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Chapter

Marine Robotics 4.0: Present and
Future of Real-Time Detection
Techniques for Underwater Objects
Meng Joo Er, Jie Chen and Yani Zhang

Abstract

Underwater marine robots (UMRs), such as autonomous underwater vehicles, are
promising alternatives for mankind to perform exploration tasks in the sea. These
vehicles have the capability of exploring the underwater environment with onboard
instruments and sensors. They are extensively used in civilian applications, scientific
studies, and military missions. In recent years, the flourishing growth of deep learning
has fueled tremendous theoretical breakthroughs and practical applications of
computer-vision-based underwater object detection techniques. With the integration
of deep-learning-based underwater object detection capability on board, the percep-
tion of underwater marine robots is expected to be enhanced greatly. Underwater
object detection will play a key role in Marine Robotics 4.0, i.e., Industry 4.0 for
Marine Robots. In this chapter, one of the key research challenges, i.e., real-time
detection of underwater objects, which has prevented many real-world applications of
object detection techniques onboard UMRs, is reviewed. In this context, state-of-the-
art techniques for real-time detection of underwater objects are critically analyzed.
Futuristic trends in real-time detection techniques of underwater objects are also
discussed.

Keywords: underwater marine robots, deep learning, real-time object detection

1. Introduction

In the age of Industry 4.0, revolutions based on artificial intelligence have
increased by leaps and bounds in various sectors [1–3]. In the community of marine
science and engineering, many underwater exploration tasks are usually executed by
Underwater Marine Robots (UMRs), such as Remotely Operated Underwater Vehicles
(ROVs) and Autonomous Underwater Vehicles (AUVs), as shown in Figure 1. These
marine robots have significantly overcome many difficulties in underwater explora-
tion tasks thanks to their distinct capability of operating round the clock. As a matter
of fact, they have been widely used in the community of marine science and engi-
neering extensively.

These UMRs, which are available in different shapes and sizes, are capable of
performing a wide variety of tasks and are widely employed in many sectors. In the
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civilian sector, UMRs are used for aquaculture, such as providing important informa-
tion for feeding, surveillance and security, and early warning of diseases [4]. Further-
more, UMRs have been exploited in seafood collection, e.g., picking holothurian, sea
urchin, scallop, and other marine products, and have made significant contributions
to the economy [5]. UMRs are also a promising choice to perform maintenance and
cleaning works on underwater hulls, which is important to maintaining health condi-
tions of a ship [6]. In other applications, UMRs have been employed for scientific
research of the ocean, including ocean observation, underwater inspection, and mon-
itoring of marine ecosystems. Furthermore, UMRs have been employed in the military
and security sector for specific missions, such as surveillance, underwater monitoring,
mine detection, and countermeasure [7].

Superior perception is highly desired for UMRs to perform assigned tasks success-
fully. Cameras and sonars are two kinds of sensors that UMRs typically rely on for
environmental perception. There are distinct advantages and disadvantages in
employing cameras and sonars for exploration tasks. However, it should be noted that
both optical and sonar images share the same technology stack of processing. In recent
years, flourishing development of artificial intelligence, especially deep learning, has
fueled tremendous theoretical breakthroughs and practical applications [8, 9]. On one
hand, development of deep learning is inseparable from exponential growth of data,
which has spawned a lot of research works related to data mining [10–12]. On the
other hand, artificial intelligence has been successfully applied to various fields, such
as smart city [13, 14] and intelligent transportation [15, 16]. However, to our knowl-
edge, most of these applications are on the land; underwater applications with artifi-
cial intelligence have not been fully explored yet. In the age of Industry 4.0,
underwater object detection is one of the important applications that employ artificial
intelligence techniques. Object detection is crucial for environmental perception
which resolves around “what objects are located at where”. With the adoption of
deep-learning-based underwater object detection techniques on board, the perception
capability of UMRs is expected to be enhanced greatly.

However, due to the constraints of existing technology, UMRs can only be
equipped with embedded computing platforms, such as the Raspberry Pi, as shown in
Figure 2-(a), which has extremely limited computing power. A more high-end com-
puting platform is the NVIDIA Jetson, provided by NVIDIA Corporation, and is
shown in Figure 2-(b). However, it also has limited computing power.

In order to circumvent the scarcity of limited computing resources, programs exe-
cuted on such platforms must be significantly lightweight and efficient. However,
existing deep learning models are usually computationally expensive. According to [17],

Figure 1.
Underwater marine robots: (a) remotely operated underwater vehicle (ROV), (b) autonomous underwater vehicle
(AUV). (images from the internet).

2

Industry 4.0 - Perspectives and Applications



a standard ResNeXt-50 has about 25:0� 106 parameters and 4:2� 109 FLOPS on 8
GPUs of NVIDIAM40. This demonstrates that deep learning models are not suitable for
deployment on embedded platforms, and they pose a critical research challenge for
underwater object detection. In order to circumvent this limitation, deep-learning-
based underwater object detection algorithms should be efficient so that they are
implementable. As such, viable real-time detection techniques of underwater objects are
highly desired.

Real-time detection of underwater objects, as one of the key challenges in Marine
Robotics 4.0, i.e., Industry 4.0 for Marine Robots, is critically reviewed in this chapter.
To facilitate a full understanding of the subject matter, we have comprehensively and
systematically reviewed and analyzed related techniques for real-time detection of
underwater objects. Futuristic trends in real-time detection of underwater objects are
also discussed.

2. Preliminaries

Underwater object detection not only needs to recognize all objects of interest, but
also locate their positions in underwater images. As shown in Figure 3, position

Figure 2.
Embedded computing platforms for UMRs: (a) raspberry pi, (b) NVIDIA Jetson. (images from the internet).

Figure 3.
Underwater object detection. The detection result is presented by a bounding box with a label on it, where xi, yi

� �

denotes the coordinates of i-th object, and wi, hið Þ denotes the width and height of box. x, yð Þ is the frame of axes for
detection results, with origin at the top left corner of the image (image from the DUO dataset [18]).
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information is generally represented by a rectangular bounding box defined by
xi, yi, wi, hi
� �

, where xi, yi
� �

denotes center-point coordinates of i� th object, and
wi, hið Þ is the width and height of the box. The frame of axes x, yð Þ for the detection
result is presented in yellow with the origin (0� indexed) at the top left corner of the
image. In addition, category label of the object is attached to the bounding box.

The underwater object detection problem can be formulated as follows:

X !
f θð Þ

pi, ci, xi, yi, wi, hi
� �

j i∈ 1ð , … , NÞ
� �

(1)

where f θð Þ indicates an object detector that is based on any neural networks para-
meterized by θ. The function f θð Þ takes an image X as its input, and outputs N
predictions for objects in that image. The term N denotes the number of objects
detected in that image. Each prediction contains a confidence indicator pi, the category
label ci that the object belongs to, and the position information encoded in the bounding

box xi, yi, wi, hi
� �

. It is well-known that underwater object detection can provide
valuable information for semantic understanding of the underwater environment, and
it is a fundamental research topic in the community of marine science and engineering.

3. State of the arts using deep learning

Deep-learning-based object detection methods are typically associated with large
model sizes, are usually sophisticated, and cannot match real-time requirements when
applied on UMR platforms. However, as far as actual use of underwater object detec-
tion in shallow water for mission execution is concerned, real-time detection is the
most important prerequisite. As such, deep-learning-based detectors for UMR plat-
forms must be as efficient as possible. The key idea that underpins the lightweight
model is to create an elegant and practical lightweight network architecture while
achieving excellent performance. In the field of object detection, this is a never-
ending quest for research excellence.

The development of underwater object detection techniques suitable for real-time
performance has a long history. In this context, we will review representative litera-
tures on real-time detection techniques, which can be categorized into three catego-
ries, namely two-stage detectors, one-stage detectors, and anchor-free detectors.

3.1 Two-stage detectors

The R-CNN (Regions with CNN features) for object detection [19] is the first
successful two-stage deep learning object detector developed in the object detection
community, but it is not suitable for real-time detection. As illustrated in Figure 4, it
begins with a selective search [20] to extract a collection of object candidates (region
proposals). Next, to extract features, each proposal is re-scaled to a fixed-size picture
and input to a Convolutional Neural Network (CNN) which is pre-trained on
ImageNet [21]. Finally, linear SVM classifiers are utilized to predict the existence of an
object and to distinguish object types inside each region based on the features
extracted by CNN.

However, the R-CNN applies CNN to each potential region for extracting features.
There are a lot of overlaps, resulting in many redundant computations and resulting in
very sluggish detection speed. In order to alleviate this problem, the Fast R-CNN [22]
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employ CNN to extract features from the entire picture only once and obtains features
for each candidate region via a Region of Interest (ROI) pooling operation, as illus-
trated in Figure 5. In comparison with the R-CNN, it achieves superior accuracy on
various benchmark datasets but improve image processing speed by 146 times under
the same conditions and reduces the training time by 9 times.

In [23], Fast R-CNN is trained to detect underwater objects in sonar images. By
using Bayesian optimization, which follows the Automated Machine Learning
(AutoML) principle, the hyperparameter configuration of Fast R-CNN was set to be
optimum. In [24], encouraged by the powerful detection performance obtained by
CNNs on generic datasets, Fast R-CNN is applied to a domain-specific underwater
environment for accurate identification and recognition of fish. At the time, Fast R-
CNN was widely used in underwater object detection.

However, Fast R-CNN continues to employ complicated selective search approach
for the generation of candidate region proposals, which turns out to be time-
consuming. Ren et al. [25] propose a Region Proposal Network (RPN) that predicts
candidates directly from the shared feature maps, as illustrated in Figure 6. This new

Figure 4.
Network architecture of R-CNN, where CNN features extraction is applied on each candidate region (image from
[19]).

Figure 5.
Network architecture of fast R-CNN, where features extraction is applied to the entire image only once (figure
from [22]).

Figure 6.
Network architecture of faster R-CNN, where region proposal network (RPN) is proposed for extraction of region
candidates based on the shared feature maps (figure from [25]).
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architecture is dubbed Faster R-CNN. Typical processing time of each picture in
selective search is around 1� 2s, but the RPN requires only approximately 10ms,
resulting in tremendous increase in detection speed.

In [26], for faster detection and recognition of fishes by sharing CNNs with
objectness learning, the backbone of Faster R-CNN is substituted with a pre-trained
ZFNet [27]. In [28], the Faster R-CNN is enhanced to detect underwater organisms,
which is exposed to many challenges, such as low-quality images, varying sizes or
forms, and overlapping or occlusion objects. The backbone is replaced with ResNet
[29]. For multi-scale feature fusion, the BiFPN architecture proposed in [30] is
adopted. Finally, to minimize the amount of redundant bounding boxes in the training
data, the EIoU (Effective IoU) [31] is utilized to replace IoU. On the URPC2018
dataset [32], the accuracy of the modified Faster R-CNN is 8.26% higher than the
original version of Faster R-CNN. Faster R-CNN has dominated underwater object
detection for a long time.

After that, the Faster R-CNN is extended by Mask R-CNN, which adds a branch
for predicting an object mask in parallel with the current branch for bounding box
identification [33], as illustrated in Figure 7. It can recognize objects in a picture
quickly while also creating a high-quality segmentation mask for each instance.
Thanks to the benefits of multi-task learning, Mask R-CNN outperforms all existing
single-model entries on a wide range of computer vision tasks by adding only a minor
overhead to Faster R-CNN.

In [34], to identify and separate underwater objects from forward-looking sonar
pictures, a modified Mask R-CNN is proposed by replacing the Resnet backbone. The
modified Mask R-CNN reduces the number of network parameters significantly while
maintaining the detection performance. It is suitable for real-time detection. The Mask
R-CNN is also utilized to identify common fishery species (yellowfin bream,
Acanthopagrus australis) for animal movement studies to assess ecosystem health, com-
prehend ecological dynamics, and address management and conservation problems [35].

In this section, we have reviewed several representative two-stage detectors. By
discarding the complicated module with high computational complexity, the detec-
tion speed improves significantly.

3.2 One-stage detectors

The aforementioned detectors are members of the R-CNN family of two-stage
algorithms, which frame the detection as a “coarse-to-fine” process [36]. They are
well-known for their excellent detection precision but low detection speed [37].

Figure 7.
Network architecture of mask R-CNN (figure from [33]).
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Another family of detectors, the YOLOs (You Only Look Once) [38–40] foregoes
extraction of candidate region proposals and predicts detection outcomes directly
from shared feature maps of CNN. These approaches are also known as one-stage
detectors. The inference time is reduced to 50 ms by using a one-stage approach while
maintaining relatively high accuracy, whereas other competitive models need more
than 200 ms. This is a bigger leap forward in terms of real-time detection.

In 2015, R. Joseph et al. proposed the YOLO detector [38]. The key idea of the
YOLO detector is to split the picture into grids and predict bounding boxes and
probabilities for each cell by using a CNN directly. As illustrated in Figure 8, it splits
the picture into a S� S grid, and predicts B bounding boxes with 1 confidence per box,
and C class probabilities for each grid cell. The final predictions are encoded in a S�
S� B ∗ 5þ Cð Þ output tensor directly by the convolutional network.

In [41], a YOLO detector is trained on generating realistic sonar pictures by GANs
[42] for underwater object recognition, which is required to automate activities like
shipwreck investigation, mine clearance, and landmark-based navigation. Later, R.
Joseph produced a series of enhancements to YOLO and offered its v2 and v3 editions
[39, 40], which improved detection accuracy while maintaining fast detection speed.

YOLO v2 is an enhanced version of YOLO, with batch normalization [43], removal
of fully connected layers, and the use of excellent anchor boxes acquired using k-
means and multiscale training, in addition to the custom GoogLeNet network [44]
being replaced by the simpler DarkNet19 network. In [45], YOLO v2 is presented as a
coarse pre-detection module in the pipeline of rotational object detection using
forward-looking sonar in underwater applications, where detection results of YOLO
v2 are clipped from the sonar picture and fed to a more fine-grained detector.

The most extensively utilized approach in the industry is YOLO v3, where the
Darknet-53 backbone harvests features, and three detection heads fuse different scale
feature maps for object detection with different sizes. In [46], experiments to detect
and classify sea cucumber, scallop, and sea urchin from underwater photos were
carried out, and the results demonstrate that the YOLO v3 algorithm has a mAP value
6.4% higher and a recall rate 13.9% higher than Faster R-CNN. Furthermore, YOLO
v3 has a detection speed of 20 frames per second, which is 12 frames per second faster

Figure 8.
The YOLO detector is depicted as a regression issue in this picture. It splits the picture into a S� S grid, predicting B
bounding boxes with 1 confidence per box, and C class probabilities for each grid cell. The tensor S� S�
B ∗ 5þ Cð Þ encodes these predictions.
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than Faster R-CNN. In [47], YOLOv3 is integrated into an underwater manipulator
(BlueROV2) to identify objects for grabbing.

YOLO v4 [48] has put to the test a large variety of strategies that are supposed to
enhance accuracy of a CNN. Finally, it combines techniques such asWeighted-Residual-
Connections [30], Cross-Stage-Partial-Connections [49], Cross mini-Batch Normaliza-
tion [50], Self-adversarial-training [51], Mish activation [52], Mosaic data augmentation,
DropBlock regularization [53], and CIoU loss [54] to achieve optimal object detection
speed and accuracy. In [55], to construct a lightweight underwater object detector,
YOLO v4 is combined with a multi-scale attentional feature fusion module. For real-time
performance, it also replaces the CSPDarknet53 backbone [49] with MobileNet [56].

From two-stage detectors to one-stage detectors, the YOLO series has gained a
qualitative leap in real-time underwater object detection. Leveraging meticulous
design in the network architecture, one-stage detectors will improve performance and
detection speed significantly.

3.3 Anchor-free detectors

Another significant paradigm shift in real-time object detection is from anchor-
based to anchor-free techniques. The majority of the aforementioned approaches are
anchor-based, whereby anchors of various sizes and aspect ratios are established on
the picture, allowing object detection to predict related offsets. The usage of anchor
boxes has long been thought to be a secret to successful detection [57].

Thousands of pre-defined anchor boxes are placed on the picture in anchor-based
techniques, and the model predicts which anchor box will respond to the ground-
truth. However, the generation of anchors via region proposal network [25] or k-
means clustering [40] is a time-consuming process. Undoubtedly, anchor-based
approaches will also result in duplicate predictions, necessitating the use of a non-
maximum suppression algorithm [58] to eliminate undesirable outcomes. Unfortu-
nately, non-maximum suppression is also an expensive operation, which slows down
the speed of object detection significantly.

Anchor-free detectors aim to eliminate expensive operations that are related to
anchor mechanism. Without the necessity for non-maximum suppression, anchor-
free techniques remove the computation load raised by anchors and regress the cate-
gory and position of the object directly by convolutional networks [57, 59]. They
remove anchor-related computations like anchor clustering, allowing for even more
real-time efficiency.

One of the most canonical anchor-free detectors, CenterNet [59], represents an
object as a single point – the center-point of its bounding box. As illustrated in

Figure 9, the neural network predicts the center-point heatmaps Ŷ, offsets Ô and sizes

Ŝ of bounding boxes. By using key point estimation, CenterNet determines the center
point of objects and regresses all other object parameters, such as size. The bounding

box at position xi, yi
� �

may be generated from predictions at inference as follows:

x̂i þ δx̂i � ŵi,ŷi þ δŷi � ĥi, x̂i þ δx̂i þ ŵi,ŷi þ δŷi þ ĥi,Þ
�

(2)

where δx̂i, δŷi
� �

¼ Ôx̂i,ŷi
is the offset prediction and ŵi, ĥi

� �

¼ Ŝx̂i,ŷi is the size

prediction. Without the use of IoU-based non-maxima suppression or other post-
processing operations, all outputs are generated directly from key point estimations.
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Contrary to complicated computation experienced in anchor mechanism, the
detection speed of anchor-free models is improved over one-stage detectors signifi-
cantly while maintaining superior detection accuracy. Anchor-free models have
become the de facto solution for real-time detection [57]. For example, the AquaNet
[5] and MRF-Net [60] are improved based on the anchor-free model termed
CenterNet for underwater detection, and the efficiency and effectiveness are both
verified by comprehensive experiments.

4. Futuristic trends

The limited computing resources of UMRs is the main factor that prevents the
deployment of deep-learning-based models for real-time detection in underwater
environment. Meanwhile, difficulties of communication in underwater environment
prevent the possibility of exploring other cloud computing solutions. As a conse-
quence, reducing model size seems to be the only feasible method moving forward.

In the literatures, the two strategies to achieve real-time underwater object detec-
tion, namely lightweight network design and model compression, have been pro-
posed. Lightweight network design aims at developing some effective low-complexity
network architecture, while model compression attempts to remove redundant
parameters of a pre-trained model.

4.1 Lightweight network design

In the development of deep learning algorithms, by discarding or replacing the
most complicated module in a model, both accuracy and inference speed in deep-
learning-based object detection have been improved [44, 56, 61]. Re-designing fun-
damental components in the neural network architecture is another option for
achieving light-weighting model.

GoogLeNet [44] presented an Inception block made up of 4 convolution paths in
various configurations. Convolution with 1� 1 kernel is extensively utilized in the
Inception block to minimize the computational complexity. The network becomes
more efficient by approximating the predicted ideal sparse structure using conve-
niently accessible dense construction pieces. In SqueezeNet [62], 1� 1 convolutions
are also utilized to replace 3� 3 convolutions. It reduces the number of input channels
to 3� 3 convolutions and postpones the down-sampling operations in the network
architecture. Finally, with the same detection accuracy, SqueezeNet is 50� smaller
than AlexNet [63] in size, resulting in higher detection speed.

Figure 9.
Architecture of CenterNet (figure from [59]).

9

Marine Robotics 4.0: Present and Future of Real-Time Detection Techniques for Underwater…
DOI: http://dx.doi.org/10.5772/intechopen.107409



In contrast with conventional convolution, MobileNet [56] proposed depth-wise
separable convolutions, which are a type of factorized convolution that factorizes a
standard convolution into a depth-wise convolution and a 1� 1 point-wise convolu-
tion, as shown in Figure 10, saving a significant amount of mult-adds operations and
parameters while reducing accuracy by only 1%. ShuffleNet [64], on the other hand,
makes use of two novel operations, point-wise group convolution and channel shuffle,
to drastically reduce computational costs while preserving moderate detection accu-
racy. Xception [65], ResNeXt [17], and ChannelNet [66] are also wonderful works
that adopt depth-wise separable convolution.

Depth-wise separable convolution, 1� 1 convolution, and Max-pooling procedure
are all employed extensively in the deep neural network presented in [61] to reduce
computational complexity and model size. They also constructed an efficient recep-
tive module inspired by Inception v3 architecture [67] to compensate for the inade-
quately retrieved features, as illustrated in Figure 11. Taking advantage of lightweight
design, the proposed method outperforms or is comparable to state-of-the-art
methods in terms of the mAP metric, and it significantly outperforms existing
methods in terms of detection speed metrics, such as GFLOPs, processing time per
image, and FPS. Experimental results demonstrate that the proposed algorithm can be
executed on RaspberryPi, achieving real-time underwater object detection.

The underlying theory of lightweight network design is low-rank approximation.

When information is encoded in data matrix X, a full-rank matrix X̂, which is
constructed by the linearly independent columns (or rows) of matrix X, can be
obtained. It is quite conceivable (and rather frequent) for the rank of a matrix to be
smaller than the total number of column vectors in the matrix. This means there are
some redundant columns that can be generated by scaling and concatenating multiple

Figure 11.
Receptive module inspired by inception block (figure from [61]).

Figure 10.
Illustration of depth-wise separable convolution.
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columns from the full-rank matrix X̂. In other words, when a matrix contains redun-
dant information, it can be represented by using fewer bits with little-to-no loss in
information. Based on the theory of low-rank approximation, different effective and
efficient techniques can be employed to design lightweight network architectures.
Undoubtedly, it will play a pivotal role in realizing real-time detection of underwater
objects.

4.2 Model compression

Another key method to achieve real-time detection is model compression [68],
which aims to remove redundant parameters (or neurons) in the pre-trained models.
Existing research has shown that deep networks exhibit parameter redundancy, which
is useless for final prediction [69]. This serves as a theoretical foundation for
compressing of deep learning models. Various compression methods have been pro-
posed over the years, each of which has its pros and cons. Network pruning [70],
knowledge distillation [71], and parameter quantization [72] are some of the most
prominent strategies used to reduce network complexity.

Neural networks are typically over-parameterized, i.e., there are significant
redundant parameters or neurons [73]. Based on this observation, we can reduce
redundancy without compromising substantial performance degradation. In network
pruning, the importance of neurons (or parameters) is first evaluated based on some
metrics, such as the number of times it was not zero on a given dataset, the absolute
values or the lifetime of the neurons, etc. Next, neurons that are of less importance
will be removed.

With pruning, the model’s performance is expected to drop. In general, perfor-
mance degradation can be recovered by fine-tuning using the training dataset [74].
Network pruning can be applied at multiple granularities by different
implementations, such as weight pruning, neuron pruning, kernel pruning, channel
pruning, etc. By removing redundancy in the network, model complexity can be
reduced, and generalization can be improved. Based on network pruning, even over
90% of the model size can be removed with little-to-no performance loss, and the
computation speed of the model is improved significantly. In fact, network pruning
has become a prerequisite for the deployment of deep learning on edge devices.

Knowledge distillation is another important technique for model compression. In
general, training multiple distinct models on the same dataset and then averaging
their predictions is a fairly easy technique to enhance the performance of almost any
machine learning algorithm [75]. It is also widely believed that a large neural network
usually outperforms a small one before over-fitting. Knowledge distillation com-
presses the knowledge in an ensemble (or a large model, known as a “Teacher
Model”) into a single small model (known as a “Student Model”), which is much
easier to deploy on edge devices that are limited in computing resources [71]. It is
achieved by minimizing the distance of predictive distribution between the Teacher
Model and Student Model. The predictive distribution output by Teacher Model
usually contains some implicit knowledge from the training dataset, which is helpful
to guide model learning, easing out the optimization process. Through knowledge
distillation, we can maintain superior performance of the larger model while reducing
model size and consumption of computing resources.

Parameter quantization is concerned with re-organization of network parameters.
The main objective of parameter quantization is to represent the neural network with
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fewer bits [76]. For example, by compressing the 16-bit float parameters into 8-bit
integers, one can halve the memory cost with little loss in performance [77]. However,
the most commonly used quantization technique is parameter clustering [78, 79],
where the parameters in a network are first clustered by clustering methods (e.g., k-
means), and then every parameter is represented by the centroid of the corresponding
cluster. Based on parameter clustering, the entire neural network can be represented
by a cluster index table and the centroids. Each index is denoted by 2-bit unsigned
integers. Hence, the deep learning model can be compressed significantly. In the
extreme case, we can convert a network to a binary connect model, where all param-
eters are þ1 or �1 [80]. Last but not least, some information encoding methods, such
as Huffman encoding, that represents frequent clusters with fewer bits and rare
clusters with more bits [81], can also be used as quantization techniques, since they
are efficient encoding strategies.

In this section, we have reviewed two key techniques that help to reduce the model
size but maintain moderate performance with only slight degradation. Through model
reduction, the memory cost and computational complexity are reduced significantly,
which makes real-time detection on resource-constrained devices more feasible.
Indeed, lightweight network design and model compression are complementary and
should be applied iteratively to obtain a more elegant model.

5. Conclusions

UMRs play a significant and pivotal role in ocean exploration in the era of Industry
4.0. Real-time object detection will equip UMRs with superior perception capabilities.
In this chapter, we have identified real-time object detection as a key challenge of
ocean exploration while using UMRs. Towards this end, crucial techniques pertaining
to real-time detection of underwater objects have been critically reviewed and sys-
tematically analyzed based on the evolution in deep learning techniques. Three cate-
gories of detectors, namely two-stage detectors, one-stage detectors, and anchor-free
detectors, have been reviewed and analyzed. Furthermore, futuristic trends of real-
time detection, including lightweight network design and model compression, have
been proposed and intensively discussed. It is hoped that readers will find this survey
informative and useful in helping them to understand recent advancements in real-
time detection of underwater objects, and will guide them in research in this exciting
area, which will have a long-lasting impact to the mankind.
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