏω� coth

ℏω

2kBT

� 	

cos ω τ � τ0ð Þ½ �:

After some algebra, we obtain [30].

1

2
Z tð Þ, Z† t0ð Þ
� � �

¼
ℏ

Mπ

ðþ∞

�∞

dω ωℜ
~γ ωð Þ

m


 �

~χ ωð Þ~χ ∗ ωð Þ

�coth
ℏω

2kBT

� 	

e�iω t�t0ð Þ, (67)

where

~χ ωð Þ ¼ �
1

M

ωþ iωDð Þ

ωþ iλ1ð Þ ωþ iλ2ð Þ ωþ iλ3ð Þ
, (68)

Here λjs are the roots of the cubic equation

ω3 þ iω2 ωD þ iωcð Þ � ω ω2
0 þ γωD þ iωcωD

� �

� iω2
0ωD ¼ 0: (69)

Similarly, the complex conjugate ~χ ∗ ωð Þ of Eq. (68) is given by

~χ ∗ ωð Þ ¼ �
1

M

ω� iωDð Þ

ω� iλ10ð Þ ω� iλ20ð Þ ω� iλ30ð Þ
, (70)
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with the λ0js are the complex conjugates of λjs. Since Eqs. (68) and (70) satisfy the

following relation

Mωℜ ~γ ωð Þ½ �~χ ωð Þ~χ ∗ ωð Þ ¼
1

2i
~χ ωð Þ � ~χ ∗ ωð Þ½ � ¼ ~χ00 ωð Þ, (71)

we obtain [30].

1

2
Z tð Þ, Z† t0ð Þ
� � �

¼
ℏ

Mπ

ðþ∞

�∞

dω ~χ00 ωð Þcoth
ℏω

2kBT

� 	

e�iω t�t0ð Þ, (72)

where ~χ00 ωð Þ is given by

~χ00 ωð Þ ¼
1

M

ω~γ ωð Þ

ω2
0 � ω2 þ ωωc

� �2
þ ω2~γ2 ωð Þ

: (73)

Taking the derivatives of Eq. (72) with respect to t and t0 yields the velocity
autocorrelation

1

2
_Z tð Þ, _Z

†
t0ð Þ

n oD E

¼
ℏ

Mπ

ð

∞

�∞

dω ω2
~χ00 ωð Þcoth

ℏω

2kBT

� 	

e�iω t�t0ð Þ: (74)

Substituting the real part of the velocity autocorrelation into the equation for the
power yields

PF ¼

ðt

�∞

dt0γ t� t0ð Þ
ℏ

Mπ

ð

∞

�∞

dω ω2
~χ00 ωð Þ

�coth
ℏω

2kBT

� 	

cos ω t� t0ð Þ½ �: (75)

Since the damping γ tð Þ is 0 for negative t and ~γ ωð Þ ¼
Ð

∞

0 dtγ tð Þeiωt, ℑω>0, the upper
limit of the integral in Eq. (44) can be replaced with þ∞. Therefore

PF ¼
ℏ

Mπ

ðþ∞

�∞

dω

ð

∞

�∞

dt0 γ t� t0ð Þ cos ω t� t0ð Þ½ �

�ω2
~χ00 ωð Þcoth

ℏω

2kBT

� 	

: (76)

It is possible to write

ðþ∞

�∞

dt0γ t� t0ð Þ cos ω t� t0ð Þ½ � ¼ ℜ

ðþ∞

�∞

dt0γ t� t0ð Þeiω t�t0ð Þ

� �

: (77)

Since the bracketed term is just the Fourier transform ~γ ωð Þ of γ t� t0ð Þ, we write
Eq. (77) as

PF ¼
ℏ

Mπ

ð

∞

�∞

dω ω2
~χ00 ωð Þℜ ~γ ωð Þ½ �coth

ℏω

2kBT

� 	

: (78)
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It is immediately observed that only the even part of the above integral
contributes. We know that ~γ �ωð Þ ∗ ¼ ~γ ωð Þ and ~χ �ωð Þ ¼ ~χ ωð Þ, so that ~χ00 ωð Þ is an odd
function of ω and ℜ ~γ ωð Þ½ � is an even function of the frequency ω. Upon using the real
part of ~γ ωð Þ, we write

PF ¼
ℏ

Mπ

ð

∞

�∞

dω ω2
~χ00 ωð Þ

γω2
D

ω2
D þ ω2

coth
ℏω

2kBT

� 	

: (79)

This is the instantaneous power supplied by the random force for our particular
model and the above expression is positive quantity always.

To check the result, we evaluate the power supplied by the random force at high
temperatures (or in the classical case). After some tedious mathematical manipula-
tions we obtain [32].

PF ¼
4kBTγ

M

2þ ω2
0=ω

2
D þ γ=ωD

� �

2þ ω2
0=ω

2
D þ γ=ωD

� �2
þ 2ωc=ωDð Þ2

h i , (80)

which in the large cutoff (strict ohmic) limit (ωD ! ∞) yields the form

PF ¼
4kBTγ

M
: (81)

This clearly indicates to us that the rate of work done by the random force on the
quantum subsystem is indeed proportional to the damping/dissipation strength γ. This
in turn tells us that, at equilibrium, the energy lost by the quantum subsystem due to
dissipation is compensated by an amount of energy received from the random force.
As a consequence of the fluctuation-dissipation theorem, the Eq. (81) does not contain
any term from the external potential (and magnetic field), in the strict ohmic limit.

4. Discussion of the result

The full quantum many-body system has an infinite number of degrees of freedom
each with its corresponding zero-point oscillations. The full system must be in the
ground state at the absolute zero of temperature (T ¼ 0). This further implies that no
work is done on or by the system. However, for any finite coupling (irrespective of the
strength of the coupling), HS does not commute with H. That means the ground state
of H is not the ground state of HS. Therefore, even at absolute zero temperature, the
energy of the charged oscillator in a magnetic field must fluctuate. Mathematically,
this statement can be expressed as

ΔH2
S ¼ H2

S

� �

� HSh i2 6¼ 0, (82)

the mean square fluctuations of HS is not equal to zero. No matter how weak the
coupling between the subsystem and the bath, the fluctuation of the subsystem Ham-
iltonian does not vanish at T ¼ 0. This fluctuation is obviously driven by the random
force. Therefore, the work done per unit time by this random force is, indeed, bal-
anced by the dissipative loss of the subsystem. Hence there is no net work done on the
subsystem. To evaluate the RHS of Eq. (82) we resort to Eq. (41). We write
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HSh i ¼
1

2M
p�

eA

c

� 	2
* +

þ
1

2
Mω2

0 r2
� �

, (83)

In the new variable Z ¼ xþ iy, the subsystem Hamiltonian can be written as [30].

HS ¼
1

2
M _Z _Z

†
�

1

2
ℏωc þ

1

2
Mω2

0ZZ
†: (84)

Therefore

HSh i ¼
1

2
M _Z _Z

†
D E

�
1

2
ℏωc þ

1

2
Mω2

0 ZZ†
� �

: (85)

We need to compute the unequal time correlation functions Z tð ÞZ† t0ð Þ
� �

and

_Z tð Þ _Z
†
t0ð Þ

D E

. To get this, we only evaluate the symmetric combination of Z tð Þ and

Z† t0ð Þ. The anti-symmetric combination vanishes in the analytic continuation t0 ¼ t to
obtain the equilibrium values [30].

Using Eqs. (72) and (74), at T ¼ 0, we compute Eq. (85). We get [30].

HSh iT¼0 ¼
ℏγ

π
ln

ωD

ω0

� 	

þ
ℏω2

0

π

1

Λ
ln

λ1

λ2

� 	

þ
1

Λ
0 ln

λ01
λ02

� 	� �

�
ℏ

4π

γ2

Λ
ln

λ1

λ2

� 	

þ
γ ∗ 2

Λ
0 ln

λ01
λ02

� 	� �

, (86)

where Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 � 4ω2
0

q

and Λ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ ∗ 2 � 4ω2
0

q

. Also λ1,2 ¼ γ=2� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � γ2=4

q

and

λ01,2 ¼ γ ∗ =2∓i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � γ ∗ 2=4

q

. For weak dissipation γ, γ ∗
≪ 2ω0,

HSh iT¼0 ¼
ℏγ

π
ln

ωD

ω0

� 	

�
ℏγωc

2πω0
ln

γ=2þ iω0ð Þ γ ∗ =2� iω0ð Þ

γ=2� iω0ð Þ γ ∗ =2þ iω0ð Þ

� �

þ
iℏ γ2 þ ω2

c � 4ω2
0

� �

4πω0
ln

γ2 þ ω2
c � 4ω2

0

� �

þ 4iγω0

γ2 þ ω2
c � 4ω2

0

� �

� 4iγω0

( )

: (87)

In the absence of the magnetic field (ωc ¼ 0) we get

HSh iT¼0 ¼ ℏω0 þ
ℏγ

π
ln

ωD

ω0

� 	

, (88)

which is nothing but the result for a two dimensional isotropic oscillator. Since r

and _r (or Z and _Z) are Gaussian operators with zero mean values, H2
S

� �

(cf, Eq. (41))

can be readily expressed in terms of products of r2
� �

and _r2
� �

(or using Z2 and _Z
2
with

Eq. (84)). We evaluate the H2
S

� �

in the absence of magnetic field to just show the
concerned point. Magnetic field has no significant role in the present evaluation to
show that the mean square fluctuation of the subsystem Hamiltonian does not vanish.
With the aid of Eq. (88), we write

ΔH2
S ¼ HSh i

ℏγ

π
ln

ωD

ω0

� 	

: (89)
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Even for a very weak damping, the mean of the subsystem energy is above its
ground state energy and that the fluctuations in this energy do not vanish. This tells us
that one part of a physical system in its ground state can and does exchange energy
with another part. The formalism we have chosen to show the energy balance is an
exact one. We use the Langevin equation to calculate the expectation values after
taking the time derivative of the subsystem Hamiltonian.

d

dt
HSh i þ γ _r2 tð Þ

� �

¼
1

2
_r tð ÞF tð Þ þ F tð Þ _r tð Þh i: (90)

The exact equation given above is obtained under the strict ohmic limit of the
Langevin Equation in Eq. (62). The expectation values appearing above are equal time
expectation values and are independent of time as the total physical system is invari-
ant under the time translation. The first term in the above relation is zero. The rest of
the equation then describe that the power (RHS) is actually proportional to the
dissipation constant γ. Power does not vanish even at absolute zero temperature and
this indicates that different parts of the physical system can and do exchange energy
even at absolute zero temperature.
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