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Chapter

Design Optimization of 18-Poled
High-Speed Permanent Magnet
Synchronous Generator
Aslan Deniz Karaoglan, Deniz Perin and Kemal Yilmaz

Abstract

The aim of this research is to optimize the design of an 18-poled 8000 rpm 7 kVA
high-speed permanent magnet synchronous generator. The goal is to find the best
factor levels for the design parameters, namely magnet thickness (MH), offset, and
embrace (EMB) to optimize the responses namely efficiency (%), rated torque (N.m),
air-gap flux density (Tesla), armature current density (A/mm2), armature thermal
load (A2/mm3). The aim is to keep the air-gap flux density at 1 tesla while maximizing
efficiency and minimizing the rest of the responses. Optimization was carried out with
one sample algorithm selected from each of the commonly used optimization algo-
rithm classifications. For this purpose, different class of well-known optimization
techniques such as response surface methodology (gradient-based methods), genetic
algorithm (evolutionary-based algorithms), particle swarm optimization algorithm
(swarm-based optimization algorithms), and modified social group optimization
algorithm (human-based optimization algorithms) are selected. In the Ansys Maxwell
environment, numerical simulations are carried out. Mathematical modeling and
optimizations are performed by using Minitab and Matlab, respectively. Confirma-
tions are also performed. Results of the comparisons show that modified social group
optimization and particle swarm optimization algorithms a bit outperform the
response surface methodology and genetic algorithm, for this design problem.

Keywords: high-speed alternator, permanent magnet synchronous generator, electric
machine design, design optimization, response surface methodology, modified social
group optimization algorithm, particle swarm optimization algorithm, genetic
algorithm

1. Introduction

Many researchers have studied magnetic device design optimization and perma-
nent magnet synchronous generator (PMSG) design optimization, which are investi-
gated in many research studies over the last few decades. Efficiency, magnetic flux
density distribution, total harmonic distortion (THD), and other performance criteria
are commonly used in these studies and are attempted to be improved [1–11]. The
most common problems are heat buildup in the rotor, balancing issues, and bearing
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issues. Magnetic flux density distribution is a key success criterion that must be
maintained within a specific range in order to provide high efficiency and low heating
for the electric machine. Many different methods are used for design optimization. It
is impossible to perform optimization using real experimental results because there
are so many design combinations. In most cases, simulation results are used instead.
However, there are limited numbers of studies about high-speed alternator design
optimization.

Sadeghierad et al. [12] studied on performance comparisons of alternative designs
of high-speed alternators (HSA) for microturbines and considered the design diffi-
culties. Sadeghierad et al. [13] studied on optimizing the design of a high-speed axial
flux generator (HSAFG) by the aid of particle swarm optimization (PSO) and genetic
algorithm (GA) to maximize the efficiency. They discussed the effect of the lambda,
which is the ratio of inner diameter to outer diameter. Ismagilov et al. [14] tested a
new topology of the stator magnetic core made of amorphous alloy for a 5 kW
60,000 rpm high-speed permanent magnet electric machine with a tooth-coil winding
with six slots and two and four poles. Guo et al. [15] presented a method for deter-
mining the back electromotive force (EMF) utilizing air gap static flux density distri-
bution and calculating the coil average inductance at the midline of the quadrature-
direct axis. They used gradient descent-based optimization to minimize the volume of
high-speed generator for micro turbojet engine. The summary for the state of the art is
given in Table 1.

As can be seen from the literature review, the studies about design optimization of
high-speed generator by using optimization methods are very limited. Also the results
those presented to show the performance comparisons of the meta-heuristic optimi-
zation methods are very poor.

The motivation of this study is to perform design optimization of 18-Poled
8000 rpm 7 kVA high-speed PMSG. This problem is important because of the high
rotor speed and high frequency of the stator flux variation; the design of a high-speed
machine differs significantly from the design of a conventional machine with low
speed and low frequency. The first motivation of this study is to contribute to the
knowledge that has emerged based on the limited number of studies on this subject in
the literature, with a new study on topology optimization of high-speed PMSGs.

The second motivation is to show the performance of the different class of opti-
mization techniques on the design problem of high-speed alternators to the related
researchers. Deterministic or stochastic algorithms can be used for optimization. Due
to their high processing demands, deterministic approaches are ineffective for han-
dling multimodal and nonlinear complex issues. The nature is a major source of
inspiration for meta-heuristic algorithms, which are stochastic approaches utilized for

Author(s) Year Subject Optimization method

Sadeghierad et al. 2006 HSA for microturbines N/A

Sadeghierad et al. 2010 HSAFG PSO, GA

Ismagilov et al. 2018 5 kW 60,000 rpm high-speed permanent magnet

electric machine

N/A

Guo et al. 2019 High speed generator for micro turbojet engine Gradient descent

method

Table 1.
Summary of the literature review.
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optimization. There are four different types of meta-heuristics: (i) evolutionary, (ii)
swarm, (iii) physical and chemical, and (iv) human. Various well-known optimization
methods, such as response surface methodology (RSM) (gradient-based methods),
GA (evolutionary-based algorithms), PSO (swarm-based optimization algorithms),
and modified social group optimization algorithm (MSGO) (human-based optimiza-
tion algorithms), are used for this purpose.

The selected design parameters (magnet thickness (MH), offset, embrace (EMB))
and the responses (efficiency (%), rated torque (N.m), air-gap flux density (Tesla),
armature current density (A/mm2), armature thermal load (A2/mm3)) are not previ-
ously used together for high-speed alternator design optimization problem. So this is
the novelty aspect of this research.

This research was carried out in a real industrial plant, and by focusing on a small
number of parameters, we hoped to have a smaller impact on the layout and operation
of a serial production line (Such as redesigning assembly parts that may have an
impact on standard production, cooling design, body design, and so on.). As a result,
the parameters (magnet thickness (MH), offset, embrace (EMB)) that have the least
impact on the outer dimensions of the alternator are chosen as the design parameters
(factors). The following section goes over the materials and methods.

2. Materials and methods

2.1 Regression modeling and response surface methodology (RSM)

The design optimization problem that is handled in this study is solved in three
steps: i) design the experiments and perform the experimental runs, ii) perform
regression modeling to determine the mathematical relations between the responses
and the factors, iii) perform optimization to determine the optimum factor levels.
The goal of this paper is to calculate the optimum levels of magnet thickness (X1),
offset (X2Þ, and embrace (X3) to maximize the efficiency and to minimize the
rated torque, armature current density, and armature thermal load, while keeping
the air-gap flux density at 1.0 Tesla. Linear, quadratic, and interaction terms can
all be found in regression models. These three terms occur simultaneously in a
full quadratic model. Eq. (1) provides the full quadratic model’s general
representation [16–18].

Y i ¼ β0 þ
X

m

k¼1

βkXki þ
X

m

k¼1

βkkX
2
ki þ

X

m

k< l

βklXkiXli þ ei (1)

βT ¼ β0, β1, β2, … , βm½ � (2)

The response value for the ith experimental run is represented by Yi. In this study,
five different regression equations—which belong to five responses—will be calcu-

lated in the next section. Xki and X2
ki terms are the linear and quadratic terms,

respectively, while XkiXli terms represent the interactions (X1X2, X1X3, X2X3). Finally,
ei is the residual error. The vector given in Eq. (2) contains the model’s coefficients
given in Eq. (1) and calculated as shown below [16–18]:

β ¼ XTX
� ��1

XTY
� �

(3)
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Y is referred to as the response, and it is denoted by a column vector. In this study,
the response values are obtained using Maxwell simulations. X is a matrix, and it is
made up of the various combinations of the design parameters involved in the exper-
imental design. The first column of the X is made up of 1 s for the model’s constant
term (β0Þ. The second, third, and fourth columns contain the factor values X1, X2, and
X3, respectively. The experiments in this study are divided into 14 runs. These three
columns (the second, third, and fourth columns) and 14 rows are identical to the
experimental design. The squares of X1, X2, and X3 make up the 5th, 6th, and 7th
columns of the X matrix, respectively. The same issue applies to interactions. By
multiplying the related columns of X1, X2, and X3, the interactions are placed in the
8th, 9th, and 10th columns of the X matrix.

After mathematical modeling, R2 (coefficient of determination) is calculated to
determine whether the factors are sufficient to describe the response change. To put it
another way, R2

—which is presented in Eq. (4)—represents the level of explanatory
power between the regression model and the factors.

R2 ¼
βTXTY � n�Y

2

YTY � n�Y
2 (4)

In order to use these models established in Eq. (1)–(3) during the optimization
phase, R2 must be closer to 1 (which means 100%). Then this means the factors of the
mathematical models are sufficient to explain the shifts at Y, and in this case this
means there is no need to add new factors to the regression model. The significance of
the models must be determined in the final step before optimization. This is done
using analysis of variance (ANOVA). The F-test is used in ANOVA to test the signif-
icance of a regression model. In this study, we used “p-value” technique (where the
p-values of the each model are calculated using Minitab statistical analysis program).
When the p-value is less than the alpha (type-I error), the model is considered
significant. We set confidence level at 95% in the statistical analysis. This indicates
that the type-I error==0.05 (5%).

In the second phase, the optimization algorithms will be run through these five
regression models to calculate the optimum factor levels. In this study, four different
classes of optimization methods (RSM, GA, PSO, and MSGO) are tried on this opti-
mization problem. RSM is a gradient-based deterministic optimization method; how-
ever, GA, PSO, and MSGO are the meta-heuristics. Meta-heuristic algorithms can be
classified into different groups such as evolutionary, swarm-based, human-based, etc.

Since its introduction in 1951, the RSM has become a commonly preferred design
of experiment (DOE) approach for modeling and optimizing processes with a small
number of experimental runs [16–18]. In this study, RSM is applied by using “Minitab
Response optimizer Module,” which uses gradient search algorithm in its background.

2.2 Genetic algorithm (GA)

Meta-heuristic algorithms are stochastic optimization methods that are heavily
influenced by nature. In 1975, Holand created GA, a search and optimization tech-
nique [18]. Natural selection and genetic concepts are used to replicate the evolution-
ary process in nature. It operates based on probability laws and simply requires the
purpose function. The solution area is partially investigated by GA, resulting in a more
efficient search in a shorter amount of time. Chromosomes are created in the initial
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phase of GA to explore potential solutions. Chromosome set represents the genera-
tion’s population. Selection, crossover, and mutation are the three GA operators.
These operators drive the evolution of chromosomes in a generation toward the
following generation. There are several uses for GA, including scheduling, vehicle
routing, and transportation. GA is an evolutionary-based algorithm [19, 20].
According to Haupt and Haupt [21], since the chromosomes are not decoded before
calculating the cost function, continuous GA is faster than binary GA. As a result,
instead of binary GA, continuous GA was used in this study because it has the
advantage of requiring less storage. In this study, the crossing method, in which Haupt
& Haupt [19] combine the extrapolation method with a crossing method, is used.

2.3 Particle swarm optimization (PSO) algorithm

Particle swarm optimization (PSO) algorithm is invented by Kennedy & Eberhart
[22] in 1995, and it is the first swarm-based meta-heuristic algorithm. Every possible
solution in PSO is represented by a particle. The distances between a particle’s present
position and its best position and the best position of the group are used in PSO to
update a particle’s velocity [23–25].

The velocity vector and position vector for the ith particle are shown by vi and xi,
respectively, in the D-dimensional search space (where vi ¼ vi1, vi2, … , viDð Þ and
xi ¼ xi1, xi2, … , xiDð Þ). After random initialization of particles, each particle’s velocity
and position are updated as specified in Eq. (5) and Eq. (6) [25].

vi tþ 1ð Þ ¼ wvi tð Þ þ c1r1 pi � xi tð Þ
� �

þ c2r2 pg � xi tð Þ
� �

(5)

xi tþ 1ð Þ ¼ xi tð Þ þ vi tþ 1ð Þ (6)

In these equations, w stands for the inertia weight and is used to regulate how the
previous velocity affects the new. The best past positions of the ith individual and all
particles in the current generation are represented, respectively, by pi and pg. The

constants c1 and c2 are used to weight the positions. The uniformly distributed values
between [0, 1] are [r1] and [r2]. Figure 1 shows the algorithm’s progress [25].

2.4 The modified social group optimization (MSGO) algorithm

MSGO is a human-based optimization algorithm and invented in 2020. It is pro-
posed by Naik et al. [26] by improving the acquiring phase of social group optimiza-
tion (SGO) algorithm [27] and introducing a self-awareness probability factor. It is
based on an individual’s social behavior in a group to solve complex problems.

In MSGO, each member of the group (person) stands in for a potential solution,
and the human traits—which stand in for a person’s dimension—represent the
amount of design variables in the issue. Figure 2 below shows the pseudocode for the
improvement phase. In Figure 2, Pi represents the members of the social group made
up of N individuals, where i ¼ 1,2,3,… ,N. Each individual additionally has D traits
(Pi ¼ Pi1, Pi2, … , PiDð Þ). The self-introspection parameter between [0,1] and rand �
U 0, 1ð Þ is called c. The best member of the group is gbest, who works to spread
knowledge among all people. Gbest will then be able to assist the group as a whole in
learning more. Eq. (7) presents the aim as a minimization problem. Figure 2 and
Eq. (7) illustrate the update for each individual [26, 27].
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minvalue, index½ � ¼ min f Pið Þ, i ¼ 1, 2, … , Nf gandgbest ¼ P index, :ð Þ (7)

A person interacts with the group’s best member (gbest) as well as other group
members at random during the learning phase in order to gain information. In other
terms, gbest is the best member of the group. A person learns something new if
someone else is more knowledgeable. The person with the most knowledge, or
“gbest,” has the most influence over others to learn from. Even if they are more
knowledgeable than they are, group members can teach a person something new. The
acquiring phase is represented by Eq. (8) and Figure 3 [26, 27].

minvalue, index½ � ¼ min f Pið Þ, i ¼ 1, 2, … , Nf g and gbest ¼ P index, :ð Þ (8)

Figure 1.
The PSO algorithm.

Figure 2.
The improving phase.
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where the updated values at the conclusion of the improving phase are Pi values.
By changing the acquisition step of the SGO algorithm, the MSGO algorithm was

created. The improving phase, however, is identical to SGO. Each social group mem-
ber is still interacting with the finest individual throughout this period (bestp). Each
person also engages in interaction with the other group members to learn. During this
stage, if the other person knows more, the person learns something new. If one person
knows more than another and that person has a greater self-awareness probability
(SAP) of learning that knowledge, then that person learns something new from that
other person. SAP is the capacity to learn from others, according to its definition.
Modified acquisition phase is shown in Eq. (9), and Figure 4 below shows a minimi-
zation problem [26, 27]:

value, index_num½ � ¼ min f Pið Þ, i ¼ 1, 2, … , Nf g and bestP ¼ P index_num, :ð Þ

(9)

Figure 3.
The acquiring phase for SGO.

Figure 4.
The acquiring phase for MSGO.
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The relevant design variable’s upper and lower bounds are shown in Figure 4 as lb
and ub, respectively. It is proposed to select the SAP between: 0:6≤ SAP≤0:9.
According to the literature, MSGO shows best performance for SAP = 0.7 and c = 0.2
[26, 27].

3. Experimental results and discussions

We used an 18-poled 8000 rpm 7 kVA PMSG in this study. The design is done
using Maxwell. Table 2 lists the design parameters. The PMSG’s structure is also
shown in Figure 5. The rated power factor of the PMSG is 1.0. All of the winding
material in the Maxwell design is standard copper. Lamination is done with Si-Fe.
Finally, the insulation material H-Class is chosen.

The goal of the first stage is to use regression modeling to find the mathematical
relationship between the factors (magnet thickness (X1), offset (X2), and embrace
(X3)) and the responses (efficiency (%), rated torque (N.m), air-gap flux density
(Tesla), armature current density (A/mm2), armature thermal load (A2/mm3)) by
using regression modeling. “RSM face-centered design” is used to create an experi-
ment to complete this phase. The factor levels for this experimental design are shown
in Table 3. Figure 6 shows a graphical representation of the experimental design. The
level-2 for embrace in a standard face-centered design is 0.8%. However, due to the
restrictions of the serially configured production line, we used 0.8% in the experi-
mental design instead of 0.75%.

According to the graphical representation of experimental design that is presented
in Figure 6, it can be clearly indicated that there are 15 experimental runs for three
factors. However, no simulation could be made in Ansys Maxwell for the (�1, +1, +1)

Name Value Unit Part Description

Machine type N/A — — 3-phase adjust speed PMSG

Inner dia. 100 Mm Stator Gap side core diameter

Outer dia. 160 Mm Stator Yoke side core diameter

Length 50 Mm Stator Length of the core

Skew width 1 Units Stator Slot range number

Slot type 3 N/A Stator Circular

Slots 54 Units Stator Number of slots

Bs1 2.7 Mm Stator Tooth width

Hs0 0.5 Mm Stator Slot opening height

Hs2 23 Mm Stator Slot height

Inner dia. 30 Mm Rotor Gap side core diameter

Outer dia. 99 Mm Rotor Yoke side core diameter

Length 50 Mm Rotor Length of the core

Poles 18 — Rotor Number of poles

Magnet NdFe35 — Rotor Magnet type

Table 2.
Design parameters of 18-poled 8000 rpm 7 kVA PMSG.

8

Swarm Intelligence - Recent Advances and Current Applications



experiment (magnet thickness: 2 mm, offset: 40 mm, embrace: 1%) in this experi-
mental design. It is not a suitable design because the offset magnet is much larger than
the thickness. Therefore, since such a magnet cannot be produced, this simulation
does not yield results. At the end of Maxwell simulation, it gives an error “ARC Offset
is too big.” The findings of 14 experimental runs using Maxwell simulations are

Figure 5.
Structure of the PMSG.

Figure 6.
Graphical representation of RSM face-centered design.

Factors Symbols Unit Levels

�1 0 1

Magnet thickness X1 mm 2 4 6

Offset X2 mm 0 20 40

Embrace X3 % 0.5 0.8 1

Table 3.
Levels of factors.
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presented in Table 4. The disadvantage of making genuine PMSG prototypes—which
is unpredictable due to expenses—is avoided in this approach. The original uncoded
factor levels are also coded by using Eq. (10) given below. The mathematical modeling
will be performed in terms of both uncoded and coded factor levels. Mathematical
models for uncoded factor levels display the real relationship to the readers, while the
models for coded factor levels will be used in the optimization phase (the details of
which will be expanded in the following paragraphs).

Xcoded ¼
Xuncoded � Xmax þ Xminð Þ=2ð Þ

Xmax � Xminð Þ=2
(10)

Minitab program is used for regression modeling and significance tests. The math-
ematical models for the uncoded factor levels are given in Eqs. (11) and (15). Table 5
shows the R2 statistics associated with the regression models.

Run

i

Factors Responses

Uncoded Coded Efficiency

(%)

Rated

Torque

(N.m)

Air-Gap

Flux Density

(T)

Armature

Current Density

(A/mm2)

Armature

Thermal Load

(A2/mm3)

Xi1 Xi2 Xi3 Xi1 Xi2 Xi3 Yi1 Yi2 Yi3 Yi4 Yi5

1 2 0 0.5 �1 �1 �1 94.08 8.88 0.89 9.86 726.16

2 6 0 0.5 1 �1 �1 93.36 8.95 1.01 10.50 822.86

3 2 40 0.5 �1 1 �1 92.58 9.02 0.89 11.17 931.11

4 6 40 0.5 1 1 �1 92.21 9.06 1.02 11.80 982.58

5 2 0 1 �1 �1 1 97.54 8.56 0.89 6.11 278.45

6 6 0 1 1 �1 1 98.02 8.52 1.02 5.42 219.37

7 6 40 1 1 1 1 94.69 8.82 1.02 9.30 645.47

8 2 20 0.8 -1 0 0 96.61 8.64 0.89 7.28 396.00

9 6 20 0.8 1 0 0 97.00 8.61 1.02 6.78 343.20

10 4 0 0.8 0 -1 0 97.46 8.57 0.99 6.22 288.41

11 4 40 0.8 0 1 0 95.01 8.79 0.99 8.99 602.48

12 4 20 0.5 0 0 -1 93.61 8.92 0.99 10.29 789.81

13 4 20 1 0 0 1 97.53 8.57 0.99 6.13 280.17

14 4 20 0.8 0 0 0 97.07 8.61 0.99 6.72 336.90

Table 4.
Ansys Maxwell simulation results.

Y1 Y2 Y3 Y4 Y5

R2 (%) 99.35 99.57 100 99.25 99.39

R2 (prediction) (%) 88.24 93.14 99.7 85.07 89.32

R2 (adjusted) (%) 97.88 98.59 99.99 97.57 98.03

Table 5.
Summary of coefficient of determination values.
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Ŷ1 ¼ 81:0151784520298 þ 0:0227200449501287X1 þ 0:090808386009271X2

þ 34:4411803062228X3 � 0:0526452802359875X2
1 � 0:00195145280235988X2

2

� 18:6931720747296X2
3 þ 0:000938938053097341X1X2

þ 0:513403216743922X1X3 � 0:0987609565950274X2X3

(11)

Ŷ2 ¼ 10:0924651495997 þ 0:00532434330664408X1 � 0:00804942407641527X2

� 3:24443902233461X3 þ 0:00413938053097343X2
1 þ 0:000178893805309734X2

2

þ 1:77530383480827X2
3 � 0:0000876106194690151X1X2

� 0:0481433487849417X1X3 þ 0:00866354122770053X2X3

(12)

Ŷ3 ¼ 0:717642281219273 þ 0:0998102261553588X1 þ 0:000230039331366765X2

þ 0:0165307767944939X3 � 0:00900958702064896X2
1 � 0:0000025959X2

2

� 0:0168692232055067X2
3 þ 0:0000584070796460183X1X2

þ 0:00464847590953787X1X3 � 0:000464847590953787X2X3

(13)

Ŷ4 ¼ 22:825129006883� 0:0399906588003885X1 � 0:112362143559489X2

�33:6265606686333X3 þ 0:0581474926253684X2
1 þ 0:00201897492625369X2

2

þ17:8853726647001X2
3 þ 0:00091681415929201X1X2 � 0:603758603736482X1X3

þ0:121209193706982X2X3 (14)

Ŷ5 ¼ 2449:75496212952� 0:949312895068736X1 � 11:2799654586319X2

� 4567:06018645878X3 þ 6:74597935103238X2
1 þ 0:257072293510325X2

2

þ 2496:87546116028X2
3 � 0:130220353982304X1X2 � 67:5995269700804X1X3

þ 12:0458653954207X2X3

(15)

The R2 values presented in Table 5 are very close to 100%—which means the
selected design parameters (magnet thickness, offset, embrace) are sufficient to
mathematically model the responses. ANOVA is used to determine the model’s signif-
icance. For this purpose, P-value approach is used. The summary for the ANOVA
results is presented in Table 6.

Y1 Y2 Y3 Y4 Y5

P-Value 0.001 0.000 0.000 0.001 0.000

Test <0.05 <0.05 <0.05 <0.05 <0.05

Result Significant Significant Significant Significant Significant

Table 6.
Summary of ANOVA results.

11

Design Optimization of 18-Poled High-Speed Permanent Magnet Synchronous Generator
DOI: http://dx.doi.org/10.5772/intechopen.106987



ANOVA results presented in Table 6 indicate that all the calculated p-values are
less than α = 0.05 (5%)—which means each mathematical model is significant and can
be used in optimization phase. The RSM face-centered design looks to accurately
reflect the supplied set of alternator design parameters. Table 7 displays the predic-

tion performances of the mathematical models. Ŷi is the Minitab predictions
(expected values) while Yi is the simulation results obtained from Maxwell (observed
values). The prediction error percentage is denoted by PE(%) and computed using
Eq. (16):

PEi %ð Þ ¼
Y i � Ŷ i

�

�

�

�

Ŷ i

100 (16)

Results provided in Table 7 show that the regression models good fit the observed
values and the PE(%) is quite low. Also the confirmation tests are performed for the
mathematical models. For this purpose a new dataset that is composed of five new
Maxwell simulation results—which is not used in the mathematical modeling phase
previously—is used. Confirmations are presented in Table 8.

According to the confirmation results indicated in Table 8, the overall PE(%) is
acceptable. The comparisons shown in Tables 7 and 8 indicate that these numerical
models can be used for optimization.

In the optimization phase, four different optimization methods (RSM, GA,
PSO, and MSGO) from four different classes are tested for calculating the optimum
design parameters. To establish the optimum factor levels, the optimization

Run

(i)

Efficiency (%) Rated torque

(N.m)

Air-gap flux

density (Tesla)

Armature current

density (A/mm2)

Armature thermal

load (A2/mm3)

Yi1 Ŷi1 PEi1

(%)

Yi2 Ŷi2 PEi2

(%)

Yi3 Ŷi3 PEi3

(%)

Yi4 Ŷi4 PEi4

(%)

Yi5 Ŷi5 PEi5

(%)

1 94.08 93.911 0.18 8.88 8.893 0.15 0.89 0.890 0.01 9.86 10.032 1.71 726.16 747.929 2.91

2 93.36 93.344 0.02 8.95 8.951 0.01 1.01 1.010 0.02 10.50 10.525 0.24 822.86 824.805 0.24

3 92.58 92.521 0.06 9.02 9.024 0.04 0.89 0.890 0.04 11.17 11.265 0.85 931.11 938.546 0.79

4 92.21 92.104 0.12 9.06 9.067 0.08 1.02 1.020 0.01 11.80 11.905 0.89 982.58 994.586 1.21

5 97.54 97.625 0.09 8.56 8.554 0.07 0.89 0.890 0.02 6.11 6.029 1.34 278.45 269.456 3.34

6 98.02 98.085 0.07 8.52 8.515 0.05 1.02 1.020 0.03 5.42 5.315 1.98 219.37 211.132 3.90

7 94.69 94.870 0.19 8.82 8.805 0.17 1.02 1.020 0.02 9.30 9.119 1.98 645.47 621.831 3.80

8 96.61 96.754 0.15 8.64 8.629 0.13 0.89 0.890 0.05 7.28 7.093 2.63 396.00 375.788 5.38

9 97.00 96.878 0.13 8.61 8.622 0.14 1.02 1.020 0.00 6.78 6.936 2.24 343.20 361.126 4.96

10 97.46 97.496 0.04 8.57 8.567 0.04 0.99 0.990 0.00 6.22 6.209 0.18 288.41 281.927 2.30

11 95.01 94.996 0.01 8.79 8.794 0.05 0.99 0.990 0.05 8.99 8.970 0.22 602.48 606.677 0.69

12 93.61 93.961 0.37 8.92 8.896 0.28 0.99 0.990 0.03 10.29 9.892 4.02 789.81 746.654 5.78

13 97.53 97.201 0.34 8.57 8.595 0.29 0.99 0.990 0.01 6.13 6.497 5.65 280.17 321.040 12.73

14 97.07 97.026 0.04 8.61 8.609 0.01 0.99 0.991 0.08 6.72 6.782 0.91 336.90 341.473 1.34

Table 7.
Regression model performances.
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algorithms will be run through these five regression models. RSM is a gradient-
based method, while GA (evolutionary-based algorithm), PSO (swarm
intelligence-based algorithm), and MSGO (human-based algorithm) are meta-
heuristic optimization methods [24]. In this study, the performance of the
multiobjective optimization using meta-heuristics is done by combining all the
responses in one objective function independent from their units. To do this, the
response functions must be recalculated by using the coded factor levels (instead
of original levels) between �1 (for minimum value for the factor level) and + 1 (for
maximum value for the factor level). The regression models calculated from coded
factor levels are given in Eqs. (17)–(21):

Ŷ1,coded ¼ 96:7492070304818þ 0:0107779533642339X1 � 1:15129382638011X2

þ 1:61995398230089X3 � 0:210581120943952X2
1 � 0:780581120943952X2

2

� 1:1683232546706X2
3 þ 0:0375575221238924X1X2

þ 0:25670160837196X1X3 � 0:493804782975135X2X3

(17)

Ŷ2,coded ¼ 8:63435501474926þ 0:0011593271526898X1 þ 0:105070831577469X2

� 0:150196460176991X3 þ 0:0165575221238939X2
1

þ 0:0715575221238936X2
2 þ 0:110956489675516X2

3

� 0:00350442477876052X1X2 � 0:0240716743924708X1X3

þ 0:0433177061385025X2X3

(18)

Ŷ3,coded ¼ 0:990846656833825þ 0:0647760570304818X1

þ 0:000223942969518185X2 þ 0:000130973451327435X3

� 0:0360383480825959X2
1 � 0:00103834808259587X2

2

� 0:00105432645034415X2
3 þ 0:00233628318584071X1X2

þ 0:00232423795476892X1X3 � 0:00232423795476893X2X3

(19)

Run

(i)

Efficiency (%) Rated torque

(N.m)

Air-gap flux

density

(Tesla)

Armature

current density

(A/mm2)

Armature thermal

load (A2/mm3)

Yi1 Ŷi1 PEi1

(%)

Yi2 Ŷi2 PEi2

(%)

Yi3 Ŷi3 PEi3

(%)

Yi4 Ŷi4 PEi4

(%)

Yi5 Ŷi5 PEi5

(%)

15 96.75 96.237 0.53 8.63 8.679 0.57 0.96 0.947 1.37 7.11 7.623 6.73 377.61 443.702 14.90

16 95.33 95.455 0.13 8.76 8.756 0.05 1.01 1.011 0.14 8.67 8.382 3.44 560.40 548.170 2.23

17 97.73 97.850 0.12 8.55 8.535 0.18 1.01 1.014 0.43 5.84 5.800 0.69 254.69 236.384 7.74

18 94.82 94.619 0.21 8.81 8.833 0.26 1.01 1.014 0.41 9.18 9.296 1.25 628.25 659.757 4.78

19 96.89 96.421 0.49 8.62 8.664 0.51 1.01 1.014 0.43 6.95 7.442 6.61 360.79 420.246 14.15

Table 8.
Confirmation tests.
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Ŷ4,coded ¼ 7:07668220255654� 0:0185867748279251X1 þ 1:25942010816126X2

� 1:69733805309735X3 þ 0:232589970501475X2
1 þ 0:807589970501475X2

2

þ 1:11783579154375X2
3 þ 0:0366725663716815X1X2

� 0:30187930186824X1X3 þ 0:606045968534907X2X3

(20)

Ŷ5,coded ¼ 377:792067158309� 0:571060788032038X1 þ 150:328878248349X2

� 212:806948672566X3 þ 26:9839174041298X2
1 þ 102:82891740413X2

2

þ 156:054716322517X2
3 � 5:20881415929203X1X2

� 33:7997634850401X1X3 þ 60:2293269771036X2X3

(21)

The objective function is given in Eq. (22) and Eq. (23). The aim is to maximize the
efficiency (Y1), while holding the air-gap flux density (Y3) at 1 Tesla and minimizing
the rest of the responses (Y2, Y4, Y5).

Z ¼ Y1,coded=max Y i1ð Þð Þj j � Y2,coded=max Y i2ð Þð Þj j

� Y3,target=max Y i3ð Þ
� �

� Y3,coded=max Y i3ð Þð Þ
�

�

�

�� Y4,coded=max Y i4ð Þð Þj j

� Y5,coded=max Y i5ð Þð Þj j

(22)

Min Z s.t. X1 ∈[�1,1]; X2∈[�1,1]; X3∈[�1,1]

Note that the Y3,target ¼ 1 Tesla in the equation of Z. In addition; max Yi1ð Þ,
max Yi2ð Þ, max Yi3ð Þ, max Yi4ð Þ, and max Yi5ð Þ are the maximum observed response
values presented in Table 4 (which are 98.02, 9.06, 1.02, 11.8, and 982.58 for this
problem, respectively). If the readers would like to use the Matlab codes referred in
the reference [28] for MSGO, note that the signs of the each term are the exact
opposite (since the codes in the reference are coded according to maximization prob-
lems). Then the Z function set in the Matlab code is given in Eq. (24):

Z ¼ � Y1,coded=98:02ð Þj j þ Y2,coded=9:06ð Þj j þ 1=1:02ð Þ � Y3,coded=1:02ð Þj j þ Y4,coded=11:8ð Þj j

þ Y5,coded=982:58ð Þj j

(24)

MSGO, PSO, GA, and RSM are run through these mathematical models to perform
multi-objective optimization. Table 9 summarizes the optimized factor levels and the
calculated CPU times (at a PC: Intel i5 4GB RAM), for each method. In this table, nPop
and MaxIt represent the population size and maximum number of iterations, respec-
tively. For MSGO, c and SAP are set as 0.2 and 0.7, respectively. In PSO, the param-
eters of the algorithm are set as: w = 1, wdamp = 0.99, c1 = 1.5, c2 = 2.0. In the GA, we
use the crossover rate = 0.50 and the mutation rate = 0.20. The optimization results for
these optimization methods are presented in Table 10.

Results presented in Table 10 indicate that the meta-heuristics superiors RSM with
a quite bit difference. When compared among themselves, MSGO and PSO together
give better results than GA. The MSGO and PSO give the same optimization results. So
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the optimized factor levels of MSGO and also same as PSO are used for designing the
optimized design. The optimum factor levels are calculated as: magnet thickness:
5.48 mm, offset: 0 mm, embrace: 1%. However, confirmation results of these four
methods are given together in Table 11. The observed responses and the fitted
responses are presented in Table 11. Also the PE (%) values are calculated for each
response in terms of the methods.

The optimized PMSG’s magnetic flux distribution and the voltage graphs are
presented in Figures 7 and 8, respectively. The graphs for flux linkage, power, and
torque are given in Figure 9, Figure 10, and Figure 11, respectively.

In order to obtain the desired responses, the embrace must be maximum. Also the
magnet thickness must be bigger than 4 mm. For this sample PMSG structure in the
article, the results showed that offset has no discernible effect on responses (causes
little changes).

As previously stated, this issue is only relevant to the PMSG in this case study.
Additional optimization methods can be used to expand on these findings and discus-
sions such as bat algorithm (BA) [29], grew wolf optimizer (GWO) [30], whale

Run parameters Coded factor levels Uncoded factor levels CPU time

Method nPop MaxIt X1 X2 X3 X1 X2 X3

MSGO 30 2000 0.7396 -1 1 5.48 0 1 5

PSO 100 1000 0.7396 -1 1 5.48 0 1 7

RSM N/A N/A 0.2 �0.5 1 4.4 10 1 N/A

GA 8 100,000 0.1528 �1 0.9485 4.31 0 0.99 9

Table 9.
Optimized factor levels for each method.

Ŷ1 Ŷ2 Ŷ3 Ŷ4 Ŷ5

Target: Max Min 1 Tesla Min Min

MSGO 98.1202 8.513 1.0192 5.3024 206.5071

PSO 98.1202 8.513 1.0192 5.3024 206.5071

RSM 97.8696 8.5352 1.0025 5.7079 236.194

GA 98.0959 8.5157 1.0002 5.3895 209.4387

Table 10.
Summary of the optimization results.

Method Yi1 Ŷi1 PEi1

(%)

Yi2 Ŷi2 PEi2

(%)

Yi3 Ŷi3 PEi3

(%)

Yi4 Ŷi4 PEi4

(%)

Yi5 Ŷi5 PEi5

(%)

MSGO 98.03 98.1202 0.09 8.52 8.513 0.08 1.01 1.0192 0.90 5.4 5.3024 1.84 217.9 206.5071 5.52

PSO 98.03 98.1202 0.09 8.52 8.513 0.08 1.01 1.0192 0.90 5.4 5.3024 1.84 217.9 206.5071 5.52

RSM 97.84 97.8696 0.03 8.54 8.5352 0.06 1 1.0025 0.25 5.69 5.7079 0.31 241.3 236.194 2.16

GA 98.01 98.0959 0.09 8.52 8.5157 0.05 1 1.0002 0.02 5.42 5.3895 0.57 219.76 209.4387 4.93

Table 11.
Confirmations for the optimized factor levels.
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Figure 7.
Magnetic flux density distribution of the optimized PMSG.

Figure 8.
Voltage graph of the optimized PMSG.

Figure 9.
Flux linkage of the optimized PMSG.
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optimization (WOA) [31], grasshopper optimization algorithm (GOA) [32] etc., in
the future research studies.

4. Conclusion

The design of an 18-poled 8000 rpm 7 kVA PMSG is optimized in this study. The
goal is to determine the optimal levels of magnet thickness (MH), offset, and embrace
(EMB) to keep the air-gap flux density at 1 tesla while maximizing efficiency and
minimizing other responses. For this purpose, Ansys Maxwell is used for calculating
the responses and Minitab is used for mathematically modeling the relations between
the factors and the responses by using simulation results. Then MSGO, PSO, RSM, and
GA are used for optimization by running these algorithms through the regression
models. Matlab coding is performed for this stage. Although the results of the four
methods are nearly identical, MSGO and PSO outperform the other methods for the
sample PMSG presented in this study. Although the results of the four methods are
nearly identical, one advantage of RSM is that it does not require program coding and
allows for visual examination of the relationships between factors and responses. The
RSM is clearly less complex than the PSO, MSGO, and GA, according to the time
complexity analysis. When comparing the PSO, MSGO, and GA, it is clear that the
MSGO has fewer parameters to tune and produces extremely accurate results, making
it extremely efficient. In the future, we plan to expand the work to include additional

Figure 10.
Power graph of the optimized PMSG.

Figure 11.
Torque graph of the optimized PMSG.
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design parameters, higher power groups, and additional optimization methods. The
optimum factor levels are calculated as: magnet thickness: 5.48 mm, offset: 0 mm,
embrace: 1% at the end of optimization phase. The embrace must be at its peak in
order to obtain the desired responses. In addition, the magnet thickness must be
greater than 4 mm. The results demonstrated that offset has no discernible effect on
the selected responses for the selected PMSG structure in this manuscript.
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