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Chapter

The Sperm: Parameters 
and Evaluation
Suchada Mongkolchaipak

Abstract

Male factor infertility contribute approximately at 50% for the cause of infertility. 
The steady declination of semen quality in men for all over the world might be from 
various factors such as life style changes, environmental toxicity, dietary contribu-
tion and social problems. Assisted reproduction is the main treatment of choice for 
male infertility; However, in severe male factor infertility, the treatment outcomes 
could end up with recurrent implantation failure or recurrent pregnancy loss. Basic 
semen analysis still has limitation to explain the cause of failure for the part of male 
factors. The purposes of developing new sperm evaluation methods are to improve 
the diagnostic tools for identifying the sperm defects, appraise of fertility potential 
and provide suitable treatment for an infertile couple, explain the cause of treatment 
failure from male factor part and measure the efficacy of male contraception.

Keywords: male factor infertility, sperm DNA fragmentation, sperm oxidative stress, 
semen analysis, total antioxidant capacity, sperm motility, sperm morphology, sperm 
concentration

1. Introduction

According to the World Health Organization (WHO), infertility is a reproductive 
system disease that is defined as “a failure to conceive naturally after regular sexual 
intercourse without the use of contraception for at least a year” [1]. It is estimated 
that 8–12% of people who are of reproductive age encounter infertility problems [2]. 
The male factor is responsible for 50% of infertility cases [3].

Furthermore, the incidence of male factor infertility in men in the active repro-
ductive age bracket has been reported to be as high as 15% [4]. The causes of male 
factor are multifactorial. The pathophysiology of the causes is not fully understood, 
and most of them are idiopathic [5]. Initial investigation of the male partner consists 
of a history, physical examination, and semen analysis; however, some may require 
specific hormonal investigations to determine the causes of male infertility [4].

Semen analysis is a basic method to investigate the cause of infertility in the male. 
Six versions of a semen assessment methods guideline have been created by WHO. 
The first manual was published in 1980 based on clinical experience and research. The 
following versions were published in 1987, 1992, 1999, 2010, and 2021. The reasons 
for revising the manual included improving the semen analysis methods and updat-
ing the semen parameters to be more compatible with normal male fertility [6–9]. 
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Nevertheless, at least 15% of infertile men are found to have a normal semen analysis 
according to WHO criteria [10]. However, further abnormalities were detected by a 
sperm DNA integrity test [11–13]. In the latest edition of WHO’s laboratory manual 
for human semen evaluation, revisions have been made to improve the accuracy of the 
test and eliminate the unnecessary steps of the evaluation [14].

2. Semen sample assessment

Semen analysis is the method of evaluating the ejaculate composed of sperm, 
which originates from the testes and seminal fluid secreted from the accessory glands. 
Components in seminal fluid facilitate the sperm’s access to the female genital tract 
and its ability to fertilize the mature oocyte in vivo [15]. In the sixth edition of WHO’s 
laboratory manual for human semen examination, the procedure is divided into three 
parts. The first part is a basic semen examination. The second is an extended analysis, 
which is specialized for specific clinical applications. The last part is an advanced 
procedure, which is not used in routine practice. It must be done in a special laboratory, 
and it is mainly used in research studies [16]. The basic assessment includes the mea-
surement of ejaculate volume, macroscopic evaluation, and microscopic examination.

In the sixth WHO manual, revisions to the basic assessment are based on evi-
dence-based practices that improve the process of assessment, reduce the workload 
in the laboratory, and promote inter-laboratory quality assurance. The WHO manual 
emphasizes the importance of precisely measuring the ejaculate volume, which 
reflects the true total sperm count and examining the extent of sperm motility, which 
is clinically related to the male fertility potential.

3. Basic examination of semen sample parameters

General semen quality has shown a steady decline across the world [17] due to 
various factors, such as lifestyle changes, environmental toxicity, dietary contribu-
tion, and social problems [18–20]. Today, there are multiple tools to evaluate the 
semen quality and find suitable treatments for each infertile couple. Each semen 
parameter reflects the individual cause that needs to be clarified.

3.1 Gross appearance

Normal ejaculate has a homogeneous grayish color. In the case of pale color or 
colorlessness, the patient should be asked if there is orgasm during seminal collection 
because the semen component might only be from the Cowper’s glands, not the pros-
tate gland, seminal vesicle, or seminiferous tubule. The former occurs from sexual 
arousal, while the latter occurs from an orgasm. The color could be a deep yellow in 
patients with jaundice or those taking vitamin supplements. Normally, the ejaculate 
is odorless and can be liquefied within 30 min at room temperature. A strong smell is 
not normal and should be noted in the report.

3.2 Volume

The ejaculate volume is clinically significant for the diagnosis of male infertility, 
as it reflects the total sperm count in the ejaculate. The sixth WHO manual focuses on 
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the accuracy of the volume measurement by instructing to weigh the ejaculate (pre-
weighing the container and subtracting it from the total weight of the final specimen) 
and calculate back into the volume. The formula for calculating semen density is 1 g 
per 1 ml. Total sperm count is related to the sperm produced directly from the semi-
niferous tubules. This count is used as an indicator of spontaneous conception and 
treatment success in intrauterine insemination [21].

3.3 Microscopic examination

3.3.1 Sperm concentration

The clinical value of sperm concentration is less than the total sperm count per 
ejaculate because the sperm concentration depends on the amount of accessory gland 
secretion activity. Sperm concentration does not indicate the chance of success in 
intracytoplasmic sperm injection (ICSI) cycles [22].

3.3.2 Sperm motility

In the sixth WHO manual, the assessment of sperm motility has reverted to 
the four categorizations presented in the fourth WHO manual: rapidly progres-
sive (≥25 μ m/s), slowly progressive (5 to <25 μ m/s), nonprogressive (<5 μ m/s) 
and immotile (no active tail movement) (they are classified as grade a, b, c, and d, 
respectively) movement. However, in the fifth edition, sperm motility was classified 
into just three categories: progressive motility, nonprogressive motility, and immotile.

The total number of progressively motile spermatozoa indicates the chance of suc-
cess in intrauterine insemination [23], and the presence of rapidly progressive motile 
sperm is clinically significant [24]. Asthenozoospermia is a medical term defined as 
“lower sperm motility than the reference values.” It could result from several factors.

3.3.2.1 Varicocele

Varicocele is a chronic disease involving the pampiniform plexus of veins. It 
creates the tortious vessels in the spermatic cord [25]. The mechanisms involved in 
sperm function in the case of varicocele have not been clearly explained. However, 
some mechanisms might be related to sperm motility. The most likely pathophysi-
ologic cause of sperm impairment is increased scrotal temperature caused by tor-
tious veins, which increase oxidative stress, and reflux of toxic substances from the 
kidneys and adrenal glands into the testes [26]. There is evidence that varicoceles 
impair sperm motility [27–29]. While a varicocelectomy can improve sperm motil-
ity, other sperm parameters are still controversial [30–33]. Adjuvant therapy using 
antioxidant supplements to improve sperm quality [34, 35] has had conflicting 
outcomes [36].

3.3.2.2 Sexual abstinence

The duration of abstinence impacts sperm quality, including sperm motility [37]. 
Consequently, the male partner should be advised to be abstinent for 2–7 days to 
maintain sperm analysis accuracy among patients and between laboratories [16]. The 
sperm kinematics was improved when the duration of abstinence was 2 hr. compared 
to 4–7 days, both in normal semen [38] and oligozoospermic semen [39].
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However, contradictory outcomes were still reported, as some studies revealed 
that the duration of abstinence at 4–5 days had higher sperm motility than 2–3 days 
and 6–7 days of abstinence [40].

3.3.2.3 Lifestyle factors

A recent systematic review of the literature shows that smoking is a strong factor 
impacting sperm concentration and motility [41]. Even a moderate amount of smok-
ing can impair progressive motility. The pathophysiology of tobacco that results in 
diminished sperm motility could be oxidative stress that leads to the axonemal and 
mitochondrial damage on the midpiece of the spermatozoa [42, 43]. Both smoking 
and alcohol consumption had a detrimental effect on sperm motility and other sperm 
parameters [44]. When considering alcohol consumption alone, it is shown to have 
some association with decreased sperm quality when the amount of consumption 
is significant and chronic [45]. In men with obesity, sperm quality is diminished in 
concentration and morphology but not sperm motility [46].

3.3.2.4 Genetic causes of male infertility

Some genetic defects, such as Kartagener’s syndrome and primary ciliary dys-
kinesia, directly cause abnormal sperm motility due to their effects on the flagellar 
structure and function [46–48].

3.3.2.5 Mitochondrial DNA mutation

Mitochondria are the bioenergetic source for sperm activity. They are required 
for natural conception and in vitro fertilization. The mitochondrial DNA mutation 
could be one cause of male infertility [49–51]. Mitochondrial DNA is vulnerable to 
damage from reactive oxygen species due to the lack of histone protein. It is physically 
associated with the inner mitochondrial membrane, where free oxygen radicals are 
generated [50]. Recently, an association was discovered between the single nucleotide 
variants of the mitochondria cytochrome B gene (MT-CYB) and male infertility [52].

3.3.2.6 Anti-sperm antibody

The presence of an anti-sperm antibody in the ejaculate is correlated with semen 
quality—sperm count, motility, and morphology in terms of oligoasthenoteratozoo-
spermia [53, 54]. However, the screening of an anti-sperm antibody test before ICSI 
is not meaningful because the process of ICSI already bypasses the natural ability of 
sperm to fertilize the oocyte [55].

3.3.2.7 Medication’s effects on sperm motility

Several kinds of medications have deleterious effects on spermatogenesis. For 
example, chemotherapeutic drugs have a strong negative effect on sperm production 
[56–58]. However, the effect of chemotherapeutic drugs on sperm motility is still 
controversial. While psychotherapeutic drugs, such as imipramine hydrochloride, 
chlorpromazine, trifluoperazine are commonly used medications, there is strong 
evidence that they negatively affect sperm motility [59]. Additionally, acetamino-
phen, which is used as an antipyretic drug, and non-steroid anti-inflammatory drugs 
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(NSAIDs) affect sperm motility [60, 61]. Moreover, regular consumption of mari-
juana also results in decreased sperm motility [62].

3.3.2.8 Heat exposure

Normal spermatogenesis requires environmental temperatures to be 32 to 35°C, 
which is lower than human core temperature, around 2–5°C. Research in animal 
models has shown that that heat stress could impact sperm motility by downregulat-
ing mitochondria activity and decreasing ATP activity [63]. Furthermore, increasing 
whole body temperature could induce damage to the epididymal spermatozoa’s 
membrane, resulting in apoptosis [64]. These findings support the conclusion that 
heat exposure can damage spermatozoa productivity and function.

3.3.2.9 Environmental factors

Due to the rapidly growing industrial and agricultural countries around the world, 
the environment is polluted with pesticides, herbicides, petrochemical agents, and 
volatile organic compounds. These are all endocrine-disrupting agents that can inter-
fere with normal spermatogenesis and male endocrine function. Several published 
data support that pesticides [65], dioxins [66], phthalates [65], perfluorinated com-
pounds [67], polychlorinated biphenyls [65], heavy metals [68], dichloro-diphenyl 
trichloroethane [69], and plasticizers [70] impact sperm motility.

3.3.3 Sperm morphology

Sperm morphology is an important indicator of male fertility. Teratozoospermia 
is the nomenclature in the fifth WHO edition that means “lower sperm morphology 
than the reference value.”

In the sixth edition, there is no nomenclature such as teratozoospermia to clarify 
the semen quality (the sperm morphology is less than the reference value). However, 
the editors used the lower fifth percentile value of the sperm from men with a female 
counterpart who has had a spontaneous pregnancy within a year without contracep-
tion with a 95% confidence interval. In clinical practice, the clinician might need to 
use the reference value to discriminate between fertile and infertile men, as demon-
strated in the fifth WHO edition that the normal morphology is less than 4% accord-
ing to the strict Kruger’s criteria [9]. The sperm morphology alone cannot be used to 
predict the success of intrauterine insemination [71]. Therefore, in teratozoospermia 
without other sperm abnormalities, the couple should not be excluded from the 
process of intrauterine insemination. In contrast, in a retrospective study in 22,000 
assisted reproductive technologies cycles, there was a predictive value of sperm 
morphology with fertilization rate, clinical pregnancy rate, and live birth rate [72].

3.3.4 Sperm vitality

The sperm vitality test is not a routine step in the sperm assessment process. 
Vitality tests should be done in semen samples that have very low motile sperm. 
The purpose of sperm vitality is to distinguish the immotile living sperm from the 
immotile dead sperm (necrozoospermia). A high percentage of dead sperm in the 
ejaculate indicates pathology in the epididymis (testicular cause) [73, 74] or sperm 
damage from infection (extra-testicular cause) [75]. The vitality can be assessed by 
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an eosin-nigrosin (E-O) stain by evaluating sperm membrane integrity and perme-
ability. The hypoosmotic swelling test is used to directly test the viability of the sperm 
without staining and evaluate the sperm membrane permeability [76].

4.  Potential extended and advanced examination of semen sample 
parameters

4.1 Sperm DNA fragmentation

Conventional or basic semen analysis is used to identify male factor infertility. 
However, at least 15% of the infertile male partners have normal semen analysis based 
on conventional semen analysis [77, 78] However, basic semen analysis cannot detect 
some additional issues related to the fertilization rate, embryo development rate, and 
success rate in in vitro fertilization. Further investigation should be done on semen. 
Sperm DNA integrity is necessary for reproducing healthy offspring from one genera-
tion to the next generation. A DNA integrity test is a biomarker of intact chromatin 
and one of the independent tests available in male infertility besides basic semen 
analysis [79].

Reactive oxygen species (ROS) are free radicals of oxygen-producing hydroxyl 
radicals, superoxide anion, and hydrogen peroxide. During natural conception, low 
levels of reactive oxygen species are needed to maintain sperm capacitation, hyperac-
tivation, acrosome reaction, and fertilization. DNA fragmentation occurs when there 
are more reactive oxygen species in the spermatozoa environment than the natural 
seminal antioxidant [80]. Some other external factors that impact the DNA fragmen-
tation rate are as follows: obesity, psychogenic stress, smoking, alcoholic consump-
tion, medication, and advanced paternal age [81].

DNA fragmentation is an important factor in detecting further male factor beyond 
basic semen analysis, which plays a role in IVF or ICSI failure. One publication dem-
onstrated that the DNA fragmentation test is a useful tool for male factor evaluation 
[82]. High DNA fragmentation in the semen can interfere with the fertilization rate, 
embryo development rate, and implantation rate. Furthermore, it can increase the 
chance of spontaneous miscarriage [83–85]. The generation of sperm DNA frag-
mentation is initiated during maturation in the seminiferous tubule [86] and during 
sperm chromatin packaging in spermiogenesis [86–88].

In spermatozoa with low-level chromatin damage, fertilization capability remains 
intact due to the self-repairing action of the oocyte [89]. However, with higher chro-
matin damage, reproductive success depends on the extent of DNA damage and the 
repairing ability of the oocyte [90]. Young oocytes have a better repairing capacity 
than older oocytes [91]. In cases of severe sperm chromatin damage beyond repair, 
the embryo’s development might fail to implant or be developmentally delayed 
[91, 92]. The sperm’s DNA damage might not impact the fertilization rate, but the 
damage of the paternal part can have an effect later (late paternal effect), resulting 
in delayed embryo development during genomic activation—at the stage of develop-
ment when there are 4–8 cells [93]—or later, at the time of implantation, leading to 
implantation failure or miscarriage.

Today’s sperm DNA fragmentation tests have a variety of methods. The most 
commonly used tests in andrology laboratories are the sperm chromatin structural 
assay (SCSA), terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling 
(TUNEL) assay, sperm chromatin dispersion (SCD) test, and the alkaline Comet test. 



7

The Sperm: Parameters and Evaluation
DOI: http://dx.doi.org/10.5772/intechopen.107625

There are variations in clinical thresholds with cut-off level among these tests as well as 
the sites of the damaged DNA detected [94]. The best assay for DNA fragmentation has 
not been determined yet. In a systematic review and meta-analysis study, a threshold of 
20% of fragmented DNA in the semen sample regarding the SCSA, TUNEL, and SCD 
tests can be used to differentiate between infertile and fertile men, with a sensitivity of 
79% and specificity of 86% [95]. A threshold level of 20–30% of SCSA and SCD tests 
correlate with the duration of infertility, decreasing the chance of success in intra-
uterine insemination (IUI), in vitro fertilization (IVF), and intracytoplasmic sperm 
injecton (ICSI) and increasing the risk of miscarriage [96, 97]. The fragmented DNA 
is similar to the tip of the iceberg. The hidden part of the fragmented DNA cannot be 
detected; however, they are prone to be damaged during the process of in vitro manipu-
lation of the sperm during assisted reproductive technology.

A DNA fragmentation test behaves the same as semen analysis in that it cannot 
discriminate between infertile from fertile men, nor can it be used to detect the suc-
cess in assisted reproductive technology (ART) cycles. The test is not independent in 
that it still relies on the partner’s factors—for example, oocyte quality and age. Basic 
semen analysis and sperm DNA fragmentation tests complement each other in the 
diagnosis of male infertility; however, they play a different part in the aspect of male 
fertility care.

In the clinical setting, sperm DNA fragmentation plays a role in fulfilling the 
diagnosis of male infertility, especially in the male partner who has specific condi-
tions that require further analysis beyond the basic semen analysis.

4.1.1 Varicocele

Spermatozoa from a male partner with varicocele have a high potential to be 
affected by osmotic stress due to high temperature in the testicular environment. 
These factors result in sperm DNA fragmentation in at least 50% of cases [98]. A 
systematic review and meta-analysis demonstrated an improved DNA fragmentation 
rate after varicocelectomy and achievement of pregnancy in comparison to no surgery 
[99]. After varicocelectomy, a DNA fragmentation test can be a valuable prognostic 
tool to guide a suitable infertility treatment for a couple. A lower DNA fragmentation 
than the threshold can indicate a better outcome for natural conception, IVF, and 
ICSI. The type of treatment depends on the female factor. In the case of persistently 
high DNA fragmentation, the appropriate treatment can be assisted reproductive 
technology (ART), either with or without specific sperm selection for better sperm 
quality [100].

Sperm DNA fragmentation and male infertility are identified in subclinical 
varicocele. However, the controversial issue related to varicocele is that apparent vein 
dilation is not found upon examination; it is detected by doppler ultrasound. There 
was no significant difference in sperm DNA fragmentation rates between fertile and 
infertile men with subclinical varicocele [101]. A systematic review and meta-analysis 
study provided evidence that sperm DNA fragmentation rate is comparable between 
clinical and subclinical varicocele. However, varicocelectomy can only improve the 
fragmentation rate significantly in clinical varicocele [102].

4.1.2 Idiopathic infertility and unexplained infertility

Unexplained infertility is responsible for 15–30% of infertile patients. It means 
they have been investigated using a conventional diagnostic approach for the cause of 
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infertility, but no clear cause of infertility was found [103] However, about 40–50% 
of unexplained or idiopathic infertile couples have elevated sperm DNA fragmenta-
tion [104]. Likewise, men who have been diagnosed with idiopathic infertility are 
more likely to have abnormal semen parameters based on basic semen analysis 
without any obvious abnormality [105]. This information implies that an extended or 
advanced investigation might be necessary to uncover the causes of infertility in this 
group [105].

Sperm DNA damage might be one of the main causes of male infertility, especially 
in cases where infertility is idiopathic or unexplained. The added benefit of the sperm 
DNA fragmentation evaluation, apart from basic semen analysis, is that it might 
improve the chance of pregnancy, both natural conception and assisted reproduction 
that uses adjunctive treatment to improve sperm DNA integrity.

4.1.3 Recurrent pregnancy loss

The European Society of Human Reproduction and Embryology (ESHRE) has 
defined the terms of recurrent pregnancy loss as “at least two spontaneous miscar-
riages starting from natural conception until 24 weeks of gestation” [106]. The 
sperm DNA fragmentation rate is significantly higher in men with female partners 
who have had recurrent pregnancy loss than in a fertile female control group having 
at least one ongoing pregnancy or live birth [107, 108]. The mechanism of sperm 
fragmented DNA that initiates recurrent pregnancy loss has not been determined 
yet. However, one hypothesis is that the oocyte repair mechanism might be the main 
culprit, leading to poor blastocyst development, recurrent implantation failure, and 
pregnancy loss [108].

4.1.4 Intrauterine insemination

There is evidence that men with a sperm DNA fragmentation rate diagnosed 
above 27% by SCSA have higher early pregnancy loss and a lower pregnancy rate than 
the general infertile population with a lower sperm DNA fragmentation [109, 110]. 
According to this information, the sperm DNA fragmentation test has an additional 
benefit of guiding the clinician to choose the treatment of choice for each infertile 
couple. In case of the sperm DNA fragmentation being higher than the threshold, the 
couples should have complementary treatment before IUI to ameliorate the sperm 
DNA fragmentation rate. However, in couples with advanced female age, assisted 
reproduction should be considered early on due to the oocyte’s diminished repair abil-
ity and the risk of chromosome abnormality, which are the main causes of treatment 
failure [94].

4.1.5  Assisted reproduction (in vitro fertilization (IVF), intracytoplasmic sperm 
injection (ICSI)

High sperm DNA fragmentation impacts the likelihood of successful pregnancy in 
a natural cycle, intrauterine insemination, and advanced treatments such as IVF and 
ICSI. There are several studies demonstrating that elevated sperm DNA fragmenta-
tion adversely impacts IVF and ICSI. Mainly, it increases spontaneous abortion and 
recurrent implantation failure. Additionally, it decreases the live birth rate [111–113]. 
Evidence suggests that the impact of sperm DNA fragmentation might be higher in 
IVF than in ICSI [114]. It was postulated that the sperm needs to be incubated with 
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the oocyte in vitro longer in IVF than in ICSI. The duration of exposure of sperm 
to the external environment during IVF might generate more DNA damage than 
ICSI, which requires only a short time after ejaculation until successful fertilization 
[115]. Additionally, the sperm is a significant source of reactive oxygen species. IVF 
requires the direct contact of at least one hundred thousand sperms and an oocyte for 
natural fertilization. The exposure of the oocyte to oxidative stress from sperm could 
adversely impact the embryo’s development [116, 117].

Likewise, high sperm DNA fragmentation has an adverse effect that results in 
these couples having more spontaneous pregnancy losses than couples with low 
sperm DNA fragmentation [118]. The authors concluded that using a sperm selection 
method during assisted reproduction to choose sperm with low fragmented DNA 
could improve the pregnancy rate and decrease the miscarriage rate [118].

The pathophysiologic cause of an increasing rate of spontaneous abortion in high 
sperm DNA fragmentation in couples undergoing IVF or ICSI is still inconclusive. 
One proposed mechanism is that the genetic and epigenetic effects of sperm DNA 
damage could cause mutation or dysregulation of DNA methylation processes that 
are crucial for embryo development [119–121]. The other proposed mechanism is 
the oocyte’s ability to repair the sperm DNA defect. In oocyte donation cycles, it was 
found that a good quality oocyte can counteract the defected sperm DNA. However, 
oocytes from women of advanced maternal age have diminished repair functions 
compared to young women [122]. Single-stranded DNA breakage is more likely to be 
repaired than double-stranded DNA breakage [123, 124]. Therefore, the final impact 
of sperm DNA fragmentation on the pregnancy outcome still relies on the balance of 
the oocyte repairing system and the extent of sperm DNA damage [90].

Persistent high sperm DNA fragmentation is one of the leading causes of IVF 
and ICSI failure. Detection of sperm DNA damage is crucial for treatment success. 
In cases where no causative factor of elevated sperm fragmented DNA is identified, 
testicular spermatozoa are the suggested method to improve treatment success in 
ICSI [125–132]. ICSI uses testicular spermatozoa instead of ejaculated spermatozoa, 
which could be related to the lower sperm DNA damage in the testicular sperm 
compared to ejaculated sperm that must transit from the epididymis to the male 
reproductive tract [132–136].

4.1.6 Other risk factors

Some lifestyle factors can increase sperm DNA fragmentation. Some examples 
are smoking, drinking, cannabis consumption, exposure to air pollutants, pesticides, 
polyaromatic hydrocarbons, and fertilizers. Among these factors, smoking has the 
most impact on sperm DNA fragmentation [137, 138]. Cannabis consumption also 
impairs sperm DNA integrity [139]. Advanced paternal age above 40 years also 
reduces the sperm DNA quality [140–142].

Obesity is another common problem that leads to poor sperm quality due to 
peripheral aromatization from testosterone to estradiol in the subcutaneous fat. The 
increasing testicular temperature from subpubic fat and the high estradiol levels in 
obese men might cause hypogonadism and sperm DNA damage [143].

4.1.7 Sperm cryopreservation

Sperm cryopreservation is a method to preserve male fertility for future use. This 
method allows men to preserve their semen. Candidates for sperm cryopreservation 
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include men who have cancer and require chemotherapy or radiation treatments or 
healthy men who need to preserve semen for future purposes before a vasectomy or 
after assisted reproduction. This technique is required for sperm donation. However, 
the process of sperm freezing and thawing can be harmful to sperm quality. It impacts 
the sperm’s motility, viability, and normal morphology. Additionally, it increases 
osmotic stress on the spermatozoa and leads to sperm DNA damage [144, 145].

The vitrification technique has recently been developed for sperm cryopreserva-
tion. It has the potential to reduce sperm DNA damage compared to conventional 
slow freezing [146, 147]. However, more research is needed.

Sperm DNA fragmentation tests should be done before and after sperm cryo-
preservation to help improve the method to reduce the impact of cryopreservation on 
sperm parameters. Moreover, the tests provide the optimal treatment based on sperm 
quality. The addition of an antioxidant to the sperm freezing media is one technique 
to protect the sperm from the harsh conditions of the freezing and thawing process by 
reducing the osmotic stress-induced DNA damage [148].

4.2 Reactive oxygen species measurement

One of the causes of male infertility and sperm DNA damage is osmotic stress to 
the spermatozoa. Reactive oxygen species are derived from the metabolism of oxygen. 
They play a vital role in cellular signaling pathways, sperm maturation processes, 
and capacitation [149]. Excessive ROS can have a significant detrimental effect on 
sperm fertility potential [150]. All along the journey initiated from the seminifer-
ous tubule and through the epididymis, vas deferens, and finally to the outlet of the 
male reproductive tract, spermatozoa are potentially assaulted from oxidative stress, 
which diminishes fertilizing capability and leads to recurrent implantation failure and 
pregnancy loss. External osmotic stress interferes with the sperm membrane, while 
internal osmotic stress acts on lipid peroxidation mechanisms, resulting in sperm 
DNA damage.

Possible mechanisms of oxidative damage to the spermatozoa are sperm membrane 
and DNA damage, which decrease sperm motility and fertilization ability. These types 
of damage can also cause poor embryo development, recurrent implantation failure, 
and early pregnancy loss [84, 151]. Sperm damage by ROS reduces sperm motility, as 
demonstrated in both conventional and computer-assisted semen analyses [152, 153].

Human semen consists of various kinds of cells, including mature and immature 
spermatozoa, epithelial cells, and leukocytes. The main sources of ROS in semen 
are leukocytes (i.e., extrinsic source) and spermatozoa (i.e., intrinsic source). In 
addition, environmental factors, such as heavy metals, smoking, varicocele, obesity, 
chronic illness, and genitourinary tract infection are potential sources of ROS, affect-
ing sperm DNA and resulting in DNA fragmentation and damage [154].

Oxidative stress has been demonstrated to be a main factor responsible for male 
infertility via sperm dysfunction. Oxidative stress on spermatozoa mainly derives 
from the excessive ROS and inadequate antioxidants to counteract them. Excess ROS 
can damage sperm by several mechanisms via the oxidative pathway. Approximately 
30–40% of infertile men have oxidative stress that causes male infertility [155].

Spermatozoa are unique biological cells in the human body that have limited 
self-repair capability due to the lack of a cytoplasmic repairing mechanism. This is the 
most important reason that spermatozoa are vulnerable to internal and external ROS 
damage [156]. In addition, the membrane of spermatozoa is composed of polyun-
saturated fatty acid that is susceptible to oxygen-induced damage and, hence, lipid 
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peroxidation. One consequence of lipid peroxidation is damage to the axoneme and 
midpiece of spermatozoa, resulting in diminished sperm motility [157, 158]. High 
levels of ROS are detected in at least 25–40% of infertile men [159, 160] Levels of ROS 
above the semen’s antioxidants result in oxidative stress to the sperm [160]. Currently, 
ROS measurement by chemiluminescence is the most well-described, advanced 
method of ROS detection in the seminal fluid [161–163].

4.3 Total antioxidant capacity measurement

Total antioxidant capacity (TAC) is a diagnostic test to measure enzymatic and 
non-enzymatic kinds of antioxidants in the seminal fluid during a male infertility 
work up. The value reflects the redox potential an antioxidant has to osmotic stress. 
There is substantial evidence that the utility of the TAC measurement lies in its ability 
to detect a lower TAC in infertile men than in a fertile control [164]. The imbalance 
between osmotic stress and TAC lead to male infertility. TAC is also used to detect who 
should have antioxidant supplementation before ICSI, especially in case of previously 
failed ICSI [165]. The role of an antioxidant supplement in male infertility has been 
reviewed with the potential to lead to a successful pregnancy [166].

4.4 Assessment of the presence of leukocytospermia and hematospermia

Normal leukocyte production occurs mainly in the epididymis, where they take 
responsibility for the immunosurveillance of abnormal sperm via phagocytosis. 
Leukocytes are composed of granulocytes at 50–60%, macrophages at 20–30%, and 
T-lymphocytes at 2–5% [167]. Leukocytospermia is an excessive amount of leuko-
cytes—more than the threshold, according to the fifth WHO manual—which can 
impact the sperm quality, as leukocytes are the main source of ROS [154].

The best laboratory guideline for leukocyte assessment in semen is immunohis-
tochemical staining against the various kinds of leukocytes; however, the method 
is complicated, time-consuming, and not well standardized [168]. The European 
Association of Urology recommends antibiotic treatment; however, evidence for 
improving pregnancy outcomes was not demonstrated [169]. Likewise, there is no 
clear evidence that either antioxidant or antibiotic treatment improves treatment 
success in infertile men with leukocytospermia [170].

Hematospermia is a term referring to the presence of gross and microscopic 
examination in the ejaculate. The pathophysiologic causes can be disorders in the 
ejaculatory ducts, accessory glands, and urethra. Alternatively, it can have iatrogenic 
causes. The extensive investigations in the case of hematospermia have been well-
documented [171, 172]. There is some evidence of the relationship between hemato-
spermia and male infertility [173, 174]. Red blood cells might be the main source of 
toxic substances leading to a decline in sperm quality. Hemolysis especially occurs 
during sperm cryopreservation and thawing [175].

5. Other extended and advanced examination of semen sample parameters

5.1 Sperm aneuploidy test

The sperm aneuploidy test is a direct evaluation of sperm chromosome comple-
ments that has been used in a couple with recurrent pregnancy loss. The test 
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evaluates both structural and numerical chromosome abnormality in spermatozoa. 
A systematic review and meta-analysis demonstrated the increasing incidence 
of aneuploidy in spermatozoa in cases of recurrent pregnancy loss [176]. The 
real benefit and implementation of sperm aneuploidy in a routine laboratory for 
male infertility has yet to be determined, as molecular analysis in miscarriage has 
revealed that most chromosome aneuploidy occurs during female meiosis, resulting 
in meiotic non-disjunction [177]. In addition, the final evaluation of chromosome 
abnormality on the blastocyst can provide both the meiotic and mitotic origin—
from either oocyte or spermatozoa—with no need to investigate the oocyte or sperm 
before fertilization.

5.2 Cytokine assessment in the semen

Infection and inflammation of the male genitourinary tract play an important role in 
male infertility due to inflammatory mediators and ROS causing damage to the spermato-
zoa. Any suspicious male genitourinary tract infection should be thoroughly investigated; 
otherwise, irreversible sperm damage might occur. The biological markers of infection 
and inflammation in the ejaculate are leukocyte numbers>1 million/ml, granulocyte 
elastase >280 ng/ml, and proinflammatory cytokines (e.g., interleukin (IL)-6 > 30 pg./ml, 
IL-8 > 7000 pg./ml) [178]. Cytokine detection might play a potential role and be a sensitive 
marker of male genitourinary tract infection and inflammation, especially in asymptom-
atic and silent cases.

5.3 Immature germ cell assessment

Immature germ cells can be differentiated from leukocytes by Papanicolaou stain-
ing. There is no longer a cut-off value of immature germ cells provided in the fifth 
and sixth WHO manuals, as there is not a sufficient number of studies to confirm the 
clinical importance of the value. However, elevation of immature germ cell to more 
than 15% of total sperm in the ejaculate might be significant and indicative of sperm 
chromatin immaturity [179]. Investigation into the pathophysiologic cause of high 
shedding of immature germ cells in the ejaculate and the consequences that ensue are 
not warranted [179].

6. Conclusion

Currently, semen analysis has become a standard tool for evaluating male infertil-
ity and guiding clinicians to provide appropriate treatments for couples. The sperm 
parameters in the ejaculate are the biological markers of male fertility. A basic semen 
analysis provides the initial information related to identifying whether a man is fertile 
or infertile; however, there is no absolute cut-off value for the inability to achieve 
conception.

In the modern era of assisted reproduction and molecular genetics, new diagnostic 
techniques reveal the deeply detailed causes of male infertility to improve the treat-
ment outcome. In the modern world, there is more likely to be an association between 
men’s general health and the environment regarding sperm parameters than previ-
ously. Having knowledge of the consequences of these factors on sperm parameters 
can possibly lead to the development of pharmaceutical components or supplements 
that improve male fertility.
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