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Chapter

Chaos Analysis Framework: How to 
Safely Identify and Quantify Time-
Series Dynamics
Markus Vogl

Abstract

Within this chapter, a practical introduction to a nonlinear analysis framework 
tailored for time-series data is provided, enabling the safe quantification of underly-
ing evolutionary dynamics, which describe the referring empirical data generating 
process. Furthermore, its application provides the possibility to distinct between 
underlying chaotic versus stochastic dynamics. In addition, an optional combination 
with (strange) attractor reconstruction algorithms to visualize the denoted system’s 
dynamics is possible. Since the framework builds upon a large variety of algorithms 
and methods, its application is by far trivial, especially, in hindsight of reconstruction 
algorithms for (strange) attractors. Therefore, a general implementation and applica-
tion guideline for the correct algorithm specifications and avoidance of pitfalls or 
other unfavorable settings is proposed and respective (graphical) empirical examples 
are shown. It is intended to provide the readers the possibility to incorporate the 
proposed analysis framework themselves and to conduct the analyses and reconstruc-
tions properly with correct specifications and to be knowledgeable about misleading 
propositions or parameter choices. Finally, concluding remarks, future avenues of 
research and future refinements of the framework are proposed.

Keywords: nonlinear dynamics, attractor reconstruction, time-series quantification, 
chaos analysis framework, financial markets

1. Introduction

Following current estimates, the predictive analytics market is expected to grow 
from around 10.5 Bn. USD at the end of 2021 to around 28–30 Bn. USD until 2030, 
thus, stating the immense relevance of successful forecasting capabilities for the 
technological advancement in our digitalized, fully connected and global economy 
[1–3]. Therefore, respective fields of applications for predictive analytics (or related 
methodologies) can be represented by any real-world system interacting with 
practitioners or researchers alike [4]. For example, climate, hydrological cycles, 
ecosystems, the human brain, neuroscientific observations, the universe, engineer-
ing applications, economic systems or financial markets can be seen as such real-
world systems [5]. Nonetheless, previously denoted examples are all classified as 
complex systems [5].



Nonlinear Systems - Recent Developments and Advances

2

The meaning of referring to complex systems renders itself obvious once one 
regards contemplation of real-life confrontations, in which similar scenarios tend to 
evolve similarly and occur repeatedly [6]. The latter similar repetition of scenarios 
leads to the association of a predefined level of determinism in said real-life systems 
due to the timely evolution of memory and experience effects [6, 7]. Henceforth, quan-
titative modeling via deterministic differential equations proposes itself as a suitable 
methodology to cope with these kind of systems, since the respective entireties can be 
characterized by equivalent mathematical differential equations [6, 8]. Presupposing 
that the initial conditions of the referring systems are exactly disclosed, the respective 
differential equations enable the predictions of the systems’ final states to an indefinite 
level of precision and time span due to the deterministic characteristics of the systems 
[6]. In terms of predictive analytics and forecasting attempts of such systems, presup-
posing said deterministic scenario, would illustrate the prerequisite of the future 
evolutions of the systems to be completely explicable via the current states, principally 
indicating a ‘plainness’ in terms of the predictability of such systems [9, 10].

However, scrutinizing one of the previously denoted examples as a representation 
of such systems with deterministic real-world characteristics leads to the emergence of 
unexpectedly drastic insights with vast practical implications [11]. The before men-
tioned real-world systems, such as financial markets, viewed as complex systems and 
driven by inherent or underlying empirical properties (i.e. stylized facts1), result in a 
contrastingly challenging effort in terms of predictability and mathematical modeling 
in comparison to the before assumed ‘plainness’ of deterministic forecasts [6, 11].  
Consequently, the determination of the true data generating process (DGP) of time-
series, which are empirical observations of the underlying complex systems such 
as a stock price series for financial markets, with respect to stylized facts and other 
innovations is advantageous for the systems’ observers, researchers or other involved 
entities [20, 21]. Under the presupposition of complex dynamical systems, seemingly 
conceptual differences are the basis for the discussion on the underlying nature and 
essential functioning of the emerging dynamics of, for example, financial markets 
or other defined real-world systems [6]. A deeper understanding of such assumed 
underlying laws of dynamical motions would facilitate the thorough application of 
chaos analysis in such real-world systems [22].

Substantial literature about testing underlying systems’ dynamics and chaos in 
such real-world systems (e.g. financial markets) provides strong evidence of nonlin-
earity and as a consequence, a special class of models, namely chaos models, arose  
[11, 23]. Chaos institutes a deeper rationale for the above-mentioned essential char-
acteristics and the underlying nature of the evolutionary processes driving a complex 
(real-world) system, which is affected by nonlinearities [10]. The first property, or 
distinctive feature of chaotic dynamical systems, is that even though deterministic, 
these systems characterize themselves via sensitivity to initial conditions2, imply-

1 Stylized facts, in particular, on financial markets can be volatility dynamics (e.g. [12]), nonlinearity 

(e.g. [13]), asymmetry (e.g. [3]), long memory (e.g. [14]), multifractality (e.g. [15]) and momentum 

driven trend characteristics, which clearly contradict the efficient market hypothesis [16]. Furthermore, 

studying stylized facts requires considering the heterogeneity of actors (e.g. [17]), resulting in multifractal 

timescales and behavioral patterns (e.g. [18]). All these properties occur at different timescales simultane-

ously, indicating the existence of stated nonlinearities (e.g. [19]) within the complex system of financial 

markets. Note that other complex systems may yield a similar variety of empirical characteristics to be 

regarded in respective predictive endeavors.
2 Deviations from a trajectory of the system’s phase (or state) space.
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ing slight fluctuations or even marginal perturbations of the initial conditions to be 
capable to render precise predictions on a long time scale meaningless and futile in 
their totality due to exponentially increasing error terms [9, 22]. In addition, data 
measurement limitations3 in regard to current initial conditions, state an upper bound 
of the predictability, even if the model is completely disclosed [22]. Second to elabo-
rate on, is the recurrence property, reflecting upon the dynamical behavior of such 
systems, which can potentially be exploited for the characterization of underlying 
dynamical evolutionary rules (or empirical DGPs) as presented later [6, 8].

Recent trends within chaotic dynamical analysis have led to a proliferation of pub-
lications, stating structural nonlinear models to be capable of displaying instabilities 
and chaos to be able to mimic empirical time-series properties4 [22]. Henceforth, a 
crucial pillar in nonlinear forecasting for over 40 years is the revelation of whether the 
considered time-series data sets are generated via deterministic or stochastic5 dynami-
cal systems since their respective mathematical operations differ noticeable (see the 
bibliometric review of Vogl [25]) [23,  24, 26]. Speaking in a mathematical sense, 
a chaotic dynamical system has a dense collection of points with periodic orbits, sensi-
tivity to initial conditions and topological transitivity, which is discussed in Eckmann 
and Ruelle [27, Devaney [28], BenSaïda and Litimi [29]. Chaos further refers to 
bounded steady-state behavior, which neither represents an equilibrium point, nor 
a quasi-periodic nor a periodic point nor indicates that nearby points separate expo-
nentially in finite time, resulting in those chaotic systems revealing very complex and 
seemingly random evolutions out of the view of standard statistical tests [22].

Hence, chaos reveals apparent randomness of (chaotic) complex system realiza-
tions, yielding underlying patterns, interconnectedness, feedback loops, recurrence, 
self-similarity (fractality) and self-organization capabilities [30–32]. For example, in 
financial systems, hyperchaotic6 phenomena potentially evolve into crises, denying any 
form of system control [37]. Referring to scientific literature, the first tests of chaotic 
behavior for complex time-series systems were executed following the Brock-Dechert-
Scheinkman (BDS) test of Brock et al. [38], yet, revealed its omnipotence, since it is 
unable to differentiate, whether the revealed nonlinearities originate from stochastic or 
chaotic dynamics [39]. Unfortunately, even comparisons between the most powerful 
tests (e.g. close-return test, BDS test and Lyapunov exponent7) do not result in conclusive 
findings [39]. In point of fact, several propositions toward a more conclusive solution in 
the scientific literature were brought to light, with no further positive indications [39].

The former statement is an allegory for the vast dilemma concerning the deter-
mination of the true, mostly unknown nature of complex dynamical (real-world) 
systems – whether it be stochasticity or chaoticity [40]. These systems are almost 
graphically similar and cannot be differentiated by respective statistical standard tests 
[29, 41]. Following Aguirre and Billings [41], a verification of strong noise influence 
on the identifiability of chaotic dynamics is provided, leading to misspecifications 

3 In terms of measurement errors, sampling frequency and data accuracy, among others.
4 Thus, vast disseminations of literature about deterministic chaotic behavior and the design of (economic) 

models in the regime of chaotic behavior from a theoretical view arose [24].
5 Originating from pure randomness.
6 Hyperchaos is considered, if more than two positive Lyapunov exponents exist (e.g. [33–35]). If a discrete 

nonlinear system is dissipative (spontaneously symmetry breaking), a positive maximum Lyapunov expo-

nent is an indication of chaotic dynamics within the system under regard [36].
7 A positive maximum Lyapunov exponent can occur even in non-chaotic series, due to inadequate applica-

tion on noisy data sets [39].
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of chaotic dynamics as stochastic dynamics due to noise-disturbance, rendering 
the discovery of evolutionary chaotic processes very difficult [42]. The majority of 
empirical time-series data is often small and noisy in comparison to its laboratory-
based ‘physics´ data counterparts’, suggesting a preclusion of dynamical identification 
if the noise levels are greater than a predefined critical threshold value [10, 41, 43]. 
Therefore, the great controversy of the nonlinear empirical literature as stated above 
is whether a complex system is characterizable via (low-dimensional) deterministic 
chaos or generated via stochastic dynamics and if those chaotic complex systems are 
controllable [10, 43].

To solve this ongoing debate, Vogl and Rötzel [40] and Vogl [44] successfully 
proposed distinct analysis frameworks, enabling the clear and safe quantification 
and determination of the underlying (empirical) DGPs of time-series data sets. 
Nonetheless, due to publication technical reasons, Vogl and Rötzel [40] present a 
framework specification tailored toward solely stationary time-series, while Vogl 
[44] supposes additional customization for non-stationary data. However, these 
specifications originate from one original, singular and holistic chaos analysis frame-
work for nonlinear time-series, which will be presented in its totality hereinafters. 
Furthermore, since the determination of the (empirical) DGP by the proposed 
framework is by far trivial in its application, owing to a large variety of advanced 
algorithms to be implemented, this chapter is purposed to provide a clear and distinct 
practical guideline on how to successfully implement the denoted analysis frame-
work. Particularly, the determination of ‘scaling regions’ via correlation sum and 
correlation dimensional schemes (refer to [45–47]) and the reconstruction algorithms 
of (strange, fractal) attractors of complex dynamical systems with chaotic traits (see 
[10, 48]) represent one of the main emphases, among others, since many erroneous 
conductions are possible and are widely dispersed throughout the scientific literature 
[25, 40, 45]. The distinct goal and aim of this chapter are to provide the researcher 
and practitioner with an empirical-practical guide on how to implement the pre-
sented chaos analysis framework successfully, thus, determining the (empirical) 
DGP and reconstructing potentially existing system attractors out of a scalar time-
series given [40, 44]. Moreover, the insights provided are mostly independent of the 
framework, generalizable and abstractable to any other kind of subsequent or related 
empirical analyses conducted.

Therefore, given in Section 2, the framework will be introduced completely and 
its inherent parts briefly reconciled, while the example data and subsequent correct 
specifications and selections to conduct a correct analysis are proposed in Section 
3. Furthermore, Section 4 levels around the avoidance of pitfalls and the empirical 
results of misspecifications via practical examples, before concluding remarks and 
future avenues are discussed in Section 5. Please note that mathematical definitions 
or formulas are neglected and the reader is referred to the stated literature instead. If 
no further explication is granted, the literature is seen as a prerequisite for arguments 
and propositions, since the focus is purely on practical applicability in a theoretical-
scientific context.

2. Framework overview

Before elaborating on the analysis framework itself, it is relevant to reconcile the 
contribution and relevance of the propagated inherent paradigm shift in quantita-
tive modeling, namely, the previous determination of the empirical DGP and its 
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characteristics before selecting referring mathematical procedures and models 
[40, 44]. Referring back to the introductory mentioned expected market increase by 
around 20 Bn. USD in predictive analytics, it is crucial for successful forecasting to be 
informed about the underlying evolutionary building mechanics of the to be analyzed 
time-series data, before deploying cost-intensive predictive applications. One may 
imagine deploying planned-out long-term predictive solutions on time-series sys-
tems, which however are chaotic and, thus, only predictable over a short time scale. 
This would either lead to disastrous outcomes and very poor predictive accuracy or 
render model performance and the totality of forecasts futile due to exponentially 
increasing error terms owing to said chaotic mechanics [49, 50]. Instead, the pro-
posed paradigm shift underlying the framework states the initial determination of 
the empirical DGP with inherent empirical characteristics, leading to exploitable 
knowledge about the predictive time horizons, hidden system properties and, there-
fore, the minimum model capability requirements, before practical implementation 
and roll-outs are conducted [40]. The model selections, thus, follow the insights of 
the determined empirical DGP [44]. Regarding the scientific side of the framework, 
existing literature and research do not execute sufficient theoretical precaution within 
respective applications and interpretations, leading to fragmentation and dispersion 
of methodology and modeling, thereby representing the rationale for the framework’s 
creation [40, 45].

Hereinafter, the chaos analysis framework is presented in detail. In Section 2.1, the 
framework in general and its components are elucidated, while sections 2.2 through 
2.7 level around the contents of each analysis step, while also introducing the inher-
ently applied algorithms and methods in a sparse and nonmathematical as well as 
practical-error avoidant oriented manner.

2.1 Chaos analysis framework

The holistic chaos analysis framework presented in Figure 1, consists of six steps 
and will be elucidated hereinafter. Before elaborating on the steps in detail, the brief 
course of analysis will be outlined. First, it is mandatory to analyze given noise con-
tamination and its respective levels and the nature of the potential noise [43]. Noise 
is capable of disturbing the identification of the underlying dynamics and, thus, is 
regarded as analysis destructive [45]. Furthermore, it is deemed favorable to gather 
basic statistical insights from the (denoised) datasets under analysis via determina-
tion of standard statistical tests, which incorporate tests for stationarity, nonlinearity 
and correlations, among others [40, 45]. It is possible to determine the applicability 
of reconstructions solely based on these insights. Second, several chaos measures 
and nonlinear metrics are calculated such as the sample entropy (see [51]), Lyapunov 
exponents (refer to [52, 53]) or the Hurst exponent (see [54]). These insights are 
relevant to determining the nature of the underlying dynamical system based upon 
mathematical procedures. Third, if applicable, (strange) attractor reconstruction 
algorithms can be implemented to reconstruct the system’s attractor visually. Fourth, 
an independent recurrence quantification analysis (RQA) paired with discrete 
wavelet transformations (DWT, refer to [55]) can be applied to (a) determine the 
existence of various sub-dynamics and (b) exploit denoted recurrence properties 
mathematically as well as visually [6, 8, 56]. This reveals hidden characteristics of the 
analyzed datasets. Fifth, spectral characteristics, especially exploitable in forecast-
ing by applying fractional calculus, are analyzed via wavelet-based multiresolution 
analysis (MRA) [57–59].
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Finally, (multi)scaling and (multi) fractal characteristics are elaborated on via the 
conduction of a multifractal analysis. The multifractal analysis includes a multifractal 
detrended fluctuation analysis (MFDFA, see [60]) as basis, which renders (locally) 
minimum and maximum Hurst exponents graphically visible, while subsequently 
providing inherent scaling coefficients. In particular, generalized Hurst exponents, 
multifractal scaling exponents and the multifractal scaling spectrum can be derived, 
thereinafter. Moreover, distributional coherence tests can be applied to validate, the 
‘less worst’ distributional fit and, whether a power law is present in the data (refer to 

Figure 1. 
Generalized chaos analysis framework for the determination of the empirical DGP and underlying empirical 
system characteristics based on scalar time-series data taken with permission of [40, 44]. Step I (prerequisites 
and standard tests) consists of testing prerequisites, which are required to conduct a nonlinear dynamical analysis. 
Therefore, noise reduction is mandatory, followed by tests for stationarity, Gaussianity (distribution in general), 
nonlinearity, and space-time separations, which can prevent an analysis. Step II (chaos measures and tests) 
encompasses a collection of effective nonlinear dynamical or chaotic measures. First, a correlation sum scheme is 
applied to determine and test significant ‘scaling regions’. Moreover, the dimensionalities and properties of the 
system are tested (e.g. correlation dimension, Lyapunov exponents). Furthermore, information content via sample 
entropy is analyzed, among others. Step III (phase space reconstruction) involves the proper reconstruction of 
the system and a graphical representation using embedding theorems such as the traditional Takens’ embedding. 
Step IV (recurrence quantification analysis) is an independent confirmation of the previous steps, namely, the 
ability to describe and quantitatively measure the characteristics of the underlying dynamics, optionally, with 
the application of rolling window scale averages and a subsequent discrete wavelet transformation (DWT) 
application to determine the potential existence of sub-dynamics within the data. Furthermore, the quantification 
is not dependent on the prerequisites of steps I–III. Step V (multiresolution analysis) elaborates on the spectral 
properties of the data and is elucidated via continuous wavelet power spectra (CWT). Step VI (distributions 
and power-Laws) is to determine power-law characteristics via multifractal detrended fluctuation analysis 
(MFDFA) and distributional coherence tests.
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[61]). In total, holistic insight into the underlying empirical DGP and inherent char-
acteristics is obtained, with which one may select appropriate models thereinafter.

2.2 Prerequisites and standard tests

Initially, the prerequisites and standard tests are presented briefly. The time-series 
has mandatorily to be denoised properly to ensure a descent beyond a predefined 
threshold level, best via nonlinear filter schemes [43, 45, 58]. Most time-series are 
contaminated by noise due to measurement errors and microstructure noise occur-
rences [39, 62]. Following Aguirre and Billings [41], noise exerts a mentionable (nega-
tive) influence on the identifiability of processes inherited via chaotic dynamics. 
Henceforth, if a certain level of noise is exceeded, accurate estimations of dynamic 
models and subsequent analyses are voided in their entirety8 [41]. The only feasible 
approach, therefore, is the drastic reduction of noise levels to ‘workable levels’, since 
contaminating noise in evolutionary dynamics may be dynamical noise in either 
additive or multiplicative specification, thus, disrupting the dynamical identification 
on several even small scales [26, 63]. Regarding the nonlinear filter structures, two 
criteria have to be met, namely, (1) the applied filters are required to be unbiased and 
(2) the residual variance of the filters levels the noise variance [41]. Please note that 
some nonlinear filters such as the median filter Introduce (artificial) autocorrelations 
in the data, which should be avoided, thus, wavelet filters are deemed to be favorable 
for nonlinear denoising (refer to [55, 65, 66]).

Once the time-seriess is successfully denoised, standard statistics can be applied to 
elaborate on primal insights into the underlying mechanics [40]. Within the frame-
work, the first and – destructive of reconstruction algorithms if missing – property 
is stationarity9 [40]. One has to exert special strictness in terms of stationarity, thus, 
proposing a 1% significance level for two successive tests is deemed favorable [44, 45]. 
For the framework, the augmented Dickey-Fuller (ADF) test and the more power-
ful Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test are executed (refer to [67, 68]), 
which both have to concur to be regarded as valid results in terms of stationarity. To 
elaborate on the initial test of distributional characteristics, a Kolmogorov-Smirnov 
(KS) test for a Gaussian specification (refer to [69]) is conducted, yet, other specifica-
tions are possible. Nonetheless, a 1% level of significance is recommended to adhere 
to the strictness of the presuppositions of the analysis. Moreover, to test for the exis-
tence of nonlinearity, which is a prerequisite for the existence of chaotic dynamics, 
the BDS test (refer to [38]) is executed. Please note that due to its stated omnipotence, 
it is only applied to identify nonlinearity in general and specifically not to distinguish 
stochasticity versus chaoticity [39]. Further note that sufficiently enough embedding 
dimensions have to be selected for the BDS test as well as subsequent methodologies 
to meet practical insights.

Lastly, correlation structures have to be elucidated, beginning with the calculation 
of autocorrelation functions (ACFs, see [70]) with sufficiently large lags (e.g. 100–300). 
The ACFs serve as the basis for the validation of potential reconstructions (see Section 
2.4) and indicate, whether analysis disturbance is given. Moreover, following Kantz 

8 For example, too much noise, leads to test rejections, disrupts the Grassberger-Procaccia algorithm  

(see [46, 47]), thus, the correlation dimensional estimates and alters the Lyapunov exponent calculations 

[63, 64].
9 Even if scientifically debatable, ‘brute-force’ methods such as logarithmic distances will provide suf-

ficient results, since the sole purpose is analysis not forecasting, thus, no drawbacks are to be expected.
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and Schreiber [45], nonzero autocorrelations are deemed problematic owing to trajec-
tory vectors being closely located in phase space due to continuously evolving time, 
which is also known as temporal correlation. To determine a relevant ‘scaling region’ 
by the application of correlation sum schemes (see [46, 47]), the absence of temporal 
correlations is mandatory due to fitting issues in regional curve shapes and the lack of 
invariance of said correlation sums as depicted in [45]. Hence, dynamically correlated 
time-series violate the estimation requirements and if sufficiently large or worst oscil-
lating, the analysis is futile [45].

To analyze temporal correlations, Provenzale et al. [71] propose estimates of the 
correlation time by applying time separation plots, presupposing pairs of points in 
phase space to be dependent on threshold distance and, additionally, on elapsed time 
in between respective measurements. Henceforth, the contour curves of said plots 
have to saturate and remain at an acceptable and non-oscillating boundary level [71]. 
The existence of a sufficient ‘scaling region’ is the premise for successful reconstruc-
tions [45]. Building upon the correlation sum scheme, determining the slopes of each 
correlation sum curve per selected embedding dimension results in an estimate of 
the (fractal) correlation dimension10, which is plotted by itself and has to saturate as 
well (refer to [45]). Novelty within the framework to determine the validity of the 
underlying ‘scaling region’ is a step difference test proposed by Vogl and Rötzel [40], 
which tests step differences of the correlation sum curves in a Student’s t-test against 
zero and graphically examines the resulting p-value heatmap. One can select the 
minimum embedding dimension by selecting the one, which has no p-value above 
1% significance. Note that the existence of an ongoing ‘scaling region’ is also directly 
visible in the heatmap.

2.3 Chaos measures and tests

In addition to the prerequisites, several singular chaos metrics are worth 
 determining to gather more initial insights into the potential underlying nature of 
the time-series dynamics under analysis [40]. First, the sample entropy as proposed 
in Richman and Moorman [51] is calculated, reflecting information content and 
self-similarity characteristics, thus, delivering insights into the presence of fractality 
within the data.

Furthermore, various Lyapunov exponents are determined, namely, (1) the maxi-
mum Lyapunov exponent, (2) the Lyapunov spectrum and (3) the Lyapunov time. 
Lyapunov exponents measure chaotic strength in a dynamical system by measuring 
the exponential convergence or divergence of nearby trajectories in phase space 
[45, 73]. It is possible to calculate Lyapunov exponents equaling the number of phase 
space dimensions, i.e. the number of the estimated embedding dimension, leading 
to the Lyapunov spectrum, which indicates the nature of the underlying dynami-
cal systems, whether it be conservative or dissipative [74]. The largest exponent is 
labeled as the maximum Lyapunov exponent, depicting the exponential divergence 
or convergence of close trajectories and can be determined via the algorithm of 
Rosenstein et al. [75]. Note that a positive maximum Lyapunov exponent in com-
bination with a negative Lyapunov spectrum sum is mostly seen as a sign of chaos, 
yet, is critiqued by the lack of distributional tests [11]. Therefore, a distributional 
rationale in form of the Bask-Gençay bootstrapping test is favorable, since it provides 

10 In finite scalars like time-series, according to Ramsey et al. [72], correlation dimensional estimates tend 

to return artificially smaller values than the theoretically assumable fractal dimension.
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a significance indication, particularly, in cases of small positive, beyond zero maxi-
mum Lyapunov exponents at a sufficient level of significance [76]. Please note that 
several ten to a hundred thousand of bootstrapping steps are advisable to obtain 
reliable results. Moreover, the Lyapunov time represents the inverse of the maximum 
Lyapunov exponent and, thus, implies the time-span, the system requires to render 
itself chaotic and non-predictable, i.e. the time in which the exponential growing 
errors remain in a ‘forecastable’ range, before diverging too far [53]. The Lyapunov 
time is interpretable in either time-series units or in SI units [seconds] for real-world 
applications [53].

Finally, the Hurst exponent or in the case of non-stationary data, the detrended 
fluctuation analysis (DFA) alpha value is calculated to obtain in-depth information 
about the evolutionary nature of the dynamical system [54, 77, 78]. In an ongoing 
debate, the interpretation of the Hurst exponent and its initial interpretation by 
Benoit Mandelbrot (see [79, 80]) is challenged [16, 25, 44].

The Hurst exponent is interpreted as follows, namely, (1) the system is repre-
senting a Wiener process11, should the Hurst exponent equal exactly 0.5, (2) the 
system is revealing long memory effects if it is exceeding 0.5 and (3) is being a 
mean-reverting system, should the exponent value be below 0.5 [16]. Nonetheless, 
recent empirical studies (refer to [16, 44]) state that the exceedance of 0.5 by the 
Hurst exponent reveals measurable fractal trends (or trending characteristics), 
which are an explicative rationale for momentum effects on financial markets. 
Within the setting of this analysis, the latter, novel indication is more suitable. 
The exceedance of 0.5 indicates persistency and the existence of a power-law, 
resulting in the denoted fractal characteristics [16, 44, 81]. Additionally, the Hurst 
exponent can be applied to determine the fractal dimensionality estimation (2-H) 
[82]. Finally, as an additional novelty, is adapting the Bask-Gençay test to the Hurst 
exponent as depicted in Vogl [44], ensuring the said exponent to be tested on 
significance [83]. In total, the second step enables the elucidation of the dynamical 
systems’ properties directly, thus, providing a solid indication of its underlying 
evolutionary nature.

2.4 Phase space reconstruction

An important step toward the conduction of successful predictions of nonlinear 
time-series systems is the method of attractor reconstruction, leading back to the 
1920s (refer to [84]) and the ideas of Packard et al. [85], Ruelle [86] and Takens [48], 
which represent the calculation of various invariant quantities required to character-
ize the underlying system [87]. This is mostly the presupposition for the nonlinear 
dynamical analysis of a time-series and state space model implementations [88]. The 
main contribution of reconstructions is given by the reconstruction of phase space, 
which is capable of preserving geometrical invariants (e.g. eigenvalues, fixed points 
or fractal dimension) of referring system attractors, including the Lyapunov expo-
nent of according trajectories [88]. To phrase it differently, attractor reconstruction 
can be seen as a method to recreate the full deterministic state space based upon a 
lower dimensional time-series (i.e. a scalar) [87]. Thence, state space reconstruction 
is the generation of a multidimensional, deterministic state space out of the underlying, 
sampled time-series data [88]. Furthermore, embedding is, thus, the mathematical 

11 Only in this scenario the efficient market hypothesis taken out of quantitative finance holds and is 

violated else.
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process by which an attractor is reconstructable presupposing a given set of scalar 
measurements, i.e. time-series datasets owing to dimensional preservation charac-
teristics [43].

The resulting accuracy of the attractor reconstruction is directly dependent on the 
methodology applied to the reconstruction process and also influences the Lyapunov 
spectrum [87]. Therefore, several problems may occur, since the Lyapunov exponent 
cannot be labeled as invariant toward initial conditions, thus, stating a dependence 
on sample size within the reconstruction of time-series trajectories in phase space 
[11]. Following Nichols and Nichols [87], several methods for delay-time and embed-
ding dimension selection exist for the standardized delay coordinate reconstruction, 
namely, the comparison between ACFs and the probabilistic concept of mutual 
information, while false nearest neighbor approaches are feasible to minimize said 
delay vectors. Nonetheless, the most common procedure is the delay-time reconstruc-
tion in combination with various embedding dimensions [89]. A non-exhaustive 
overview is proposed in Table 1. To be more detailed, the delay-time is defined as the 
time-span between two neighboring points applied to reconstruct the attractor, while 
the referring embedding dimension represents an estimate of the true dimension of 
the assumed phase space, which is intended to be reconstructed [97]. To refer back 
to the denoising presupposition given in Section 2.2, the underlying scientific theory 
requires noise-free data, on which natural processes timely evolve, which else leads to 
difficulties in state variable estimations [87].

According to Takens [48], in absence of noise contaminants, it is always feasible 
to embed a scalar time-series into a state space. Assuming the existence of noise, two 
trajectories of the same initial condition, potentially evolve differently and converge 
to different asymptotic behavior, thus, even the exact knowledge of said initial  
conditions does not guarantee the predictability of the system’s final state [88, 98].  
Therefore, noise has to be treated as an influential source of unpredictability, which 
cannot be fully disclosed via the deployment of conventional methodologies of 
nonlinear dynamical analysis such as exit bases or uncertainty exponents [98].

Algorithm Short Description Reference

TE Takens’ delay-time embedding, implies shifting a timely delayed comb through 

the data to generate 3D coordinates

[48]

SE Spectral embedding in combination with a k-nearest neighbor algorithm, 

principal component analysis and Laplacian Eigenmaps

[10]

LRNN & 

CRBP

Locally recurrent neural networks with casual recursive backpropagation 

learning by applying algebraic observability through Takens’ theorem

[90]

HH The reconstruction is conducted by a combination of hyperhelices [91]

ESN The reconstruction is conducted by echo state networks [92]

SVM The reconstruction is conducted by support vector machines [93]

HT State space reconstruction by Hilbert transformations [94]

MI Mutual information in the probabilistic method [95]

TM Trajectory matrix for singular system analysis [96]

Table 1. 
Overview of existing reconstruction algorithms within the scientific literature.
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To revert to practical implementations, it is relevant to determine the choice 
of delay- times (τ), which directly influences the success and accuracy of recon-
struction algorithms [87]. Hence, a too small selection results in vectors to be very 
near and almost identical, thus, carrying redundant information and leading the 
attractor to collapse onto the 45° line in state space [87]. In contrast, a too large 
selection will produce uncorrelated (unrelated) coordinates owing to exponentially 
growing errors in chaotic regimes, resulting in decorrelated vectors in hindsight 
of the underlying time-series [87]. Henceforth, the two boundary scenarios have 
to be well-balanced to receive a proper reconstruction, yielding maximal indepen-
dence, while preserving dynamically related coordinate properties [87]. The most 
commonly applied variant is the ACF delay, with several possibilities, namely, (1) 
the first zero crossing, (2) crossing of 0.1, or 0.5 and (3) not exceeding 1/e [87]. 
Please note that ACFs propose linear time evolutionary calculations and may, thus, 
be misleading [87]. Due to experiments, the most accurate representations by 
the author were achieved by selecting variant (1), i.e. the first zero crossing or in 
modification, the first zero crossing, while subsequent coefficients additionally stay 
insignificant. Moreover, the embedding dimension as shown by Sauer et al. [99] 
has to be topologically equivalent to the true attractor, if the embedding dimension 
is chosen to be larger than two times the fractal dimension of said attractor. Note 
that once the embedding dimension is selected sufficiently high, a reconstruction 
resembles almost always an embedding, independent of parameter selections [88]. 
Mostly, delay-coordinates are selected, yet, there exist the families of derivatives 
and principal component reconstructions, as depicted combinatorial in the spec-
tral embedding (see [10]) [88]. Within practical applications, the author deems a 
combination of (1) Takens delay-time embedding, which, unfortunately, resembles 
a ‘spaghetti monster’ in most cases and (2) the more sophisticated variant by Song 
et al. [10], applying a spectral embedding in combination with a k-nearest neighbors 
algorithm (k-NN), principal component analysis (PCA) and Laplacian Eigenmaps 
as very suitable. In the author’s empirical experiments, the PCA components are best 
selected to equal the embedding dimension, while the number of neighbors for the 
k-NN can be best determined by the following heuristic, namely, 0.01len(data)*1.5τ 
[40]. Moreover, to receive a correct reconstruction the properties stated in Table 2 
are strict to be adhered to.

Parameter Favorable Negative Impact

Stationarity stationary non-stationary very high

Nonlinearity nonlinear linear medium

ACFs not significant significant high

Space-Time Separation very low, non-oscillating high, oscillating high

Correlation Sum significant ‘scaling region’ no ‘scaling region’ very high

Correlation Dimension saturating not saturating high

Maximum Lyapunov Exponent significant and positive negative high

Lyapunov Spectrum Sum negative positive high

Table 2. 
Overview of parameter selections for attractor reconstruction specifications.
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2.5 Recurrence quantification analysis

Independently from previous attractor reconstruction and other prerequisites, 
the RQA bases itself upon the introductory denoted exploitation of the recurrence 
property12 of dynamical systems, thus, is applicable to any time-series data (e.g. [6]) 
[100]. The RQA is conducted by quantifying the recurrence plot (RP) as introduced 
in Eckmann et al. [101]. The RP and RQA analysis benefit from the preservation13 of 
time-ordering information contents given in the analyzed data as well as contained 
spatial structure [22]. With the RQA one may detect fundamentally given charac-
teristics underlying a dynamical system, namely, the recurrence states, resulting 
in a ‘robust to noise and data limitations’ method of quantifying and identifying 
(chaotic) dynamics [22]. Thus, respective trajectories and transitions are rendered 
visible, in combination with the degree of complexity, i.e. the fractal structures, 
which may be inherent in the analyzed data [8]. To determine the RQA a threshold 
level has to be decided on, which determines whether nearby points are counted as 
recurrent or not [7]. Following van den Hoorn et al. [102], propose several threshold 
determination methods, yet, traditionally, according to Koebbe and Mayer-Kress 
[103] as well as Zbilut and Webber Jr. [104], the threshold value should not exceed 
10%. Additionally, the threshold value should not be lower than five times the sample 
noise [6]. Furthermore, it is common to exclude the identity line (proportional to the 
maximum Lyapunov exponent) of the RP from the analysis [105]. First, the RPs can 
be interpreted visually, which is presented in Marwan et al. [6], p. 251. Second, there 
exist two different types of measures taken out of a RQA, namely, minima-dependent 
versus single-value measures [6]. One may plot the minima dependency for several 
selections and choose an appropriate value to quantify the RPs. The length of diagonal 
lines represents the duration of trajectory local evolutions, while vertical (horizontal) 
lines mark time durations, in which the underlying dynamics are trapped (labeled 
as intermittency or laminar state) [7]. The commonly applied measures are depicted 
in Vogl and Rötzel [40], Table 3. Finally, to distinguish the results from stochastic, 
chaotic or other systems, one may either apply a Wiener process realization, a mathe-
matical chaotic system realization or respective surrogate 14 datasets (see [45]). Paired 
with the conceptions taken out of Section 2.6, signal theoretical decompositions can 
be applied to identify potential hidden sub-dynamics [56]. To gather and obtain the 
most information out of the analyzed data signal, wavelets with better localization 
properties are commonly proposed in form of a DWT filter bank [44]. The resulting 
low pass and high pass decompositions can then be applied as novel datasets to the 
RQA analysis and sub-RPs can be created and quantified to demonstrate potential 
sub-dynamics [56]. Note that the process can be repeated as often as required, should 
more than residual noise remain after one respective decomposition or iteration.

2.6 Multi-resolution analysis

To be very brief, time-series data are localized in the time domain, yet, may 
also yield exploitable frequency components, which in case of non-stationarity or 

12 The recurrence property originates from a topological approach and is given by the Poincaré recurrence 

theorem.
13 Presupposing the existence of a low-dimensional attractor, presence of dependence on initial conditions 

and the manifestation of said recurrence property.
14 I.e. destroying given determinism by shuffling via FTs. Then, comparison with original data.



13

Chaos Analysis Framework: How to Safely Identify and Quantify Time-Series…
DOI: http://dx.doi.org/10.5772/intechopen.106213

non-periodicity or other unfavorable characteristics will not be extractable via clas-
sical Fourier transformations (FT) [13, 106, 107]. Therefore, wavelets (i.e. tailored or 
bi-orthogonal) applied in a multi-resolution analysis (MRA) are well suited to extract 
underlying frequency information by retaining as much time localization information 
as possible [13, 16]. Thus, for filtering or denoising activities of time-series, discrete 
cascade filter banks with wavelet shrinkage (see [55, 108]) are applicable at length for 
various scales [40]. Moreover, to obtain insights into time-frequency localizations of 
to-be-analyzed datasets, one may apply a continuous wavelet transformation (CWT), 
resulting in a spectrum [57].

2.7 Distributions and power-laws

To elaborate on power-law characteristics, it is important to denote the intercon-
nections between chaotic dynamics, strange attractors, fractals and power-laws. In 
short, a dissipative (chaotic) dynamical system will reveal its phase space over timely 

Parameters Generic Mars S&P500 Implication

Denoising no yes yes Denoising with level 6 cascade wavelet filter 

and ‘Bior 2.8’ wavelet, since ‘biorthogonal’ 

states the best localization characteristics for 

non-tailored wavelet functions.

Stationarity yes yes yes ADF and KPSS (c, ct) tests with 1% 

significance each

Gaussianity no no no KS test with 1% significance

Nonlinearity yes yes no BDS test for embedding dimension of five and 

1% significance

Correlation 

Sum

scaling no scaling no scaling Build upon correlation sum graphs and step-

test with 1% significance

Correlation 

Dimension

saturating dropping not 

saturating

Based upon different correlation dimensions 

for embedding dimension

ACFs very low depending 

on lag

very low ACFs with 300 lags and 1% significance

Temporal 

Correlations

none very 

strong

oscillating Graphical via space-time separation plots for 

min. 100 steps

Sample 

Entropy

very low low very low Very low entropy is seen as a sign of self-

similarity in terms of information contents

Maximum 

Lyapunov

low 

positive

low 

positive

low 

positive

Tested for significance via Bask-Gençay test to 

propose the distributional theory

Lyapunov 

sum

negative negative negative Negative sum indicates dissipative system 

in combination with maximum Lyapunov 

exponent positivity

Hurst 

Exponent

trending trending mean 

reverting

Trending: Hurst >0.5; mean reverting: Hurst 

<0.5

Result positive negative negative Reconstruction invalid for real-world 

datasets, even if (non)linear dissipative 

systems

Table 3. 
Overview of steps one and two for all datasets with implication.
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evolution to deflate onto its own strange attractor, which is characterized via a fractal 
set [109, 110]. Generally, a fractal set yields a non-integer (non-Euclidean, thus, 
generalized) dimension, namely, the Hausdorff-Besicovitch dimension and is further 
characterized via self-similarity, i.e. multi-scaling, in addition to irregularities, non-
differentiability and recursiveness [111]. Henceforth, a (multi) fractal system requires 
a local power-law contributing to the mentioned scaling properties [111]. Therefore, 
a power-law is defined as the scalar relationship between two quantities and, thus, is 
characterized via scale invariance [112]. A fractal system with one scaling exponent 
is labeled monofractal, yet, multifractal systems require a singularity spectrum of 
exponents [111]. Referring back to a dissipative dynamical system, which deflates 
onto its strange attractor, thus, is represented by a fractal set. The fractal set of a 
strange attractor is rendered visible via its Poincaré sections, which show intersec-
tions of said strange attractor [110, 111]. To be more detailed, the intersections of 
strange attractors are fractal sets, which are described via multi-scaling and, thus, via 
powerlaws [111].

Analyzing time-series enables not only the reconstruction of potential (strange) 
attractors, yet, opens the way to mathematically determine given power-laws (i.e. 
the multi-scaling characteristics) of its underlying (multi) fractal properties [113]. 
Following Yuan et al. [114], state two rationales for time-series multifractality, 
namely, (1) the existence of fat-tailed probability distributions and (2) nonlinear 
temporal correlations. To draw out the multifractal spectrum, one may apply a mul-
tifractal analysis, which is built upon the MFDFA. The MFDFA visually depicts the 
scaling properties, as well as the (local) maximum and minimum Hurst exponents, 
also supporting the fractal trending interpretation discussed earlier [60]. Moreover, 
the generalized Hurst exponents, multifractal scaling exponents and the previously 
denoted multifractal scaling spectrum can be derived from the MFDFA output 
quantities [60]. In addition, calculating complementary cumulative distribution 
functions (CCDFs) and comparing them with power-law or other potential theoreti-
cal distribution types, enables the more or less save determination of power-law or 
other distribution fits [61]. However, as a word of absolute caution, the determination 
of coherence tests for various distributions has to be interpreted very carefully. The 
coherence tests are calculated via paired distributional fitting comparisons based 
upon log-likelihood measures, alongside other parameters [61]. These serve the 
purpose of achieving insights into suitable distributions, which may describe the 
datasets best, or to phrase it realistically, which at least represent the ‘less worst’ fit 
[61]. The coherence tests, thus, represent a comparison and no goodness of fit, which 
as indicated requires the reader to exert special care with the interpretation. It is 
advisable to fall back on graphical displays on log-log plots, which revealed as a useful 
guide for the practical implementations of the author. Concluding the powerlaws, the 
analysis is complete and the interpretation can carefully be exerted.

3. Correct empirical specifications

For each step of the analysis several algorithms are to be determined and a larger 
variety yield graphical insights, which can be either quantified or applied as a visual 
aid to deduce further insights and implications. Since a complete analysis as shown 
in Vogl and Rötzel [40] or Vogl [44] would vastly exceed the page limitations of this 
guide, the didactics of the practical display are as follows. First, this section will 
provide an idealistic outcome of a generic and mathematically tailored time-series, 
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based upon the Lorenz system (refer to [115]) to demonstrate the ‘best-case’ sce-
nario as the generalized point of reference, while two additional real-world datasets 
are presented as a comparison, namely, (1) the change rate of wind speed of Mars 
and (2) S&P500 1-minute tick return data. Second, the real-world datasets will be 
elaborated on in Section 4, since some hindrances are given and, thus, require analysis 
of potential misspecifications. The preliminary elaborations via steps one and two 
are depicted in Table 3, while Figure 2 presents the correlation sum, the correlation 
dimensional scheme as well as the correlation structures for the generic dataset. Note 
that for attractor reconstructions, Table 2 already proposes the favorable character-
istics to enable the correct implementation of reconstruction algorithms. Steps three 

Figure 2. 
Generalized point of orientation via the generic dataset for determination of reconstruction possibility. (a) Shows 
the correlation sum plots, which visually depict ‘scaling regions’, (b) shows the correlation dimensional plot, 
which ideally saturates as shown, (c) states the heatmap of p-values for the step-test of the lines of (a), (d) states 
the ACFs for 300 lags, which are insignificant and (ideally) stay that way and (e) shows the space-time separation 
plot for 100 steps, which is very low and non-oscillating. Note that for step two of the analysis, the minimum 
embedding dimension can be taken out of the heatmap, namely, by picking the first row with only 1% significance 
or lower p-values. During the existing experiments of the author, the heuristic of two times the fractal dimension 
as stated in the main text is also given by applying this selection method.
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to six are only stated in Section 4 for the real-world examples. In general, the stricter 
the interpretation and analysis, the better the results of the reconstruction, correct 
specification of underlying empirical DGPs and subsequent modeling.

Moreover, while steps one and two as presented above (in addition to potential 
reconstructions of step three), suffice to quantify the nature of the underlying system 
(i.e. whether it is dissipative, reconstructable or potentially chaotic), regarding the 
analysis of steps four through six, provide the exact quantified details of the system’s 
characteristics and serve as double confirmation procedure. Mainly, the RQA measure 
quantification provides exact details about the underlying empirical DGP, namely, 
a percentage comparison with surrogate data or pure stochastic (e.g. a Wiener pro-
cess) or pure deterministic chaotic systems (e.g. a Lorenz system) (refer to [6, 40]). 
Thence, one is capable of pinpointing whether the underlying system is pure chaotic, 
pure stochastic or a mixture of both and in which margins [40]. Subsequently, deriv-
ing frequency information, information about sub-dynamics, the existence of power-
laws and multifractal spectra enables the correct model selection as final outcome of 
the quantification. Nonetheless, a proper differentiation can be achieved after step 
four already. Since the RQA is too spacious it is neglected for this display, thus, the 
reader is referred to [6, 8, 40, 56].

4. Empirical negative examples

Continuing the previous section, hereinafter, the results for the two real-world 
datasets are presented in Figures 3 and 4, while the remaining indications are 
provided in Table 4. The invalid reconstruction algorithm results via Takens 
delay-time embedding (refer to [48]) and via spectral embedding (refer to [10]) 
are proposed in Figure 5 to clarify the relevance of proper prerequisites analysis. 
Regarding the Mars wind speed change rates, clear deterministic traits and sub 
dynamics are observable by the RQA, yet, a clear identity as a chaotic system as 
well as a distinct reconstruction is not possible. This is illustrated by the lack of 
a clear ‘scaling region’, dropping correlation dimensions, high ACFs and tempo-
ral correlations, which render this analysis step invalid. Furthermore, no scale 
independent multifractal scaling spectrum is visible and a nested power-law-
exponential distribution is proposed as ‘less worst’ distribution via the coherence 
tests (see [61]). In addition, no frequency information is determinable via CWT. 
Thus, the only insight generated is that it is a potentially chaotic, deterministic and 
dissipative system, while the exact modeling metrics are extractable out of the RQA 
quantification tables (refer to [6]). Regarding the (invalid) Takens reconstruction 
may suggest a non-chaotic attractor, since the results resemble a valid one in parts, 
yet, this is an invalid approach nonetheless. Spurious chaotic measure results are 
obtained by the S&P500 1-minute return series, since according to the BDS test 
nonlinearity is excluded, while the Hurst exponent indicates a clear mean-rever-
sion. Furthermore, no ‘scaling region’ by correlation sums and a non-saturating 
correlation dimension in combination with oscillating temporal correlation voids 
any other step of the analysis or reconstruction. Regarding the reconstruction by 
Takens, the linear nature is determinable. Moreover, the system has frequency 
information, yet, no power-law nor multifractal scaling characteristics (in agree-
ment with the Hurst exponent indication of mean-reversion). Following the 
RQA, sub dynamics and low levels of determinism are given, while vast stochastic 
characteristics are dominant. A final concluding remark at this point, considers 
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the frequency of the data samples, namely, Vogl and Rötzel [40] observed chaos in 
daily S&P500 returns, while in S&P500 1-minute tick return data, mean-reversion 
is present, leading to insights proposed by BenSaïda [39], namely, that the same 
system at different frequency levels, may propose different dynamics, revealing a 
scale dependence of the underlying empirical DGP.

Referring back to step three, namely, the attractor reconstruction, one may see 
various outcomes based upon false pretenses in the reconstruction results. In terms 

Figure 3. 
Results for the dataset wind speed change rate Mars (left) and S&P500 1-minute ticks (right). (a) States the 
correlation sum scheme, (b) the p-value heatmap, (c) the correlation dimensions, (d) the ACFs for 300 lags and 
(e) the space-time separation plots with 100 steps. Comparing with the generic datasets visually already reveals 
the conceptual differences and problems inherent in the analyzed data.
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Figure 4. 
Overview of RQA-DWT results for the display of RPs and sub-dynamics. (a) Is the DWT for the wind speed 
change rates of Mars and (c) for the S&P500 1-minute return ticks. In addition, (b) represents the approximation 
(left) and detail (right) coefficients for (a), while (d) represents the same for (c). It is denotable that both series 
consists of sub-dynamics. Note that the Mars detail coefficients may resemble a hidden chaotic subsystem, which 
can be separately analyzed.
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Parameters Generic Mars S&P500 Implication

RQA strong 

determinism, 

chaotic

determinism low 

determinism, 

stochastic

RQA measures versus comparative 

data provide characteristics for 

quantitative modeling

Sub-

Dynamics

no yes yes DWT with one iteration based upon 

a ‘Bior 2.8’ wavelet filter bank, the 

resulting high and low pass data are 

inserted into RQA

Frequency yes, distinct no yes, recurrent Based upon a CWT with a ‘Shannon’ 

wavelet, 1024 scales

Multifractal yes, clear scale-

dependent

no Based upon a MFDFA analysis

Power law yes nested 

exponential 

with fat tails

no Based upon CCDFs versus theoretical 

power-law backed with coherence 

tests on 1% significance

Result Chaotic, 

Multifractal 

System

Stochastic, 

Deterministic 

System

Mean 

Reverting 

system

Very careful interpretation 

advisable

Table 4. 
Overview of steps four to six for all datasets with implications.

Figure 5. 
Display of attractor reconstructions for the generic dataset based upon a Lorenz set (a, b), the wind speed change 
rates of Mars (c, d) and the S&P500 1-minute return ticks (e, f). (a), (c) and (e) represent the Takens delay-time 
embedding, yet, (c) and (e) are proven to be not reconstructable. (b), (d) and (f) display the spectral embedding 
in combination with a k-NN algorithm and a PCA with Laplacian Eigenmaps. As with (c) and (e), note that 
the analysis shows that (d) and (f) are not to be reconstructable. It is visible that a violation of reconstruction 
prerequisites results in very poor reconstructions since those are not to be conducted in the first place.
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of extreme high ACFs or temporal correlations, the attractor is dispersed and flat-
tened, while a lack of scaling characteristics results in singular ‘spaghetti like’ lines. 
Furthermore, as stated in Nichols and Nichols [87], a deflation or stretching on the 
45° line of the 3D space is also possible. Note that in the case of a linear system such 
as the S&P500 1-minute tick returns, the Takens embedding only states straight 
lines, which clearly indicates the absence of nonlinearity. A proper reconstruction 
shows a closed and dense area and visible attractor-like structures. For reference, as 
stated in Vogl and Rötzel [40], a pure stochastic system such as a Wiener process will 
end up resembling a ‘ball’ with no trajectory structure. In regards to time-series data 
with higher dimensional estimates, exceeding 3D spaces, the reconstructed graphical 
display may appeal ‘deformed’, owing to the lack of degrees of freedom in the visual 
display. On a final note, the exertion of particular care regarding the prerequisites of 
the reconstruction is highly advised, since violations result in poor representations 
and false characteristics, which will build the groundwork for subsequent quantitative 
modeling attempts. Furthermore, it is advisable to alter the delay-times and dimen-
sion estimates in several iterations to be sure to hit the most ‘representable’ form of 
the time-series system under analysis, especially, in more complex applications such 
as spectral embedding. Finally, the framework only provides the most basic intuitions 
or the minimum set of knowledge for analysis to be possible at all, refinements are 
always encouraged. Taken together, the stated insights can be abstracted into a mini-
mum set of requirements, which have to be fulfilled by potential model selections. 
Furthermore, one may reapply the whole analysis on the DWT sub-dynamics series to 
elaborate on potential hidden (strange) attractors.

5. Concluding remarks

Within this chapter, a practical guideline for the complete implementation of a 
combinatory, chaos analysis framework separately proposed in Vogl and Rötzel [40] 
for stationary and in Vogl [44] for non-stationary data is presented in its entirety. The 
framework is proposed as an integrated, holistic approach to analyzing the empirical 
DGP of nonlinear time-series data and provides the possibility to distinguish chaoticity 
from stochasticity while referring to underlying evolutionary dynamics. The analysis 
steps are elucidated, potential pitfalls and theoretical rationales stated and prerequi-
sites discussed in detail. Moreover, an ‘idealistic’ versus ‘negative’ case is empirically 
and graphically introduced and debated based upon real-world time-series sets 15. With 
this guide, the reader should be able to conduct the analysis themselves, without being 
prone to misspecifications and common errors present in the scientific literature.

Lastly, concluding remarks and current frontiers in the elaborated context are 
briefly to be stated. Current gaps in research and frontiers on the reconstruction of 
attractors is vastly seen in the application of neural network, evolutionary algorithms 
and other reconstruction methodologies to obtain sufficient and high-quality recon-
structions and analysis insights (see [116, 117]). Nonetheless, the research field of 
time-series reconstruction and quantification of empirical DGPs is scarce and defined 
as a current gap in research, particularly, in hindsight of novel technological advance-
ments such as artificial intelligence solutions. To conclude, Nieto et al. [98], states 

15 Even if not displayed in this chapter, during the preparation period, several different time-series have 

been analyzed, e.g. flood and river discharge series, wind power, energy prices, tweet-frequencies, nonlin-

ear fluids and fundamental economic indicators, among others.
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unpredictability as a ‘fundamental topic’ in the nonlinear scientific domain, owing 
to its consequences being rooted in the existence of sensitivity to initial conditions 
as the main trait of chaotic dynamics. Furthermore, no common understanding of 
unpredictability exists, since differing definitions may be applicable, e.g. problems in 
predicting trajectory evolutions may not be seen as a problem in hindsight of scatter-
ing problems, which only level around asymptotic behavior, thus, define problems 
only in the prediction of final system states [98]. Furthermore, predictability in 
subsequently implemented models is a vast topic, which is neglected for the discus-
sion of this chapter, yet, deemed of utmost relevance to it.

The stated framework can be enhanced further and shows several limitations, 
namely, it is computationally expensive and consists of many algorithms and meth-
ods, which are time intensive. Moreover, the selected methods are chosen due to 
their vast application in the scientific literature and not on performance. Hence, no 
optimization has been conducted yet, owing to the goal dependence of the analysis 
framework, even if applicability to various time-series is given. Furthermore, there 
exists no way to resolve attractor reconstructions given the existence of high ACFs 
and high or oscillating temporal correlations. Moreover, the framework is graphi-
cally reliant, which is seen as a potential hindrance in terms of future automatiza-
tion and application on larger data pools and automated decision rule generations. 
Nonetheless, to conclude, the presented framework is seen as the fundamental basis 
or minimal building block for future research, i.e. as the provision of a stepping 
stone toward more advanced, transparent and reliable insights originating from 
the scientific nonlinear dynamics community. The enablement to safely distin-
guish chaoticity from stochasticity paired with the detailed characterization of the 
empirical time-series DGP, in general, is expected to have a positive influence on the 
quantification, modeling and the future prospects of the field, solving a 40-year-old 
debate. Resolving stated debate, hopefully, opens the way to more coherent insights 
and persistent knowledge about time-series systems and the quantification of the 
real-world in various disciplines such as medicine, hydrology, economics and physics. 
The inherent paradigm shift is also expected to make model selection easier and more 
self-explanatory in the future of time-series predictions.
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