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Chapter

Bayesian Inference for Inverse
Problems
Ali Mohammad-Djafari

Abstract

Inverse problems arise everywhere we have indirect measurement. Regularization
and Bayesian inference methods are two main approaches to handle inverse problems.
Bayesian inference approach is more general and has much more tools for developing
efficient methods for difficult problems. In this chapter, first, an overview of the
Bayesian parameter estimation is presented, then we see the extension for inverse
problems. The main difficulty is the great dimension of unknown quantity and the
appropriate choice of the prior law. The second main difficulty is the computational
aspects. Different approximate Bayesian computations and in particular the
variational Bayesian approximation (VBA) methods are explained in details.

Keywords: inverse problems, hidden variable, hierarchical models, approximate
Bayesian computation, variational Bayesian approximation

1. Introduction

Inverse problems arise in many scientific and engineering applications. In fact,
almost always we want to infer on quantities, variables, distributions and functions
which are not directly observable. Inferring on a hidden variable f via the observation
of another variable g is the main objective in many scientific area [1–3].

Classically, the Bayesian methods have been developed for direct observation of a
quantity, its parametric modeling and the estimation of the parameters of the model.
Description and development of the Bayesian inference for the case of inverse prob-
lems is the main objective of this chapter. The chapter is organized as follows: First a
few inverse problems are mentioned, mainly in two categories: those described by
Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE)’s and
those described with integral equations. Then, we will see that two main problems
arise: parameter estimation and inversion. First the Bayesian parameter estimation is
described and then the Bayesian inversion.

2. Inverse problems

To see easily the two categories of inverse problems, first a very simple example is
given. Consider the electrical circuit of Figure 1.
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Using the notations used on the figure, we can easily obtain the following ODE:

g tð Þ þ θ
∂g tð Þ

∂t
¼ f tð Þ (1)

Then, using the Fourier transform (FT), we obtain easily the following integral
equation:

f tð Þ ¼

Z

f τð Þh t� τð Þdτ (2)

These two simple equations describe the same linear inverse problem, where we
can distinguish the following mathematical problems:

• Forward problem: Given the parameter θ of the system and the input, f (t)
predict the output g(t).

• Parameter estimation: Given the input f (t) and the output g(t), estimate the
parameter θ:

• System identification: Given the input f (t) and the output g(t), estimate the
impulse response (IR) of the system h(t).

• Inverse problems:

◦ Simple: Given the characteristics of the system (either the parameter θ or
equivalently the impulse response h(t)) and the output g(t) estimate the
input f (t);

◦ Blind: Given the output g(t) estimate both the system, parameter θ or the
impulse response h(t), and input f (t).

Figure 1.
A simple electrical circuit example to show two different expressions of inverse problems modeling: Ordinary
differential equation (ODE) or Integral equation (IE).
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For general vocabulary and examples, see [2, 4, 5].

2.1 Examples of linear inverse problems

Here, a few examples of classical inverse problems are listed.

2.1.1 Deconvolution

When the forward problem is a convolution operation:

g tð Þ ¼

Z

f τð Þh t� τð Þdτ, (3)

the inverse problem is called Deconvolution (Figure 2). Figure 3 shows an example
of deconvolution problem which arise in radio astronomy.

2.1.2 Image restoration

In many imaging systems, such as visual cameras, microscopes, telescopes or Infra
Red cameras, due to some limitations such as limited aperture or limited resolution,
the forward problem can be approximated by a 2D convolution equation:

g x, yð Þ ¼

ZZ

f x0, y0ð Þh x� x0, y� y0ð Þdxdy: (4)

The corresponding inverse problem is called image deconvolution or more often
image restoration. The example given in Figure 4, is the case of satellite imaging [6, 7].

Figure 2.
Signal deconvolution problem.

Figure 3.
Image deconvolution or restoration inverse problem in sattelite imaging.
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2.1.3 Image reconstruction in X ray computed tomography (CT)

In X-ray CT, assuming parallel geometry, where a ray is characterized by its angle
ϕ and its distance r from the center of the object f (x, y) the relation between the data
g r,ϕð Þ, called projections at angle ϕ and the function f (x, y), called object, is given by
the Radon transform:

g r,ϕð Þ ¼

ZZ

f x, yð Þδ r� x cosϕ� y sinϕð Þdxdy: (5)

The inverse problem here is called Image reconstruction. A simulated example is
shown in Figure 4.

2.1.4 Fourier synthesis

In many imaging systems, when using FT, it is possible to model the inverse
problem with the following forward FT relation:

g u, vð Þ ¼

ZZ

f x, yð Þ exp �j uxþ vyð Þ½ � dxdy, (6)

where the data, after an appropriate FT, can fill partially the Fourier domain g(u, v)
of the unknown interested function f (x, y) [8, 9]. Figure 5 shows the case of X-ray CT.

Figure 5.
Fourier synthesis (FS) inverse problems arising in many imaging systems. Here is illustrated the FS problem in
X-ray CT.

Figure 4.
Image reconstruction in CT. On the left, the projections g r,ϕð Þ and on the right the object f (x, y).
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2.1.5 General linear inverse problems

All the examples of the linear inverse problems listed above, can be summarized in
the following general form:

g sð Þ ¼

Z

f rð Þh s, rð Þdr (7)

where s can be either t, x, yð Þ, r,ϕð Þ or (u, v) and r, respectively τ, x0, y0ð Þ, x, yð Þ and
(x, y).

3. Bayesian parameter estimation

To introduce, in a very simple way, the Bayes rule for parameter estimation, we
consider the case where we have a set of data: g ¼ g1,⋯, gn

� �

where we assign them a
probability law p gijθ

� �

with a set of unknown parameters θ: The question now is how
to infer θ from those data. We can immediately use the Bayes rule:

p θjgð Þ ¼
p gjθð Þp θð Þ

p gð Þ
∝ l θð Þp θð Þ (8)

where:

• l θð Þ≜ p gjθð Þ ¼ Πip gijθ
� �

is called the likelihood, representing the uncertainty in
the data knowing the parameters;

• p θð Þ is called the prior or a priori, a probability law assigned to the parameters to
represent the prior knowledge (to the observation data) we may have on those
parameters;

• the denominator p(g)

p gð Þ ¼

Z

p gjθð Þp θð Þdθ (9)

is called the evidence.
So, the process of using the Bayes rule for parameter estimation can be summa-

rized as follows:

• Write the expression of the likelihood p gjθð Þ

• Assign the prior p θð Þ to translate all we know about θ before observing the data g

• Apply the Bayes rule to obtain the expression of the posterior law p θjgð Þ

• Use the posterior p θjgð Þ to do any inference on θ: For example:

◦ Compute its expected value, called Expected A Posteriori (EAP) or Posterior
Mean (PM):
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θ̂PM ¼

Z

θp θjgð Þdθ (10)

◦ Compute the value of θ for which the p θjgð Þ is maximum; Maximum A
Posteriori (MAP):

θ̂MAP ¼ arg max
θ

p θjgð Þf g (11)

◦ Sampling and exploring [Monte Carlo methods]

θ � p θjgð Þ

which gives the possibility to obtain any statistical information wewant to know about
θ: For example, if we generate N samples θ1,⋯, θNf g, for large enoughN, we have:

E θf g≃
1
N

X

N

n¼1

θn: (12)

3.1 One parameter case

When θ is a scalar quantity, then, we can also do the following computations:

• Compute the value of θMed such that:

P θ> θMedð Þ ¼ P θ< θMedð Þ (13)

which is called the median value. Its computation needs integration:
Z θMed

�∞

p θjgð Þdθ ¼
Z

∞

θMed

p θjgð Þdθ (14)

• Compute the value θα, called α quantile, for which

P θ> θαð Þ ¼ 1� P θ< θαð Þ ¼

Z

∞

θ̂α

p θjgð Þdθ ¼ 1� α (15)

• Region of high probabilities: [needs integration methods]

θ̂1, θ̂2
� �

:

Z θ̂2

θ̂1

p θjgð Þdθ ¼ 1� α

Bayes rule and Bayesian estimation can be illustrated as follows:

Two main points are of great importance:
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• How to assign the prior p θð Þ in the second step; and

• How to do the computations in the last step.

This last problem becomes more serious with multi parameter case.

3.2 Multi-parameter case

If we have more than one parameter, then θ ¼ θ1,⋯, θn½ �0: The Bayes rule still holds:

p θjgð Þ ¼
p gjθð Þp θjgð Þ

p gð Þ
(16)

Now, again, we can compute:

• The Expected A Posteriori (EAP):

θ̂PM ¼

Z

θp θjgð Þdθ, (17)

but this needs efficient integration methods.

• The Maximum A Posteriori (MAP):

θ̂MAP ¼ arg max
θ

p θjgð Þf g (18)

but this needs efficient optimization methods.

• Sampling and exploring [Monte Carlo methods]

θ � p θjgð Þ

but this needs efficient sampling methods.

• We may also try to localize the region of the highest probability:

P θ∈Θð Þ ¼

Z

Θ

p θjgð Þdθ ¼ 1� α (19)

for a given small α, but this problem may not have a unique solution.

4. Bayesian inference for inverse problems

As described before, in inverse problems, the unknown f is a function (of time,
space, wavelength, … ) and the observable quantity g is also another function which is
related to f via an operator g ¼ H fð Þ þ ϵ: When discretized, they can be represented
by the great dimensional vectors f, g and g ¼ H fð Þ þ ϵ, where ϵ represents all the
errors (measurement, model and discretization). When the operator is a linear one,
we have:
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g ¼ Hf þ ϵ, (20)

where f is a vector of length n, H the known forward model matrix of size m� n,
and g and ϵ two vectors of size m.

The Bayes rule for this case is written as:

p f jg,Mð Þ ¼
p gjf ,Mð Þp f j,Mð Þ

p g,Mð Þ
(21)

where we introduce M to represent the model, p gjf ,Mð Þ, called commonly the
likelihood, is obtained using the forward model (20) and the assigned probability law
of the noise p ϵð Þ, p f j,Mð Þ is the assigned prior model and p f jg,Mð Þ the posterior
probability law. Figure 6 shows in a schematic way the main ingredients of the
Bayesian inference for inverse problems.

This even very simple linear model has been used in many areas: linear inverse
problems, compressed sensing, curve fitting and linear regression, machine
learning, etc.

In inverse problems such as deconvolution, image restoration, f represent the
input or original image, g represents the blurred and noisy image and H is the convo-
lution operator matrix. In image reconstruction in Computed Tomography (CT), f
represents the distribution of some internal property of an object, for example the
density of the material and g represents the radiography data and H is the radio-
graphic projection operator (discretized Radon transform operator).

In Compress Sensing, g is the compressed data, f is the uncompressed image and H
the compressing matrix. In machine learning, g are the data, H is a dictionary and f
represents the sparse coefficients of the projections of the data on that dictionary.

5. Hyperparameter estimation

When applying the Bayes rule, the main terms which are the likelihood and prior
depend on parameters, which cannot be fixed in practical situation. We may thus want
to estimate them from the data. In the Bayesian approach, this can be done easily:

p f , θ1, θ2jgð Þ ¼
p gjf , θ1ð Þp f , θ2ð Þp θ1ð Þp θ2ð Þ

p gð Þ
(22)

Figure 6.
Illustration of the Bayesian inference for inverse problems.
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where p θ1ð Þ and p θ2ð Þ are the prior probability laws assigned to θ1 and θ2 and often
p θð Þ ¼ p θ1ð Þp θ2ð Þ: We can then write more succinctly:

p f , θjg, θ0ð Þ ¼
p gjf , θ1ð Þp f , θ2ð Þp θð Þ

p gð Þ
(23)

The scheme of this situation is illustrated in Figure 7.
From here, we have different directions for doing estimation:

5.1 Joint maximum a posteriori (JMAP)

Rewriting the expression of the joint posterior law:

p f , θjgð Þ ¼
p gjf , θ1ð Þp f jθ2ð Þp θð Þ

p gð Þ
∝ p gjf , θ1ð Þp f , θ2ð Þp θð Þ (24)

where ∝ means equal up to a constant factor which is 1=p gð Þ: In this case, we can
try to optimize it with respect to its two arguments:

f̂ , θ̂
� 	

¼ arg max
f , θð Þ

p f , θ̂jg
� 	n o

(25)

This can be done, for example, by alternate optimization:

f̂
kþ1ð Þ
¼ arg max f p f , θ̂

kð Þ
jg

� 	n o

θ̂
kþ1ð Þ
¼ arg max θ p f kð Þ, θ̂jg

� 	n o

8

>

<

>

:

(26)

When the optimization algorithm is successful, we have the optimal values of f̂
and θ̂: This method can be summarized as follows:

Figure 7.
Illustration of the Bayesian approach for inverse problems with unknown hyperparameters.
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5.2 Marginalization over θ

The main idea here is to consider θ as a nuisance parameter. Thus, integrating it
out, we get

p f jgð Þ ¼

Z

p f , θjgð Þdθ (27)

which can be used to infer on f. Also, if we still want to get estimates of θ, we can
first obtain an estimate f̂ for f and then, if needed, to use it as it is illustrated in the
following scheme:

5.3 Marginalization over f

The main idea here is first find a good estimate for the parameters θ and then use it
for the inference on f. So, first obtain:

p θjgð Þ ¼

Z

p f , θjgð Þdf (28)

which can be used to first estimate θ and then use it. For example, the method
which is related to the Second type Maximum likelihood, first estimate θ̂ by

θ̂ ¼ arg max
θ

p θ̂jg
� 	n o

(29)

and then use it with p f jθ̂, g
� 	

to infer on f̂ : For a flat prior model, p θjgð Þ∝ p gjθð Þ

which is called the likelihood and the estimator

θ̂ ¼ arg max
θ

p θ̂jg
� 	n o

¼ arg max
θ

p gjθ̂
� 	n o

(30)

is called Maximum Likelihood (ML) and the whole approach is called ML of second
type. This method can be summarized as follows:

The main difficulty in this approach is that, rarely we can have an analytical
expression for the first marginalization. To overcome this difficulty, many algorithms
have been proposed to compute f. One of them is called Expectation- Maximization
(EM) and its generalization (GEM). The main idea of these algorithms are summa-
rized in the following subsections:
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5.3.1 EM and GEM algorithms

To summarize these methods, we use the vocabulary of the main authors of EM
method, where f is considered as hidden variable, g as incomplete data, (g, f) as
complete data, ln p gjθð Þ incomplete data log-likelihood and ln p g, f jθð Þ as complete data
log-likelihood. Then, the following iterative algorithms describe the EM and GEM
algorithms.:

• EM Iterative algorithm:

E‐step : Q θ, θ̂
kð Þ

� 	

¼ E
p f jg,θ̂

kð Þ
� � ln p g, f jθð Þf g

M‐step : θ̂
kð Þ
¼ argmax θ Q θ, θ̂

k�1ð Þ
� 	n o

8

>

>

<

>

>

:

(31)

• GEM (Bayesian) algorithm:

E‐step : Q θ, θ̂
kð Þ

� 	

¼ E
p f jg,θ̂

kð Þ
� � ln p g, f jθð Þ þ ln p θð Þf g

M‐step : θ̂
kð Þ
¼ argmax θ Q θ, θ̂

k�1ð Þ
� 	n o

8

>

>

<

>

>

:

(32)

These methods can be summarized in the following scheme:

p f , θjgð Þ ! EM,GEM ! θ̂! p f jθ̂, g
� 	

! f̂

5.4 Variational Bayesian approximation

VBA is a powerful approach to do approximate Bayesian computation. It starts by
first obtaining the expression of the joint p f , θjgð Þ and then by approximating it with a
simpler probability law q f , θjgð Þ which can be handled much easily for the computa-
tions. VBA can be summarized in the following steps:

• Approximate p f , θjgð Þ by q f , θjgð Þ ¼ q1 f jgð Þ q2 θjgð Þ and then continue
computations.

• To do this approximation, we need a criterion to qualify the approximation. The
standard criterion to measure the proximity of two probability laws p and q is the
Kullback–Leibler (KL) criterion KL q f , θjgð Þ : p f , θjgð Þð Þ:

• It is easy to show that:

KL q : pð Þ ¼

ZZ

q ln q=p ¼
ZZ

q1q2 ln
q1q2
p

¼

Z

q1 ln q1 þ
Z

q2 ln q2 �
ZZ

q ln p

¼ �H q1
� �

�H q2
� �

� < ln p> q

(33)
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• Alternate optimization of KL(q1q2:p) with respect to q1 and q2 results to:

q1 fð Þ ∝ exp ln p g, f , θ;Mð Þh iq2 θð Þ

h i

q2 θð Þ ∝ exp ln p g, f , θ;Mð Þh iq1 fð Þ

h i

8

>

<

>

:

(34)

As KL(q1q2:p) is convex as a function of q1 and q2, the algorithm converges (locally)
to the optimum solution. At the end, we have the expressions of q1(f) and q2 θð Þ which
can, then, be used to infer on f and θ: VBA is summarized in the following scheme:

p f , θjgð Þ !

Variation

Bayesian

Approximation

! q1 fð Þ ! f̂

! q2 θð Þ ! θ̂

In real applications, we choose parametric probability law for q1(f) q2 θð Þ, and so,
the iterations will be done on the parameters. What is interesting is that, choosing
appropriate parametric models for q1(f) and q2 θð Þ we obtain either JMAP and GEM as
special cases.

• Case 1: Deterministic or degenerate expressions! Joint MAP

q̂1 f j~f
� 	

¼ δ f � ~f
� 	

q̂2 θj~θ
� �

¼ δ θ� ~θ
� �

!

~f ¼ argmax f p f , ~θjg;M
� �� �

~θ ¼ argmax θ p ~f , θjg;M
� 	n o

8

<

:

8

<

:

(35)

• Case 2: Degenerate expression for θ and marginal expression for f ! EM

q̂1 fð Þ∝ p f jθ, gð Þ

q̂2 θj~θ
� �

¼ δ θ� ~θ
� � !

Q θ, ~θ
� �

¼ ln p f , θjg;Mð Þh iq1 f j~θð Þ

~θ ¼ argmax θ Q θj~θ
� �� �

8

<

:

8

<

:

(36)

• Case 3: q1 and q2 are chosen proportional to the marginals p f j~θ, g;M
� �

and

p θj~f , g;M
� 	

: This is a very appropriate choice for inverse problems, in particular

cases where we use the exponential families and conjugate priors.

q̂1 fð Þ ∝ p f j~θ, g;M
� �

q̂2 θð Þ ∝ p θj~f , g;M
� 	 !

Accounts for the uncertainties of

~θ for f̂ and vise versa:

(

8

<

:

(37)

In the following schemes these three cases are illustrated for comparison.

• JMAP Alternate optimization Algorithm:

θ 0ð Þ ! ~θ! ~f ¼ argmax f p f , ~θjg
� �� �

! ~f ! f̂

↑ ↓

θ̂ ~θ ~θ ¼ argmax θ p ~f , θjg
� 	n o

 ~f
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• EM:

θ 0ð Þ ! ~θ! q1 fð Þ ¼ p f j~θ, g
� �

! q1 fð Þ ! f̂

↑ ↓

θ̂ ~θ 
Q θ, ~θ
� �

¼ hln p f , θ∣gð Þiq1 fð Þ

~θ ¼ argmax θ Q θ, ~θ
� �� �

 q1 fð Þ

• VBA:

θ 0ð Þ ! q2 θð Þ ! q1 fð Þ∝ exp ln p f , θjgð Þh iq2 θð Þ

h i

! q1 fð Þ ! f̂

↑ ↓

θ̂ q2 θð Þ  q2θ∝ exp ln p f , θjgð Þh iq1 fð Þ

h i

 q1 fð Þ

5.5 Hierarchical priors

One last extension is the case where f, itself depends on another hidden variable z.
So that we have:

p f , z, θjgð Þ∝ p gjf , θ1ð Þp f jz, θ2ð Þp zjθ3ð Þp θð Þ, (38)

where θ ¼ θ1, θ2, θ3ð Þ: This situation is shown in Figure 8. Again, here, we may
only be interested to f or (f, z) or to all the three variables (f, z, θ). Here too, we can
either use methods of JMAP, marginalization or VBA to infer on these unknowns.

6. Linear forward models and Gaussian case

Linear models are of importance. Gaussian prior laws are the most common and
the easiest ones to handle. Also, many non-linear problems can be approximated by
equivalent linear ones. Linear models with Gaussian prior laws are the easiest and
powerful tools for a great number of scientific problems. In this section, an overview
and some main properties are given.

6.1 Simple supervised case

Let consider the linear forward model we considered in previous section

Figure 8.
Illustration of advanced Bayesian approach with hierarchical prior modeling with hidden variables.
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g ¼ Hf þ ϵ, (39)

and assign Gaussian laws to ϵ and f which leads to:

p gjfð Þ ¼ N gjHf , vϵIð Þ∝ exp �
1
2vϵ

g �Hfk k2

 �

p fð Þ ¼ N f j0, vf I
� �

∝ exp �
1
2vf

fk k2
" #

8

>

>

>

>

<

>

>

>

>

:

(40)

Using these expressions, we get:

p f jgð Þ∝ exp �
1
2vϵ

g �Hfk k2 �
1
2vf

fk k2
" #

∝ exp �
1
2vϵ

J fð Þ


 �

with J fð Þ ¼ g �Hfk k2 þ λ fk k2, λ ¼
vϵ
vf

8

>

>

>

>

<

>

>

>

>

:

(41)

which can be summarized as:

p f jgð Þ ¼ N f jf̂ , Σ̂
� 	

with f̂ ¼ H0H þ λI½ �
�1
H0g and Σ̂ ¼ vϵ H

0H þ λI½ �
�1, (42)

where λ ¼ vϵ
v f
: This case is summarized in Figure 9.

This is the simplest case where we know exactly the expression of the posterior law
and all the computations can be done explicitly. However, for great dimensional
problems, where the vectors f and g are very great dimensional, we may even not be
able to keep in memory the matrix H and surely not be able to compute the inverse of
the matrix H0H þ λI½ �: In Section 9 on Bayesian computation, We will see how to do
these computations.

6.2 Unsupervised case or hyperparameter estimation

In the previous section, we considered the linear models with Gaussian priors with
known parameters vϵ and vf. In many practical situations these parameters are not
known, and we want to estimate them too. For this, we can assign them too prior laws.
As the variances are positive quantities and using the concept of conjugate priors, we
can assign then Inverse Gamma priors:

Figure 9.
Supervised linear Gaussian case.

14

Bayesian Inference



p vϵð Þ ¼ IG v f jαϵ0 , βϵ0
� �

p v f

� �

¼ IG v f jα f 0
, β f 0

� 	

8

<

:

(43)

and using the likelihood p gjf , vϵð Þ ¼ N gjHf , vϵIð Þ and the prior p f jvf
� �

¼

N f j0, vf I
� �

, we can easily obtain the expressions of the following conditional poste-
rior laws:

p f jg, v̂ϵ, v̂f
� �

¼ N f jf̂ , Σ̂
� 	

with :

f̂ ¼ HtH þ λ̂I
� ��1

Htg

Σ̂ ¼ v̂ϵ HtH þ λ̂I
� ��1

, λ̂ ¼ v̂ϵ=v̂f

8

>

>

<

>

>

:

(44)

and

p vϵjg, fð Þ ¼ IG vϵj~αϵ, ~βϵ
� �

p vf jg, f
� �

¼ IG vf j~αf , ~βf
� 	

8

<

:

(45)

where all the details and in particular the expressions for ~αϵ, ~βϵ, ~α f , ~β f can be found
in [10].

As we can see, the expressions of f̂ and Σ̂ are the same as in the previous case,
except that the values of v̂ϵ, v̂f and λ̂ have to be updated. They are obtained from the
conditionals p vϵjg, fð Þ and p vf jg, f

� �

which depend on f. This shows that we can
propose an iterative algorithm in two steps: Determine the expression of p f jg, v̂ϵ, v̂f

� �

and using the values of in the previous iteration, we can propose an estimate for f, and
then, using p vϵjg, fð Þ and p vf jg, f

� �

, we can give estimates for v̂ϵ and v̂f which can
again be used in the first step. It is interesting to know that all the three approaches of
JMAP, GEM and VBA for this cas follow exactly this same iterative algorithm. The
only differences will be in the update values of ~αϵ, ~βϵ, ~αf , ~βf and the choice of the
estimators (MAP or PM) of v̂ϵ and v̂ f :

This case is also summarized in Figure 10.

Figure 10.
Bayesian inference scheme in linear systems and Gaussian priors. The posterior is also Gaussian, and all the
computations can be done analytically.
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7. Non-Gaussian priors

Very often, assuming that the noise is Gaussian is valid in many applications, but a
Gaussian prior may not be adequate. Thus, the case of Non-Gaussian priors is of great
importance. A very well known example is the case of Generalized Gaussian:

p fð Þ∝ exp �γ
X

j

f j

�

�

�

�

�

�

β

" #

: (46)

The case of β ¼ 2 is the Gaussian case, β> 2 gives the Super-Gaussian and β< 1 is
called Sub-Gaussian. Its particular case β ¼ 1 results to what is called Double Exponen-
tial (DE) prior law:

p fð Þ∝ exp �γ
X

j

jf jj

" #

∝ exp �γ fk k1
� �

(47)

which, when using with a Gaussian likelihood, results to:

p f jgð Þ ∝ exp �
1
2vϵ

J fð Þ


 �

with

J fð Þ ¼
1
2

g �H fk k2 þ λ fk k1, λ ¼ γvϵ:

8

>

>

<

>

>

:

(48)

From this, we can see that the computation of MAP solution needs an appropriate
optimization algorithm and the computations of the Posterior Mean (PM) or Posterior
Covariance (PCov) or any other expectations become more difficult. However, as we
will see later, VBA can be used to do approximate computations.

Another example is the Total Variation (TV) regularization method [11–14] which
can be interpreted as choosing the prior

p fð Þ∝ exp �γ
X

j

j fj � fj�1j

" #

∝ exp �γ Dfk k1
� �

(49)

where D is the first order difference matrix.
This prior with a Gaussian model for noise results to:

p f jgð Þ ∝ exp �
1
2vϵ

J fð Þ


 �

with

J fð Þ ¼
1
2

g �Hfk k2 þ λ Dfk k1, λ ¼ γvϵ:

8

>

>

<

>

>

:

(50)

One last example is using the Cauchy or more generally the Student-t distribution
as the prior:

p fð Þ∝ exp �γ
X

j

ln 1þ f 2j

� 	ν=2
" #

(51)

which results to:

p f jgð Þ ∝ exp �
1
2vϵ

J fð Þ


 �

with

J fð Þ ¼
1
2

g �Hfk k2 þ λ
X

j

ln 1þ f 2j

� 	ν=2
, λ ¼ γvϵ:

8

>

>

>

<

>

>

>

:

(52)
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These three examples are of great importance. They have been used in
the framework of MAP estimation and thus the optimization of the criteria J(f) for
many linear inverse problems. However, the computation of other Bayesian
estimators and uncertainty quantification (UQ) need again specific approximate
solutions.

8. Hierarchical prior models

Even if simple Gaussian and non-Gaussian priors used in previous sections are of
great importance and use in many applications, still they have, in many cases,
limitations. For example, when we know that the signals have impulsive shapes or
discontinuous or are piecewise continuous. The same limitations when we know, for
example, that the images are composed of homogeneous regions with specified con-
tours, or even, that the object under the test is composed of a limited number of
homogeneous materials. Hierarchical models push farther these limitations of simple
prior models. In the following, we consider three families of such hierarchical
models: Sparsity aware models, Scaled Mixture models and Gauss-Markov-Potts
models [10, 15–17].

8.1 Sparsity awarded hierarchical models

An easy way to consider the hierarchical sparsity awarded priors is to introduce a
hidden variable, z and so consider the following Forward and prior models:

g ¼ Hf þ ϵ,

f ¼ Dz þ ζ, z sparse modeled by Double Exp DEð Þ




(53)

with

p gjfð Þ ¼ N gjHf , vϵIð Þ

p f jzð Þ ¼ N f jDz, vξIð Þ !

p zð Þ ¼ DE f jγð Þ∝ exp �γ zk k1
� �

8

>

<

>

:

(54)

Then, we have to find the expression of the joint posterior law p f , zjgð Þ :

p f , zjgð Þ∝ exp �J f , zð Þ½ � with

J f , zð Þ ¼
1
2vϵ

g �Hfk k22 þ
1
2vξ

f �Dzk k22 þ γ zk k1

8

<

:

(55)

from which we can infer on f and z [10, 16, 18–22].
For the unsupervised case, we can add the appropriate priors:

p γð Þ ¼ IG γjαγz , βγz

� 	

p vϵð Þ ¼ IG vϵjαϵ0 , βϵ0
� �

p vξð Þ ¼ IG vξjαξz , βξz

� 	

8

>

>

>

<

>

>

>

:

(56)

and thus obtain:
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p f , z, γ, vϵ, vξjgð Þ∝ exp �J f , z, γ, vϵ, vξð Þ½ � with

J f , z, vϵ, vξ, γð Þ ¼
1
2vϵ

g �Hfk k22 þ
1
2vξ

f �Dzk k22 þ γ zk k1þ

αγz þ n=2
� �

ln γ þ βγz=γ þ

αϵ0 þm=2ð Þ ln vϵ þ βϵ0=vϵ þ

αξz þ n=2
� �

ln vξ þ βξz=vξ

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(57)

It is interesting to note that the alternate optimization of this criterion gives the
ADMM like algorithms [23–25] with the main advantage that here we have direct
updates of the hyperparameters.

8.2 Scaled mixture models

Scaled Gaussian Mixture (SGM) models have been used in many applications to
model rare events by their heavier tails with respect to Gaussian. They are also used in
sparse signals modeling. A general SGM is defined as follows:

S fð Þ ¼

Z

N f j0, vð Þ pm vjθð Þ dv (58)

where the variance of the Gaussian model N f j0, vð Þ is assumed to follow the
mixing probability law pm vjθð Þ: Between many possibilities for this mixing pdf is
Inverse-Gamma which results to Student-t:

S f jνð Þ ¼

Z

N f j0, vð ÞIG vjν, νð Þ dv (59)

which have been extended to more general case:

S f jα, βð Þ ¼

Z

N f j0, vð ÞIG vjα, βð Þ dv (60)

This pdf models have been used with success in many developments in Bayesian
approach for inverse problems by:

p f jα, βð Þ ¼ Π
j

Z

N f jj0, v j

� 	

IG v jjα, β
� �

dv j (61)

or

p f jα, βð Þ ¼

Z

N f j0, vΣð ÞIG vjα, βð Þ dv (62)

Scaled Gaussian mixture models have been used extensively for modeling sparse
signals. However, it happens very often that the signals or images are not sparse directly,
but their gradients are, or more generally in a transformed domain such as Fourier or
Wavelet domains. We have used these models extensively in hierarchical way:

g ¼ Hf þ ϵ,

f ¼ Dz þ ζ, z sparse Student!
p z jjvz j

� 	

¼ N z jj0, vz j

� 	

,

p vz j

� 	

¼ IG vz j jαz0 , βz0
� 	

8

>

<

>

:

8

>

>

>

<

>

>

>

:

(63)
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whereD represents any linear transformations andD–1 applied of f transforms it to
a sparse vector z.

The whole relations of the likelihood and priors are summarized in below:

p gjfð Þ ¼ N gjHf , vϵIð Þ

p f jzð Þ ¼ N f jDz, vξIð Þ

p zjυzð Þ ¼ N zj0,Vzð Þ

p υzð Þ ¼ Π
j
IG vz j

jαz0 , βz0
� 	

p vϵð Þ ¼ IG vϵjαϵ0 , βϵ0
� �

p vξð Þ ¼ IG vξjαξz , βξz

� 	

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(64)

and the corresponding joint posterior of all the unknowns writes:

p f , z, υz, vϵ, vξjgð Þ∝ exp �J f , z, υz, vϵ, vξð Þ½ �

J f , z, υz, vϵ, vξð Þ ¼
1
2vϵ

g �Hfk k22 þ
1
2vξ

f �Dzk k22 þ Vz
�1
2 z

�

�

�

�

�

�

2

2
þ

X

j
αz0 þ 1ð Þ ln vz j

þ βz0=vz j
þ

αϵ0 þm=2ð Þ ln vϵ þ βϵ0=vϵ þ αξz þ n=2
� �

ln vξ þ βξz=vξ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(65)

Looking at this expression, we see that we have:

• Quadratic optimization with respect to f and z;

• Direct analytical expressions for the updates of the hyperparameters vϵ and vξ;

• Possibility to computeposteriormeanandquantify uncertainties analytically viaVBA.

A final case we consider is the case of Non-stationary noise and sparsity enforcing
prior in the same framework.

g ¼ Hf þ ϵ, ϵ non stationary!
p ϵijvϵið Þ ¼ N ϵij0, vϵið Þ,

p vϵið Þ ¼ IG vϵi jαϵ0 , βϵ0
� �

(

f ¼ Dz þ ζ, z sparse Student!
p z jjvz j

� 	

¼ N z jj0, vz j

� 	

,

p vz j

� 	

¼ IG vz j
jαz0 , βz0

� 	

8

>

<

>

:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(66)

Again here, all the expressions of likelihood and priors can be summarized as follows:

p gjfð Þ ¼ N gjHf ,Vϵð Þ

p f jzð Þ ¼ N f jDz, vξIð Þ

p zjυzð Þ ¼ N zj0,Vzð Þ

p υzð Þ ¼ Π
j
IG vz j

jαz0 , βz0
� 	

p υϵð Þ ¼ Π
i
IG vϵi jαϵ0 , βϵ0

� �

p vξð Þ ¼ IG vξjαξz , βξz

� 	

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(67)

and the joint posterior of all the unknowns become:
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p f , z, υz, υϵ, vξjgð Þ∝ exp �J f , z, υz, υϵ, vξð Þ½ �

J f , z, υz, vϵ, vξð Þ ¼ V
�1
2
ϵ g �Hfð Þ

�

�

�

�

�

�

2

2
þ

1
2vξ

f �Dzk k22 þ Vz
�1
2 z

�

�

�

�

�

�

2

2
þ

X

j
αz0 þ 1ð Þ ln vz j

þ βz0=vz j
þ

X

j
αϵ0 þ 1ð Þ ln vϵi þ βϵ0=vϵiþ

αξz þ n=2
� �

ln vξ þ βξz=vξ

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(68)

The following scheme shows graphically this case.

8.3 A four level hierarchical model

To account separately for the measurement and forward modeling error, a more
detailed and four level hierarchical model has been proposed:

g ¼ g0 þ ϵ, measurement error
g0 ¼ Hf þ ξ, modeling error
f ¼ Dz þ ζ, Prior model

8

<

:

(69)

which accounts for two terms of errors (variable splitting) and Sparsity enforcing
in Transformed domain prior: f ¼ Dz þ ζ with z sparse, modeled itself by Normal-IG.

This model is presented graphically here.
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In this model, there are three error terms: ϵ the observation error, ζ the forward
modeling error and ζ the transform domain modeling error. These are detailed in the
following:

• g ¼ g0 þ ϵ, : ϵ is assumed to be Gaussian:

p gjg0, vϵ
� �

¼ N gjg0, vϵI
� �

, p vϵð Þ ¼ IG vϵjαϵ0 , βϵ0
� �

,

• g0 ¼ H f þ ξ, ξ is assumed to be Student-t:

p g0jf , vξ
� �

¼ N g0jHf ,Vξ

� �

,Vξ ¼ diag vξ½ �,

p vξð Þ ¼ Π
M
i¼1p vξi

� �

¼ Π
M
i¼1IG vξi jαξz , βξz

� 	

,

8

<

:

• f ¼ Dz þ ζ, ζ is assumed to be Gaussian:

p f jz, vζ
� �

¼ N f jDz, vζ I
� �

, p vζ
� �

¼ IG vζ jαζ0 , βζ0

� 	

,

• z is assumed to be sparse and thus modeled via Normal-IG:

p zjvzð Þ ¼ N zj0,Vzð Þ,Vz ¼ diag vz½ �

p vzð Þ ¼ Π
N
j¼1p vz j

� 	

¼ Π
N
j¼1IG vz j jαz0 , βz0

� 	

(

which results in:

p f , g0, z, vϵ, vξ, vzjg
� �

∝ exp �J f , g0, z, vϵ, vξ, vz
� �� �

(70)

with

J f , g0, z, vϵ, vξ, vz
� �

¼
1
2vϵ

g � g0
�

�

�

�

2
2 þ αϵ0 þ 1ð Þ ln vϵ þ

βϵ0
vϵ

þ
1
2

V�1=2ξ g0 �H f
� �

�

�

�

�

�

�

2

2
þ
XM

i¼1
αξz þ 1
� �

ln vξi þ
βξz
vξi


 �

þ
1
2vζ

f �D zk k22 þ αζ0 þ 1
� �

ln vξ þ
βζ0
vξ

þ
1
2

Vz
�1=2 z

�

�

�

�

2

2 þ
XN

j¼1
αz0 þ 1ð Þ ln vz j þ

βz0
vz j

" #

(71)

Using then the JMAP approach with an alternate optimization strategy needs the
following optimization steps:

• with respect to f: J fð Þ ¼ 1
2 V�1=2ξ g0 �Hf

� �

�

�

�

�

�

�

2

2
þ 1

2vζ
f �Dzk k22

• with respect to g0: J g0
� �

¼ 1
2vϵ

g � g0
�

�

�

�

2
2 þ

1
2 V�1=2ξ g0 �Hf

� �

�

�

�

�

�

�

2

2

• with respect to z: J zð Þ ¼ 1
2vζ

f �Dzk k22 þ
1
2 V�1=2z z
�

�

�

�

2

2
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• with respect to vϵ : J vϵð Þ ¼ 1
2vϵ

g � g0
�

�

�

�

2
2 þ αϵ0 þ 1ð Þ ln vϵ þ

βϵ0
vϵ

• with respect to vξi : J vξi
� �

¼ 1
2 V�1=2ξ g0 �Hf

� �

�

�

�

�

�

�

2

2
þ
PM

i¼1 αξz þ 1
� �

ln vξi þ
βξz
vξi

h i

• with respect to vζ : J vζ
� �

¼ 1
2vζ

f �Dzk k22 þ αζ0 þ 1
� �

ln vξ þ
βζ0
vξ

• to vz j
: J vz j

� 	

¼ 1
2 Vz

�1=2 z
�

�

�

�

2

2 þ
PN

j¼1 αz0 þ 1ð Þ ln vz j
þ

βz0
vz j


 �

This approach has the following main advantages and limitations.
Advantages:

• All the optimization are either quadratic or explicit

• Quadratic optimizations can be done efficiently

• For great dimensional problems, the needed operators H, H0, D and D0 can be
implemented on GPU

• For Computed Tomography, efficient GPU implementation of these operators
have been done in our group for 2D and 3D CT.

Limitations:

• Huge amount of memory is needed for f, g0, vξ and vz

• No easy way to study the global convergence of the algorithm.

• The number of hyper-hyperparameters αϵ0 , βϵ0
� �

, αξz , βξz

� 	

, αζ0 , βζ0

� 	

, αz0 , βz0
� �

to be fixed is important. However, the results are not so sensitive to these
parameters.

8.4 Gauss-Markov-Potts models

To introduce the Gauss-Markov-Potts model, let us have a look at the images in
Figure 11.

The question we want to answer is: which prior model can be more appropriate for
these images? One way, to answer to this question is either look at the histogram of the
pixels or the pixels of the gradient images. Then, if we take one typical line of the
gradient or one typical line of the image itself and draw them as a 1D-signal, we obtain
the cases in Figure 12.

From these two figures, we see that for some cases, a Gaussian or generalized
Gaussian may be very good models. But, for other cases, if we want to explicitly
account for the presence of the contours, we can introduce a binary hidden variable to
represent it. Finally, for the last example of the image in Figure 10 and its
corresponding typical line in Figure 11, we need to introduce a hidden variable z
which encodes the following fact that:
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In NDT applications of CT, the objects are, in general, composed of a finite number
of materials, and the voxels corresponding to each material are grouped in compact
regions.

How to model this prior information?
To answer to this question, first consider such an image f (r) with its segmentation

z(r) and contours q(r) as shown in Figure 13.
As it can be seen, we introduced two hidden variables z(r) and q(r), the first

representing the segmentation and the second the contours of the image. z(r) takes
the integer values k ¼ 1,⋯,Kf g, each presented by a different color and q(r) a binary

Figure 11.
Different images with different characteristics in different imaging systems.

Figure 12.
Different possible prior modeling in relation to the different images of Figure 11.

23

Bayesian Inference for Inverse Problems
DOI: http://dx.doi.org/10.5772/intechopen.104467



value {0, 1}. The second can easily be obtained from the first. So, from now, we
consider only z(r).

As each value of z represents a homogeneous material, we can translate this by:

p f rð Þjz rð Þ ¼ k,mk, vkð Þ ¼ N mk, vkð Þ (72)

encoding the fact that inside each homogeneous material, i.e.; all the pixels
having z rð Þ ¼ k, represent a homogenous material characterized by the two
parameters f (mk, vk). This results to:

p f rð Þð Þ ¼
X

k

P z rð Þ ¼ kð ÞN mk, vkð ÞMixture of Gaussians (73)

which shows the mixture of Gaussian model of the pixel values. See also Figure 14.
The next step is to propose a probability distribution for z. As we want a compact-

ness of the regions, a Markov modeling is appropriate:

p z rð Þjz r0ð Þ, r0 ∈V rð Þð Þ∝ exp �γ
X

r0 ∈V rð Þ

δ z rð Þ � z r0ð Þð Þ

2

4

3

5 (74)

A Potts Markov model is still more appropriate:

p z rð Þ, r∈Ωð Þ∝ exp �γ
X

r∈Ω r0

X

∈V rð Þ

δ z rð Þ � z r0ð Þð Þ

2

4

3

5 (75)

Figure 14.
A metalic object with a default area inside it: Black pixels represent air, white pixels metal and gray pixels the
defaults area. On left image these are codes by colors (z ¼ 1 represents air, z ¼ 2 represents metal and z ¼ 3

represents default area.

Figure 13.
An image of an object composed of homogeneous compact regions, its segmentation and the contours of thoses regions.
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where Ω represents all pixels of the image.
Thus, to each pixel of the image is associated 2 variables f (r) and z(r) with the

following possible properties:

• f ∣z Gaussian iid, z iid: Mixture of Gaussians

• f ∣z Gauss-Markov, z iid: Mixture of Gauss-Markov

• f ∣z Gaussian iid, z Potts-Markov: Mixture of Independent Gaussians, (MIG with
Hidden Potts)

• f ∣z Markov, z Potts-Markov: Mixture of Gauss-Markov, (MGM with hidden
Potts)

From these four different cases, we consider two which are illustrated in Figure 15.
Using the notations on this figure, and noting by f all the pixels of the image,

by z all the pixels of the segmented image, and by θ all the parameters
vϵ, αk,mk, vkð Þ, k ¼ 1,⋯,Kf g, we can write:

p f , z, θjgð Þ∝ p gjf , vϵð Þp f jz,m, vð Þp zjγ, αð Þp θð Þ (76)

where

m¼ mk,k¼ 1, � ,Kf g,v¼ vk,k¼ 1, � ,Kf g,α¼ αk,k¼ 1, � ,Kf g,θ¼ vϵ,m,v,alphabf g

The expressions of p gjf , vϵð Þ, p f jz,m, υð Þ and p zjγ,αð Þ have been given before.
We need to define p θð Þ which can be chosen as the conjugate priors: Dirichlet for α,
Gaussian for m and Inverse-Gamma for all the variances.

Direct computation and use of p f , z, θjg;Mð Þ is too complex, because we
do not have analytical expression for the proportionality term of the joint
probability law:

p f , z, θjgð Þ∝ p gjf , z, θð Þp f jz, θð Þp zð Þp θð Þ (77)

Figure 15.
Two proposed gauss-Markov-Potts models used in many NDT applications.
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As we have three sets of variables f, z and θ, we can use different schemes, for
example a Gibbs sampling scheme:

f̂ � p f jẑ, θ̂, g
� 	

! ẑ � p zjf̂ , θ̂, g
� 	

! θ̂ � θjf̂ , ẑ, g
� 	

(78)

with:

• Sample f from p f jẑ, θ̂, g
� 	

∝ p gjf , θð Þp f jẑ, θ̂
� 	

Needs optimisation of a quadratic criterion.

• Sample z from p zjf̂ , θ̂, g
� 	

∝ p gjf̂ , ẑ, θ̂
� 	

p zð Þ

Needs sampling of a Potts Markov field.

• Sample θ from p θjf̂ , ẑ, g
� 	

∝ p gjf̂ , σ2ϵI
� 	

p f̂ jẑ, mk, vkð Þ
� 	

p θð Þ

More details and other schemes such as JMAP and VBA can be found in Refs. [26].
To illustrate an example of application, we considered a NDT application, where a

metalic object is tested to detect a default inside it. As, the problem was, not only to
detect the default, but also to characterize its shape and size, an X-ray computed
tomography (CT) with only two projections is proposed and used. This problem is
illustrated in Figure 16.

The mathematical part of this very ill-posed inverse problem is the following:
Given the functions g1(x) and g2(y) find the image f (x, y).
This problem also arise in probability theory and statistics, where f (x, y) is a joint

distribution and g1(x) and g2(y) its two marginals. We know that this problem has
infinite number of solutions: f x, yð Þ ¼ g1 xð Þg2 yð ÞΩ x, yð Þ where Ω x, yð Þ is called a
Copula:

Z

Ω x, yð Þdx ¼ 1 and
Z

Ω x, yð Þdy ¼ 1

Figure 16.
A non destructive testing (NDT) application where f (x, y) has to be reconstructed from its marginals g1(x) and
g2(y).

26

Bayesian Inference



So, any arbitrary copula function defines a solution. The problem is ill-posed and
we need to use any possible prior information to try to obtain a unique or acceptable
solution. The probabilistic solution we proposed is illustrated in Figure 17.

Unsupervised Bayesian estimation:

p f , z, θjgð Þ∝ p gjf , z, θð Þp f jz, θð Þp θð Þ

A summary of the results is given in Figure 18 where the proposed method
result.

Figure 17.
Probabilistic Bayesian method for the NDT image resonstruction problem.

Figure 18.
Probabilistic Bayesian method for the NDT image resonstruction problem. a) Shows the original image f, b) is the
result of Back-projection, c) is the result of filtered Back-projection, d) and e) are the result of a Markov model
with hidden line process, and f), g) and h) show the results of the gauss-Markov-Potts method.
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9. Bayesian computation

As we could see, very often, we can find the expression of the posterior law
p f jgð Þ, sometimes exactly as is the case of the linear models with Gaussian priors in
the previous section, but often up to the normalization constant (the evidence term)
p(g) in:

p f jgð Þ ¼
1

p gð Þ
p gjfð Þp fð Þ ¼

1
p gð Þ

p g, fð Þ: (79)

This term is not necessary for Maximum A Posteriori (MAP) but it is needed for
Expected A Posteriori (EAP) and for doing any other expectation computation.

This is the case, almost in all Non-Gaussian prior models or Non-Gaussian noise
models or the Non-Linear forward models. In this chapter, a few cases are considered
more in detail. Even in the Gaussian and linear case which is the simplest case, and we
have analytical expressions for almost everything, the computational cost for large
scale problems brings us to search for approximate but fast solutions.

9.1 Large scale linear and Gaussian models

As we could see in previous chapter, the linear forward model g ¼ Hf þ ϵ with
Gaussian noise and Gaussian prior is the simplest case where we can do all the
computations analytically.

p gjfð Þ ¼ N gjHf , vϵIð Þ

p fð Þ ¼ N f jf0, vf I
� � !

p gð Þ ¼ N gjH f0, vfH H0 þ vϵI
� �

,

p f jgð Þ ¼ N f jf̂ , Σ̂
� 	

with :

f̂ ¼ f0 þ H0 H þ λI½ �
�1
H0 g �H f0

� �

Σ̂ ¼ vϵ H
0H þ λI½ �

�1
λ ¼

vϵ
vf

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(80)

The trick here is, for example, for computing f̂ to use the fact that

p gjfð Þ∝ exp �
1
2vϵ

g �Hfk k22


 �

p fð Þ∝ exp �
1
2vf

fk k22

" #

p f jgð Þ∝ exp �
1
2vϵ

J fð Þ


 �

with J fð Þ ¼
1
2

g �Hfk k2 þ λ fk k22, λ ¼
vϵ
vf

8

>

>

>

>

>

>

>

>

>
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>

>

>

>

>

>

>

>

>

:

(81)

and, as the mean and the mode of a Gaussian probability law are the same, we can use:

f̂ ¼ argmax
f

J fð Þf g with J fð Þ ¼ g �Hfk k2 þ λ fk k2 (82)

and so the problem can be cast as an optimization problem of a quadratic criterion
for which there are a great number of algorithms. Let here to show the simplest one
which is the gradient based and so needs the expression of the gradient:
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∇J fð Þ ¼ �2H0 g �Hfð Þ þ 2λf (83)

which can be summarized as follows:

f 0ð Þ ¼ 0

f kþ1ð Þ ¼ f kð Þ þ α H0 g �Hf kð Þ
� 	

þ 2λf kð Þ
h i

8

<

:

(84)

As we can see, at each iteration, we need to be able to compute the forward
operation H f and the backward operation H0δg where δg ¼ g–Hf : This optimization
algorithm needs to write two programs:

• Forward operation H f

• Adjoint operation H0δg

These two operations can be implemented using High Performance parallel pro-
cessors such as Graphical Processor Units (GPU).

The computation of the posterior covariance is much more difficult. There are a
few methods: The first category is the methods which use the particular structure of
the matrix H and H0H or HH0 as we can use the matrix inversion lemma and see that

Σ̂ ¼ vϵ H
0H þ λI½ �

�1
¼ vϵI �H0 HH0 þ λ�1I

� ��1
(85)

For example, in a signal deconvolution problem, the matrix H has a Toeplitz
structure and so have the matrices H0H and HH0 which can be approximated by
Circulant matrices and be diagonalized using the Fourier Transform.

The second, more general, is to approximate Σ̂ by a diagonal matrix, which can
also be interpreted as to approximate the posterior law p f jgð Þ by a separable

q fð Þ ¼ Π jq f j

� 	

: This brings us naturally to the Approximate Bayesian Computation

(ABC). But, before going to the details of ABC methods, let consider the case where
the hyperparameters of the problem (parameters of the prior laws) are also unknown.

To be able to do the computation, we need mainly to compute the determinant of the
matrix v fHH0 þ vϵI for p(g) and the inverse of the matrices H0H þ λI½ � or HH0 þ λ�1I

� �

.

9.2 Large scale computation of the posterior covariance

Computing the determinant of the matrix vf HH0 þ vϵI for p(g) and the inverse of
the matrices H0H þ λI½ � or, HH0 þ λ�1I

� �

which are needed for uncertainty quantifi-
cation, are between the greatest subjects of open research for Big Data problems.
Here, we consider a few cases.

9.2.1 Structured matrices

One solution is to use the particular structure of these matrices when possible.
This is the case for deconvolution or image restoration, where these matrices have
Toeplitz or Bloc-Toeplitz structures which can be well approximated by Circulant or
Bloc-Circulant matrices and diagonalized using Fourier Transform (FT) and Fast FT
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(FFT). The main idea here is using the properties of the circulant matrices: If H is a
circulant matrix, then

H ¼ FΛF0 (86)

where F is the DFT or FFT matrix and F0 the IDFT or IFFT and Λ is a diagonal
matrix whose elements are the FT of the first line of the circulent matrix. As the first
line of that circulent matrix contains the samples of the impulse response, the vector
of the diagonal elements represents the spectrum of the impulse response (transfer
function). Using this property, we have:

H0H þ λI½ �
�1
¼ F0ΛFF0Λþ λ½ �

�1
¼ F0Λ2F þ λI

� ��1
¼ F Λ

2 þ λI
� ��1

F0 (87)

9.2.2 Sampling based methods

Second solution is generating samples from the posterior law and use them to
compute the variances and covariances. So, the problem is how to generate a sample
from the posterior law

p f jgð Þ ¼ N f jf̂ , Σ̂
� 	

with :

f̂ ¼ f0 þ H0H þ λI½ �
�1
H0 g �Hf0

� �

Σ̂ ¼ vϵ H
0H þ λI½ �

�1, λ ¼
vϵ
vf

8

>

>

>

>

<

>

>

>

>

:

(88)

One solution is to compute the Cholesky decomposition of the covariance matrix
Σ̂ ¼ AA0, generate a vector, u � N uj0, Ið Þ and then generate a sample f ¼ Auþ f̂

[27]. We can compute f̂ by optimizing

J fð Þ ¼
1
2

g �Hfk k2 þ λ f � f0
�

�

�

�

2
2, λ ¼

vϵ
vf

, (89)

but the main computational cost is the Cholesky factorization.
Another approach, called Perturbation-Optimization [28, 29] is based on the fol-

lowing property:
If we note x ¼ f þ H0H þ λI½ �

�1
H0 g �Hfð Þ and look for its expected and covari-

ance matrix, it can be shown that:

E xf g ¼ f̂

Cov x½ � ¼ Σ̂

(

(90)

So, to generate a sample from the posterior law, we can do the following:

• Generate two random vectors ϵf � N ϵf j0, vf I
� �

and ϵg � N ϵgj0, vϵ I
� �

;

• Define ~g ¼ g þ ϵg and ~f ¼ f þ ϵf and optimize

J ~f
� 	

¼
1
2

~g �Hfk k2 þ λ ~f � f0

�

�

�

�

�

�

2

2
(91)
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• The obtained solution f nð Þ ¼ argmin ~f J ~f
� 	n o

is a sample from the desired

posterior law.

By repeating this process for a great number of times, we can use them to obtain
good approximations for the posterior mean f̂ and the posterior covariance Σ̂ by
computing their empirical mean values. We need however fast and accurate optimi-
zation algorithms.

10. References to examples of applications

The above mentioned methods have been used with success in different applications:

• Medical imaging and Computed tomography (CT) [30–36].

• Diffraction tomography and Microwave imaging [37–42].

• 3D Computed Tomography [18, 22, 43]

• Acoustical imaging [44–49]

• Hyperspectral imaging [50]

• Spectrometry [51]

• Eddy current tomography [52]

• Non destructive testing applications [53]

• Emission Tomography [54]

• SAR imaging [55]

• Chronobiological time series [56]

11. Conclusions

Mainly, in this chapter, first we described inverse problems and gave a few classi-
cal examples such as deconvolution, image restoration, computed tomography X-ray
image reconstruction, Fourier synthesis inversion problem which arise in many imag-
ing systems. Then, we mentioned that there are two classes of methods for inverse
problems: deterministic regularization and Bayesian inference methods. Then, we
started by describing the Bayesian parameter estimation. The main parts of the chap-
ter is focused on Bayesian inference for inverse problems. We saw that the main
difficulty is the great dimension of unknown quantities and the appropriate choice of
the prior law. For this, first we described many simple and hierarchical prior models
which are used in real applications. For the second main difficulty, which is the
computational aspects, we described different approximate Bayesian computations
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(ABC) and in particular the variational Bayesian approximation (VBA) methods and
showed how to use these methods, for example for hyperparameter estimation or for
large scale inverse problems.
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