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Abstract

Conventional drug administration has several issues and challenges such as full 
doses absorption and efficient targeting, some generate undesirable secondary effects 
and promote damage to organs and tissues such as the liver and kidneys, and others 
trigger inflammation and immune responses. Hence, drug carriers help to promote 
drug absorption, enhance targeting, avoid or decrease secondary effects, possess the 
ability to camouflage drugs from immune cells and proteins, and permit controlled 
release to provide prolonged drug delivery to maintain its blood concentration within 
therapeutic limits. Drug carriers have gained importance thanks to their various 
properties such as biocompatibility, biodegradability, mechanical properties, and 
high surface area, among others. Drug carriers are getting crucial to avoid or diminish 
secondary effects and improve the targeting of the administered drugs incrementing 
their effectiveness. Hence, this book chapter aims to introduce some drug carriers 
(electrospun nanofibers, aptamers, micelles, and liposomes), describing the proper-
ties and polymers used. It is observed that fast dissolving administration is the most 
recommended strategy for the use of drug carriers, where more evident therapeutics 
benefits can be appreciated.

Keywords: aptamers, drug delivery, drug carriers, nanofibers, micelles, 
electrospinning, nanogels, liposomes

1. Introduction

Presently, drug carriers can be incorporated in several systems that are available 
in the market in different presentations such as tablets, syrups, and shots that the 
patients swallow, chew, or are inoculated administering specific doses of the medi-
cal compound. However, children, geriatrics, and patients with specific conditions 
have still difficulty obtaining the recommended doses through these administration 
routes and medical presentations [1–4]. Until now, oral administration has been the 
preferred administration route for its easiness of administration [5–7].

Innovative drug carriers can include several micro and nanostructures such as 
micelles, nanoparticles, liposomes, emulsions, and nanofibers, among others [8]. 
The most important technical advantages of drug carriers can be reported as the high 
stability, high carrying capacity, the feasibility of several administration routes, and 
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the capacity to be used with hydrophilic and hydrophobic molecules. The intention 
to use drug carriers is to control the drug release using these polymeric matrices and 
reduce or avoid secondary effects [9].

One of the main properties needed for a drug carrier is biocompatibility, which is 
the absence or decrease of adverse tissue reactions against the implanted or adminis-
tered biomaterials avoiding immune response. Biomaterials can include natural and 
synthetic polymers, ceramics, metals, and a combination of them [10]. However, 
biomaterials that are applied as a drug carrier need to develop a bioactive role in 
the tissue such as to respond to chemical, physical, or external stimuli and possess a 
therapeutic effect [11].

Drug carriers can include nanogels, micelles, mucoadhesives, bacteriophages, 
magnetic nanoparticles, graphene, dendrimers, carbon-based materials, viral-based 
nanoparticles, nanofibers, liposomes, films, bacterial vesicles, metal-organic frame-
works, and carbon nanotubes, among others [12]. Figure 1 shows some examples of 
nanocarriers.

For all the above, this chapter discusses the electrospun nanofibers’ properties 
applied as drug delivery systems, some characteristics of the main polymers used, 
describing their advantages and disadvantages. Some electrospinning strategies are 
also compared.

2. Electrospun nanofibers

Electrospun nanofibers (Figure 2) are polymeric-based structures that possess 
diverse customary properties that make them interesting to be used as drug carriers 
[13], these characteristics include biocompatibility [14, 15], biodegradability [16, 17], 

Figure 1. 
Some examples of drug carriers.
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high surface area [18, 19], adequate mechanical properties [20, 21], highly customiz-
able fiber diameter and structure [22, 23], excellent porosity connectivity [24, 25], 
ease of handling [26, 27], functionalization [28, 29], and the ability to encapsulation 
of a diversity of bioactive molecules [30, 31].

Electrospinning is a versatile technique that has expanded through time, where 
the objective of this technique is to fabricate fibers or particles in the nanoscale range 
[32] creating a tridimensional scaffold that has wanted characteristics with potential 
use as drug carriers such as the large surface area, where this property permits a high 
drug loading capacity in a reduced volume range [33], low cost [10], and adaptability 
[33]. The electrospinning technique uses a high-voltage electrical field that charges a 
polymer solution breaking its surface tension when is injected with a specific rate, this 
polymeric solution is attracted to a conductive collector creating a liquid jet yielding 
nanofibers (~10–1000 nm) where the solvent evaporates in the air [18, 34].

There are different types of electrospinning techniques that help to incorporate 
bioactive molecules or drugs into the fibers or over their surface [35, 36]. The objec-
tive is to release the loaded drug at the target zone through the polymeric degradation 
of the fibers controlling its delivery rate depending on the polymer used [37]. Among 
the reported electrospinning techniques can be listed the blending, coaxial, emulsion, 
and surface modification electrospinning, each of them has a different strategy for 
drug incorporation. The advantage of this strategy is that improves the equilibrium 
between the mechanical and physicochemical characteristics of the functionalized 
resulting fibers. Moreover, it permits the adjusting of the proportion used of the 
bioactive component by altering the concentration added to the final solution [38].

One of the advantages of electrospinning is that is a one-step method because 
the loaded biomolecules or drug solution is dissolved or dispersed directly into the 
polymeric solution. In this method, it is important to choose correctly the polymeric 
matrix because its characteristics will determine the efficiency in the drug encapsula-
tion, dispersion in/on the fibers, and delivery rate. It is reported that the equilibrium 
between hydrophilic and hydrophobic functional groups in all components of the 

Figure 2. 
Electrospun nanofibers as drug carriers.
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system (drug, polymer, solvent) will improve the optimal functionalization of the 
resulting fibers [39]. It’s important to note that due to the hydrophobic properties 
of some polymers, lipophilic drugs are easier to dissolve and create a homogeneous 
solution and vice versa. Such is the case of the polyester’s polymers, which are hydro-
phobic and interact very well with the hydrophobic drug rifampicin and paclitaxel, 
and gelatin, poly (ethylene glycol), and poly (vinyl alcohol), which are hydrophilic 
polymers, can dissolve hydrophilic drugs such as doxorubicin [40].

The disadvantage of this method is that some metallic bioactive molecules tend 
to aggregate in the polymer solution and in the resulting fibers [34]. Moreover, with 
this process, pharmaceutical drugs that are insoluble in water cannot be encapsu-
lated using hydrophilic polymers [41]. To avoid this issue, cyclodextrins are used to 
improve the solubility of the insoluble drugs in the polymeric solution [42]. The main 
advantage of fibrous scaffolds proposed for drug delivery systems is that they possess 
a high surface area to volume ratio, which can permit high dose load and promote the 
solubility of the drug in an aqueous environment improving the drug efficiency [43].

3. Aptamers

Aptamers are also used as interesting drug carriers; these molecules are composed 
of short nucleic acid oligomers. Many pieces of literature have reported the use of 
aptamers as drug carriers and diagnostic’s approaches [44–47]. Aptamers are impor-
tant because they can be designed and predicted to become a drug carrier for even 
general drugs and theragnostic drugs for specific pathologies such as Alzheimer’s 
disease and cancer, among others. Since they can be designed, they are able to bind to 
various important targets such as lipids, nucleic acids, proteins, small organic com-
pounds, or entire organisms. Thanks to their binding specificity, these specific drug 
carriers have shown less toxicity [44].

Kanwar, et al., 2011, discussed that aptamers can bind to a wide range of targets, 
which are called epitopes, which possess a high affinity and specificity. Aptamers can 
be used in chemical biology, therapeutic delivery, diagnosis, research, and monitor-
ing therapy in real-time imaging. As mentioned before, aptamers are interesting for 
their low immunogenic reaction and also can mimic monoclonal antibodies that are 
proposed for research, diagnostic, and therapeutic [48].

Ganji et al., 2016, mentioned that aptamers can be generated from libraries of 
single-stranded nucleic acids against different molecules. The authors discussed that 
aptamers can be used for dendritic cell targeting, in order to improve immunotherapy 
in the treatment of allergies and cancers. In this scenario, dendritic cells use several 
receptors to stimulate the adaptive immune response through the antigen presenta-
tion route in naïve T cells [49].

Aptamers are single-stranded oligonucleotides that fold into defined architectures 
and bind to targets such as proteins. In binding proteins, they often inhibit protein-
protein interactions and thereby may produce therapeutic effects (Figure 3) [50].

4. Micelles

Micelles have been importantly positioned as a drug carrier [51]. Micelles, which 
are commonly synthesized from polymers, have been proposed in preclinical studies 
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for the drug release of poorly soluble chemotherapeutic agents in cancer. Polymeric 
micelles are created via the self-assembly of amphiphilic polymers [52].

Many polymers have been proposed to produce micelles including poly(lactide) 
(PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, 
poly (amino acids), lipids, poly (ethylene glycol), poly(oxazolines), chitosan, dex-
tran, and hyaluronic acids, among others. Micelles can be prepared on a nanoscale 
enabling the enhanced permeability and retention (EPR) effect (Figure 4). Moreover, 
the stimuli (pH, hypoxia, enzymes) sensitive breakdown offers the micelles an 
efficient drug release. These micelles can be degraded using light, ultrasound, and 
temperature among other external stimuli to perform a controlled release of  
the drug [52].

Soleymani Abyaneh et al., 2015, prepared a block copolymer micelle containing 
methoxy poly (ethylene oxide) (PEO) as a shell layer, poly (lactic acid) (PLA) of differ-
ent stereo-chemistries as the outer core, and poly (α-benzylcarboxylate-ε-caprolactone) 

Figure 3. 
Aptamers as drug carrier.

Figure 4. 
Micelles as drug carrier.
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(PBCL) or poly(ε-caprolactone) (PCL) as the inner core. The micelles were used as 
drug carriers of the hydrophobic drug nimodipine, which is a drug used to treat symp-
toms from a ruptured blood vessel in the brain [53].

5. Liposomes

Liposomes can be defined as spherical vesicles, which involve one or more layers of 
phospholipids. These drug carriers can be used to load hydrophilic drugs in the inner 
core and/or lipophilic drugs in the double layer of phospholipids [54].

The main advantages of liposomes are their augmented stability and decreased 
toxicity of the encapsulated drug, capacity to be fused directly with the target cell 
membranes (Figure 5), biologically inert, non-antigenic, and non-pyrogenic, 
increased efficacy and therapeutic index of several drugs (actinomycin-D, amphoteri-
cin B, Taxol, Daunorubicin), improved stability via encapsulation, nontoxic, flexible, 
biocompatible, completely biodegradable, and non-immunogenic for systemic and 
non-systemic administrations, reduce the toxicity of the encapsulated agent, help 
reduce the exposure of sensitive tissues to toxic drugs, site avoidance effect, flexibility 
to couple with site-specific ligands to achieve active targeting [55].

On the contrary, the main issues of liposomes are linked to their production; 
several methods have been developed, but industries prefer to use batch-mode 
methods, which are characterized by low repeatability. Moreover, raw materi-
als employed are particularly non-economic, low-solubility, with short half-life, 
sometimes phospholipid undergoes oxidation and hydrolysis-like reaction, leakage 
and fusion of encapsulated drug/molecules, the production cost is high, and fewer 
stables [54].

Figure 5. 
Liposomes as drug carriers.
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6. Carbon-based nanomaterials

Carbon-based nanomaterials (CNBs) possess a singular structural dimension, 
which gives them special physicochemical properties interesting for several applica-
tions including as drug carriers [56]. CNBs can be classified as graphene, carbon 
nanotubes, mesoporous carbon, nanodiamonds, and fullerenes. All these structures 
differ in their excellent optical activities and multifunctional surface area, but all of 
them have demonstrated a high capacity for drug loading, biocompatibility, and low 
immunogenicity [57].

One of the principal areas of application of CNBs as drug carriers is in the treat-
ment of several kinds of cancer, due to their excellent supramolecular π-π stacking, 
high absorption ability, and photothermal conversion capacity, among others [58]. 
Unfortunately, the use of CNBs in cancer therapy comes with undesirable secondary 
effects related to the cytotoxicity of healthy tissues [59].

Respecting their role as drug carriers, single-walled carbon nanotubes (SWCNTs) 
have been loaded with paclitaxel, doxorubicin, and isoniazid increasing the capacity 
of drug delivery, incrementing drug action, improved bioactivity in the destruction 
of bacterial cells [60–62]. Another example of CNBs such as fullerenes can be loaded 
with hydroxyurea, ibuprofen, chloroquine, doxorubicin, and N-desmethyl tamoxi-
fen, giving them a better delivery efficiency of these pharmaceutical drugs [63–65].

7. Viral-based nanoparticles

In the case, the viral-based nanoparticles are reported to be useful for photo-
dynamic therapy due to their simple manufacturing and good safety profile [66], 
also they have interesting characteristics such as to possess great diversity in their 
structural uniformity, functionalization, expression, and self-assembly. Viral-based 
nanoparticles are mostly seen as therapeutics adjuvants or excipients that promote, 
improve, start, and attenuate or avoid the toxicity of the loaded pharmaceutical drug 
or bioactive compound [67].

Alemzadeh E et al., 2018, discussed that viral-based nanoparticles possess several 
advantages over other drug carriers, which include biodegradability, biocompatibility, 
known structure in atomic level, capacity to attach to ligand with high control on 
structure, accessibility for genetic and chemical alteration and malleable methods of 
preparation [68].

Several RNA viruses have been used as drug carriers such as Brome mosaic virus 
(BMV), Red clover necrotic mosaic virus (RCNMV), Cowpea mosaic virus (CPMV), 
Cucumber mosaic virus (CMV), Hibiscus chlorotic ringspot virus (HCRSV), Tobacco 
mosaic virus (TMV), Potato virus X (PVX), which have icosahedral and helical sym-
metries, from the pharmaceutical drugs loaded in these particles can be included 
doxorubicin, proflavine, DAPI, propidium iodide, acridine orange, polystyrene 
sulfonic acid, polyacrylic acid, phenanthriplatin, Herceptin, among others [68, 69].

7.1 Types of polymers used as drug carriers

Not all polymers can be used for drug carriers, these polymers have to possess 
specific characteristics such as biocompatibility, biodegradability, permit drug load-
ing, permit mass transfer, and respond to certain stimuli, among other characteristics 
[70]. Some examples of these polymers and their properties can be listed in Table 1:
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Depending on their polymeric functional groups, antibiotics, anticancer agents, 
and biomolecules such as nucleic acids and proteins can be loaded [1], where surface 
morphology and structure of the polymeric nanofibers are key features for regulat-
ing the delivery rate and quantity of the drug. Also, the surface of the polymers can 
protect the bioactive loaded molecules from corrosion or degradation of the enzyme, 
water, or gastric acid, prolonging the effectivity of the pharmaceutical drug [43].

8. Conclusions

Necessary human equivalent doses still need to be tuned to generate drug carri-
ers with adequate chemical, mechanical, and biological properties that are loaded 
with the specific doses of the pharmaceutical drug for a certain therapy. Another 
opportunity for the study is the proposed different taste masking in order to avoid 
the bad taste of some drugs or polymers. In all these studies, still, biocompatibility, 
biodegradability, mechanical testing, in vivo efficacy, and pharmacokinetics, must 
be studied. Future work must be focused on the biological response of the tissue and 
clinical phases must be performed [33].

For all discussed, the use of drug carriers is a promising technology that can be 
applied in most administration routes such as oral, vaginal, transdermal, ocular, 
rectal, and nasal tissues. The unique qualities of these drug delivery systems include 
a large surface area, nanoporosity, high drug encapsulation, and fast disintegration 

Polymers Advantages Disadvantages Ref.

PCL Biodegradable, biocompatible, 
compatible with a range of other 
materials, FDA approved

Low melting point, hydrophobic, 
long degradation rate, inadequate 
mechanical properties, and soft cell 
adhesion

[71]

PVA Bioadhesive, biodegradable, 
biocompatible, low tendency for 
protein adhesion, and low toxicity

Humidity reduces the polymer’s 
tensile strength; slow biodegradation

[72]

PVP Binder, FDA approved, excellent 
wetting properties, biocompatibility, 
low toxicity, adhesive characteristics, 
complexing stability, relatively inert 
behavior, and is resistant to thermal 
degradation

Certain allergic reactions, storage 
disease, subcutaneous granulomas, 
pulmonary vascularization, and 
reticuloendothelial system (RES) 
deposition, high hygroscopic nature 
which made it tough to store and 
handle, non-biodegradability in 
parenteral administration

[36, 73]

PNIPAM Mechanical strength, 
biocompatibility, biodegradability, 
multi-stimuli responsibility, higher 
drug loading

Low mechanical strength, limited 
drug loading capacity, and low 
biodegradability

[74]

PAA Low toxicity, super hydrophilicity 
properties, biocompatibility, 
biodegradability characteristics

Poor mechanical properties, and high 
solubility in water

[75]

PCL: Poly (caprolactone); PVA: Poly (vinyl alcohol); PVP: Poly (vinyl pyrrolidone); PNIPAM: Poly (N-isopropyl 
acrylamide); PAA: Poly (acrylic acid).

Table 1. 
Most of the reported polymers are used for drug carriers’ fabrication in drug delivery systems.
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PLA Poly (lactic acid)
PNIPAM Poly (N-isopropyl acrylamide)
PVA Poly (vinyl alcohol)
PVP Poly (vinyl pyrrolidone)
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