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Chapter

Probabilistic Predictive Modelling
for Complex System Risk
Assessments
Andrey Kostogryzov, Nikolay Makhutov, Andrey Nistratov

and Georgy Reznikov

Abstract

The risks assessment is described by the action of estimating the probability dis-
tribution functions of possible successes or failures of a system during a given predic-
tion period. Typical probabilistic predictive models and methods for solving risks
prediction problems are described, and their classification is given. Priority develop-
ment directions for risks prediction in standard system processes and their imple-
mentation procedures are proposed. The reported examples demonstrate the effects
and interpretation of the predictive results obtained. Notes: 1. System is a combination
of interacting elements organized to achieve one or more stated purposes (according
to ISO/IEC/IEEE 15288 “Systems and software engineering—System life cycle pro-
cesses”). 2. Risk is defined as the effect of uncertainty on objectives considering
consequences. An effect is a deviation from the expected — positive and/or negative
(according to ISO Guide 73).

Keywords: prediction, method, model, probability, risk

1. Introduction

Systems are subject to various risks throughout their life cycles despite their suc-
cessful design and effective operation. That is why mathematics and system perfor-
mance prediction have been closely interrelated since the ancient times. There is no
doubt in the design and the maintenance of the world-famous wonders, astonish
modern man. The preservation of these wonders was entirely based on predictive
methods using existing mathematical approaches by that time. With the advent of
probability theory, this relationship has become even closer. Currently, various clas-
sical mathematics and probabilistic methods are often used to solve complex engi-
neering problems.

If for the layman probability is still associated with divination on daisies, then for
specialists these methods have long become powerful tools in predicting success or
failure, proactive management, and achieving the desired effects. Risk predictive
assessments are practiced in various industrial sectors, for example, fuel and energy,
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pharmaceutical, mining, metallurgical, chemical, communication and information,
dispatch centers, etc. [1–32]. Hundreds of universities and other scientific
organizations are involved in probabilistic research activities connected to risk pre-
diction. By now it is possible to clearly trace the activities chain in a predictive
approach: “From uncertainties formalization � to probabilistic modelling”, “From
probabilistic modelling � to reasonable control”, “From reasonable control � to
achievable effects” and “From achievable effects �to sustainable harmony”. It means
that predictive probabilistic concepts meet the main analytical challenges in the
eternal aspirations to go from uncertainties formalization” to “sustainable harmony”,
see Figure 1.

Thousands of mathematicians are currently involved in risk prediction R&D
activities. It is unfortunately impossible to mention all the running developments.
This chapter will focus on:

• some generalizations and thoughts regarding the variety of the existing risk
prediction probabilistic approaches;

• the formulation of the goals and objectives of the probabilistic methods
throughout the life cycle of various systems;

Figure 1.
The eternal aspirations: “From uncertainties formalization�to sustainable harmony.”
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• the description of the general risk prediction probabilistic approach;

• the essence of the probabilistic concepts considering the acceptable risk notion;

• some original probabilistic models;

• the analytical methods of risks integrating for standard processes;

• some optimization problem statements for rational proactive actions;

• some examples of practical applications (illustrating some scientific and technical
possibilities for solving real engineering problems);

• the expected achievable effects.

2. Goals and objectives

In general, risk prediction is associated with the achievement of pragmatic goals
and solving the analytical problems of systems rational concept (conceptual design),
development, utilization, and support. Pragmatic system goals may be:

• improving the efficiency of the implementation of the state and/or corporate
strategy in the economy;

• improving the safety and sustainability of the region’s development,
ensuring socio-economic, pharmaceutical, medical, and biological safety of the
region;

• ensuring the protection of the population and territories from natural and man-
made risks, etc.

In turn, the following objectives require risk predictive capabilities:

• to predict the mean residual time before the next operational abnormality;

• to ensure the effective operation and development of complex engineering,
energy, transport, and communication systems;

• to ensure the security of critical infrastructure, information, and information-
psychological security;

• to ensure energy and industrial safety, technical diagnostics and resource
management for critical facilities and systems;

• to ensure the safety of railway, aviation and water transport;

• to develop critical technologies (for example, information and cognitive
technologies; energy technologies of the future; technologies for monitoring and
predicting the state of the environment and equipment; technologies for

3

Probabilistic Predictive Modelling for Complex System Risk Assessments
DOI: http://dx.doi.org/10.5772/intechopen.106869



exploration and development of mineral deposits and their extraction; and
technologies for preventing and eliminating natural and technogenic hazards), etc.

A review of the numerous existing mathematical approaches allows us to make the
following generalization �the main goals of applying probabilistic prediction are
connected with (see Figure 2):

• an analysis of opportunities, achievable quality, safety and efficiency;

• a rationale for achieving desirable characteristics and acceptable conditions;

• an optimization of systems performance and processes;

• exploring new ideas and innovative concepts.

The enlarged classification of methods, using the probabilistic risk predictive
models (including the proposed models), is presented in Table 1. These methods are
used for solving various objectives during system life cycle.

Figure 2.
Generalization of goals and objectives throughout the system’s life cycle that require risk probabilistic-predictive
models.
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Stages in life cycle (see, for example, ISO/

IEC/IEEE 15288). The problems which are

due to be solved by risks prediction

Methods, connected with:

an analysis of opportunities,

achievable quality, safety,

efficiency

a rationale of achieving desirable

characteristics and acceptable

conditions

optimization of systems

and processes

finding and researching of new ideas and

concepts

Concept stage. Problems connected with a

system analysis of expected usefulness and

profits, studying of system creation, the

rationale of system requirements and

acceptable conditions

Methods for estimating critical

measures. Methods for

probabilistic risk prediction

Methods for estimating critical

measures. Methods for

probabilistic risk prediction

Methods for

optimization,

considering risks

prediction

Methods to analyze possible effects.

Methods for probabilistic risk prediction.

Development stage. The problems connected

with a system analysis of feasibility, the

estimations of technical solutions and risks,

the prediction of reliability, safety, a quality

of system operation, effectiveness and

efficiency (on possible data), optimization

Measurements. Methods for

estimating critical measures.

Methods for probabilistic risk

prediction

Measurements. Methods for

estimating critical measures.

Methods for probabilistic risk

prediction

Methods for

optimization,

considering risks

prediction

Methods to analyze possible effects.

Methods for probabilistic risk prediction.

Production stage. The problems connected

with an estimation of challenges and risks,

the prediction of reliability, safety, quality of

system operation, effectiveness and

efficiency (on real data), optimization,

planning, rationales for improvement

Measurements. Methods for

estimating critical measures

Measurements. Methods for

estimating critical measures

Methods for production

optimization,

considering risks

prediction

Methods for estimating critical measures.

Utilization stage. The problems connected

with an estimation of challenges and risks,

the prediction of reliability, safety, a quality

of system operation, effectiveness and

efficiency (on real and possible data),

optimization, planning, rationale of

improvement

Measurements. Methods for

estimating critical measures.

Methods for probabilistic risk

prediction

Measurements. Methods for

estimating critical measures.

Methods for probabilistic risk

prediction

Methods for

optimization,

considering risks

prediction

Methods to analyze possible effects.

Methods for estimating critical measures.

Methods for probabilistic risk prediction.

Support and retirement stages. The problems

connected with an estimation of challenges

and risks, the predicting of reliability, safety,

quality of system operation, effectiveness

and efficiency (on real and possible data),

optimization, planning, rationale of

improvement (in part concerning)

Measurements. Methods for

estimating critical measures.

Methods for probabilistic risk

prediction

Measurements. Methods for

estimating critical measures.

Methods for probabilistic risk

prediction

Methods for

optimization,

considering risks

prediction

Methods for estimating critical measures.

Methods for probabilistic risk prediction

Table 1.
The enlarged classification of methods, using risk probabilistic-predictive models.

5 P
rob

a
b
ilistic

P
red

ictive
M
od
ellin

g
for

C
om

p
lex

System
R
isk

A
ssessm

en
ts

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.106869



3. Conceptual probabilistic-predictive approach

The solution of problems in the system life cycle [6–8, 9, 14] is considered by the
example of a complex system, designated as (S-N-T)-system and covering: social
sphere S (person, society, state and world community); natural sphere N (earth and
space); techno-sphere T (man-made infrastructures and life support facilities).

In general, solving problems using a probabilistic-predictive approach includes:

• obtaining new knowledge about the fundamental laws of the operation and
development of (S-N-T)-system in time and defining the probabilistic
expressions and their parameters;

• formation of specific goals, concepts, and conditions in the system life cycle
(with the construction of fault trees and event trees, as well as risk matrices for
infrastructures and facilities), operation (including quality assurance, safety,
efficiency) and development and their integration (taking into account certain
priorities) for each of these areas (S, N, T) and (S-N-T)-system as a whole;

• rationalizing and building scientifically based predictions of the (S-N-T)-system
development, as well as each of the constituent spheres (S, N, T), to achieve
certain goals during the life cycle and to retain the critical parameters and
measures within acceptable limits;

• rationalizing means, methods, and technologies for sustainable development of
the (S-N-T)-system based on new knowledge and reasonable predictions;

• planning of rational (S-N-T)-system process management taking into account
feedbacks;

• practical implementation and control (on-line and off-line) of the predictions
and plans fulfillment for the operation and sustainable development of the
(S-N-T) system, taking into account social, natural, and man-made hazard-
exposure uncertainties.

When planning and implementing these actions, the following should be taken
into account:

• the complexity and uncertainty of (S-N-T)-system probabilistic-predictive
models, many challenges and threats leading to a deterioration of the system
integrity, the effects of damaging factors, and the decrease in the survivability of
the system;

• the time dependence of interrelations between spheres and components of the
system, subsystems and significant elements, vulnerabilities and admissible
limits for the (S-N-T)-system states in the conditions of possible challenges and
threats;

• the need to categorize and classify (S-N-T)-system according to the level of
importance and criticality in order to achieve goals throughout the life cycle and
to retain critical parameters and measures within acceptable limits.
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The random time variables τ considered in the predicted risk R τ, tð Þ does simulta-
neously take into account the probabilities P τ, tð Þ of the threats’ occurrence and
activation, and also the associated damages U τ, tð Þ. For example, the random time
variable τ may be defined as the time between successive losses of element integrity
(see details in sections 4 and 5). Here the prediction period t (which in general is also
subject to justification) is dependent on the basic measures, designed to characterize
the uncertainties and complexity of (S-N-T)-system, and conditions for solving the
analytical problems.

The source of risks regarding the (S-N-T) system has been and remains: human
(human factor); nature with its own range of threats; and techno-sphere with its
inherent hazards. They are the determinants of the reliability (including aging and
degradation of technical means), other quality measures (including the quality of the
information used), and the safety and efficiency of the system. This makes it possible
to determine risk as functionals:

R τ, tð Þ ¼ F P τ, tð Þ, U τ, tð Þf g ¼ F RS τ, tð Þ, RN τ, tð Þ, RT τ, tð Þf g:

In practice, risks are estimated by the dimensionless probability of an elementary
event during a period of time, comparing possible damage to it, or by the probabilistic
expectation of damage (as the probabilistic multiplication of the possible damage on
the probability of damage), or by the frequency of damage, etc. In turn, the magni-
tude of damages can be estimated in economic indicators (financial), areas of con-
tamination, losses in case of accidents, etc.

For example, formalization of such limitations may be presented as follows:

R τ, tð Þ≤Radm τ, tð Þ,Radm τ, tð Þ≻0:

Then a safety S τ, tð Þ for (S-N-T)-system can be expressed in terms of risks:
S τ, tð Þ≤Radm τ, tð Þ � R τ, tð Þ. Safety is maintained if and only if S τ, tð Þ ≥0.

To ensure that the quality, safety and sustainable development of the (S-N-T)-
system are in the acceptable risk zones. Thus, it is necessary to implement a set of
actions with the economic costs expected to reduce risks to an acceptable level.

Examples of the applicability of this approach are proved in many industrial
sectors such as nuclear, thermal and hydraulic power plants; the largest installations of
oil and gas chemistry; the unique space station, aviation, sea and land transport; large-
scale offshore energy resources development facilities [7], etc.

4. The essence of probabilistic concepts

The risk predictive approaches, used by system analysts, are based on classical
probability theory. Generally, a probabilistic space (Ω, B, P) should be created per
system (see for example [1–6, 9–14]), where: Ω – is a finite space of elementary
events; B – is a class of subspaces in Ω -space with the properties of σ-algebra; P – is a
probability measure on a space of elementary events Ω. Because Ω ¼ ωkf g is finite,
there is enough to establish a correspondence ωk ! pk ¼ P ωj ⊃j kjð Þ in which pk ≥0
and

P

kpk ¼ 1. Briefly, the initial formulas in mathematical form for original models
(which are used in practice) are given in Appendices A and B.

Note. Some cases of a limited space of elementary events see in Section 6. The
results of modelling are related only to introduced elementary events and specific

7

Probabilistic Predictive Modelling for Complex System Risk Assessments
DOI: http://dx.doi.org/10.5772/intechopen.106869



interpretation, the results of the probabilistic prediction can not describe future exact
events (place, time and other detailed characteristics).

The next interconnected concepts 1�7 are proposed for probabilistic predictive
modelling.

Concept 1 is concerning the probability distribution function (PDF) P τ≤ tð Þ (see
for example [1–6, 9–14] etc.) for a continuous random variable of time τ. P τ≤ tð Þ is a
non-decreasing function P tð Þ whose value for a given point t ≥0 can be interpreted as
the probability that the value of the random variable τ is less or equal to the given time
t. Regarding risk prediction, the given time t indicates the prediction period. Addi-
tionally, P tð Þ ¼ 0 for t≤0, and P tð Þ ! 1 for t ! ∞. From a decision-making stand-
point, the problem is to determine the probability of system “success” and/or
“unsuccess” during the given prediction period Treq (for example, a risk of “failure”
considering consequences). This probability is a value for a point t = Treq, and a PDF is
due to be built for modelling the system’s operational states with the time.

Concept 2. The processes, connected with data processing should provide the
required system operational quality (because the system performs functions by logical
reasoning based on data processing). The corresponding probabilistic methods should
be appropriate for the assessment of the quality of the used information [6–8, 9–
14, 28–31].

Concept 3. The PDF should establish the analytical dependence between the input
parameters to allow solving direct and inverse problems necessary for the rational
management of the system operation. For example, the PDF P(t) describing the
random time τ between successive losses of integrity of a system may be an analytical
exponential approximation of a simple system element, i.e. P tð Þ ¼ 1� exp �λtð Þ,
where λ is the frequency of failures (losses of element integrity per unit of time). At the
same time, the frequency of failures may be considered as a sum of frequencies of
different types of failures because of various specific failure reasons—for example,
failure from equipment λ1, or from natural threats λ2, or from “human factor” λ3 and so
on. For this use case, PDF may be presented as P tð Þ ¼ 1� exp � λ1 þ λ2 þ λ3 þ …ð Þt½ �,
if and only if all the implied failures are independent. Then if the PDF P tð Þ is built
in dependence on different parameters and if an admissible probability level for
acceptable risk is given then the inverse problem may be solved analytically—see also
Section 7.

Notes. 1 System integrity is defined as such system state when system purposes are
achieved with the required quality. 2. The rationale for exponential approximation
choice in practice see for example in [6, 9, 14, 28–31].

Concept 4. Acceptable adequacy must be ensured. It means the consideration of
several essential system parameters on which “success” or “failure” of the system
operation is dependent. For example, today the way for risks prediction based on only
one parameter � frequency of failures λ � is common. For this case, the exponential
PDF can be used—see Figure 3. But the required acceptable adequacy is not always
proven.

For exponential approximation the frequency of failures λ is connected with the
hypothesis: “No failures during the given time with a probability less than the
given admissible probability Padm≻0”. This is always the case if the failure fre-
quency is constant with time. For this case, the given prediction time must be no

more than treq ¼ 1=λadm, here λadm ¼ � ln 1�Padmð Þ
treq

. That may not be often an accurate

engineering estimation because many systems’ capabilities and operation condi-
tions are ignored [9, 14]. In Figure 3, this case is explained on the timeline. For
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different approaches and discussions, devoted to adequacy, see for example the
work in [33]. In that case, the diagnostic approach to evaluate the predictive
performance is based on the paradigm of maximizing the sharpness of the predic-
tive distributions. After calibration, one obtains an assessment and ranking of the
probabilistic predictions of wind speed at the Stateline wind energy centre in the
US Pacific Northwest. In [34], the approach is illustrated by examples connected
with “human factors”. For specific systems, the topic of improving the adequacy of
the prediction will always remain relevant.

Concept 5. A complex system includes subsystems and/or components (system
elements), the probabilistic approach must allow a generation of probabilistic predic-
tive models to predict the system’s operational performance and its dependence on
different uncertainty conditions. In general, predictive models must consider system
complexity, the diagnostics of system’s integrity, the monitoring of the diagnostics,
the recovery from loss integrity of every system component and the quality of the
used information. The adequate PDF must be the output of the probabilistic-
predictive models (see also Appendix A).

Concept 6. The input for the probabilistic-predictive models must be based on real
and other possible data (subjective data, meta-data, etc.) considering the system
operational specifications and the supporting actions. These may be also hypothetical
data for research purposes.

Concept 7. The specific problems of optimization must be solved considering risks
prediction results (including optimization in real time). The given time for prediction
should be defined so to be in real system operation time to allow taking rational
proactive actions.

5. The description of some original probabilistic models

For modelling modern and future systems, taking into account their specifications,
it makes sense to distinguish between the intellectual part, where uncertainties are
associated with information gathering, processing and production for decision-
making, and the technical part, where there is no significant dependence on the high
quality of the current information.

Figure 3.
Probabilistic risk, approximated by a more adequate PDF P(t), in comparison with the existing representation
of exponential PDF (both connected with the same λ), and admissible risk, imaginary by exponential PDF,
connected with λadm.
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5.1 About system operational information quality

The created models [6–8, 9–14, 28–31] help to implement concepts 1 and 2. In
general, operational information quality is connected with requirements for reliable
and timely producing complete, valid and/or confidential information, if needed. The
gathered information is used for proper system specificity. The abstract view of such
quality is illustrated in Figure 4.

The proposed probabilistic predictive models to assess the information quality are
described in Appendix A. The models cover the predictive measures according to the
abstract information quality metrics in Figure 4. It may be applied for solving prob-
lems connected with decision-making on the base of information gathering,
processing and production.

5.2 About “black box” formalization to predict “failure” risks

The models below help to implement concepts 1, 3 and 4 [6, 9, 14–31]. In general,
successful system operation is connected with counteractions against various system
integrity loss hazards (of social, natural and technogenic origins) throughout system
operation timeline. There are considered two general technologies formalized to
predict “failure” risks. Both technologies are briefly described below.

Technology 1 is based on a periodic diagnostic of system integrity policy. It is
carried out to detect system functional abnormalities or degradations that may result
in a system loss of integrity. The system loss of integrity can be detected only as a
result of diagnostics. Dangerous influence on system is logically acted step-by-step: at
first, a danger source penetrates into system and then after its activation begins to
influence. System integrity can not be lost before penetrated danger source is
activated. A danger is considered to be realized only after danger source has
influenced on system.

Notes: 1. For example, for new steel structures, time before the appearance of
critical erosion from rust can be considered as the source penetration time, activation
time is the time before unacceptable structural damage occurs due to this rust. 2.
Regarding a degradation of technical system the input time of danger source penetra-
tion tends to zero. 3. For special research cases of cyberattacks the term “Loss of
Integrity” may be logically replaced by the term “functional abnormalities”.

Technology 2, additionally to technology 1, implies that system integrity is moni-
tored between diagnostics by operator. An operator may be a man or a special artificial

Figure 4.
The example of abstract information quality in the system.
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intelligence system or a system of support or their combination. The operator repairs
the system after having detected the loss of integrity hazard—see Figure 5.
Accordingly, the model assumption of operator’s faultless action can do the full
neutralization of the active hazard. Penetration is only possible if an operator makes
an error. A dangerous influence occurs if the danger is activated before the next
diagnostic. Otherwise, the source will be detected and neutralized during the next
diagnostic.

The probability of a successful operation within a given period of time, i.e.
the probability of “success” Pð Þ may be estimated using the models presented in
Appendix B. The risk to lose integrity Rð Þ is an addition to 1 of the probability of
successful operation, i.e. R ¼ 1� P considering consequences. Damage from the
consequences for the given period is taken into account as an additional characteristic
of the calculated probability.

5.3 Algorithm to generate probabilistic models for complex system

The algorithm helps to implement concepts 1 and 5 for complex systems with
parallel or serial structure [9–31] with the assumption of random variables indepen-
dence. Let us consider the elementary structure for two independent parallel or series
elements. Let us PDF of time between losses of the i-th element integrity is Bi tð Þ ¼
P τi ≤ tð Þ, then the time between successive integrity losses will be determined as
follows:

1. for a system composed of serial independent elements is equal to the minimum
of the two times τi: failure of 1st or 2nd elements. The PDF Bsys tð Þ is defined by
expression

Bsys tð Þ ¼ P ¼ 1� B1 tð Þ½ �∙ 1� B2 tð Þ½ �; (1)

Figure 5.
Some accident events for technology 2, left—successful (correct) operation, right—a lose of integrity during given
time Treq.
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2. for a system composed of parallel independent elements is equal to the maxi-
mum of the two timesτi, i.e. the system goes into the state of integrity loss when
both elements lose integrity. The PDF Bsys tð Þ is

Bsys tð Þ ¼ P ¼ 1� B1 tð Þ∙B2 tð Þ½ �: (2)

Applying expressions (1–2), the PDF of the time interval between successive losses
of integrity for any complex system with parallel and/or serial structure and their
combinations can be built. An example of a complex system integrating two serial
complex subsystems is presented in Figure 6, see also Examples 2�4. For this system
the following interpretation of elementary events is used: complex system integrating
serial components “structures 1 and 2” is in the state of “successful operation” during
a given period Treq if during this period component “structure 1” “AND” component
“structure 2” are in the state of “successful operation”. Note that both components are
in their turn complex subsystems including subsystems and components, as well.

6. Risks prediction for standard processes

6.1 About standard processes

All actions in the timeline may be characterized as the performance of some system
processes. The main system processes according to ISO/IEC/IEEE 15288 “System and

Figure 6.
An example of a complex system integrating two serial complex structures, which also are complex subsystems
(abstraction).
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software engineering—System life cycle processes” include 30 standard processes—
agreement processes (acquisition and supply processes), organizational project-
enabling processes (life cycle model management, infrastructure management, port-
folio management, human resource management, quality management and knowl-
edge management processes), technical management processes (project planning,
project assessment and control, decision management, risk management, configura-
tion management, information management, measurement and quality assurance
processes), technical processes (business or mission analysis, stakeholder needs and
requirements definition, system requirements definition, architecture definition,
design definition, system analysis, implementation, integration, verification, transi-
tion, validation, operation, maintenance and disposal processes).

The focus on standard processes is justified by the fact that the life cycle of any
complex system is woven from a variety of standard processes deployed in time, and
for them, possible purposes, outcomes and typical actions are defined. Considering
that for many critical systems, the potential damage and costs of eliminating the
consequences in the conditions of heterogeneous threats can exceed the costs of pre-
ventive measures by an order of magnitude, it is necessary to find effective solutions to
counter threats and ensure effective risk management for each of the processes
performed. Despite many works on risk management for different areas theproblems
of this chapter continue to be relevant (of course in practice developing new processes
may be considered, not only from ISO/IEC/IEEE 15288 standpoint).

6.2 The example about input for probabilistic modelling

The proposed practical way to input forming helps to implement concept 6 for
any monitored system (including real time system). For each critical parameter
(for which prognostic estimations are needed to do proactive actions) the ranges of
acceptable conditions can be established. The traced conditions of monitored
parameters are data on a timeline. For example, the ranges of possible values of
conditions may be established: “Working range within the norm”, “Out of
working range, but within the norm” and “Abnormality” for each traced separate
critical parameter. If the parameter ranges of acceptable conditions are not
established in explicit form, then for modelling purpose they may be impleaded
and can be expressed in the form of average time value. These time values are

Figure 7.
An example of universal ranges for data about events and conditions. Note. In general case, the ranges may be
established by subjective mode if a reasonable and objective one is impossible.
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used as input for probabilistic models (see Appendices A and B). For example,
for coal mine some of many dozens heterogeneous parameters may be compression,
temperature, etc. It may be interpreted similarly by light signals “green”, “yellow”

and “red” [18, 25, 28–31]—see Figure 7 and following Example 1.

6.3 The considerations

For the estimation of reliability of standard process performance, there may be two
cases to estimate the probabilistic measure: the case of observed repeatability and the
case of assumed repeatability of random events influencing reliability without the
consideration of additional specific threats (for example, threats to operational infor-
mation quality). For the estimation, the probabilistic measure repeatability of threats
activation is assumed. For estimation of the assumption of independence of events
connected with reliability of standard process performance and additional specific
threats activations (for example, threats to information security) is used.

6.4 The case of the observed repeatability

The inputs for calculations use statistical data according to some observed repeat-
ability. For standard process, the reliability of process performance and expected
results in time are required. Failure to perform the necessary actions of the process is a
threat of possible damage. From the different points of view, all varieties of the
standard process can be divided into K groups, K ≥ 1 (if necessary). Based on the use of
statistical data, the probability Ract k Tkð Þ of failure to perform the actions of the process
for the k-th group for a given time Tk is proposed to be calculated by the formula:

Ract k Tkð Þ ¼ Gfailure k Tkð Þ=Gk Tkð Þ, (3)

where Gfailure k Tkð Þ,Gk Tkð Þ—are accordingly the number of cases of failures when
performing the necessary actions of the process and the total quantity of necessary
actions from the k-th group to be performed in a given time Tk.

The probability Rrel Tð Þ of failure to perform the necessary actions of a standard
process without consideration of additional specific threats activations (for example,
threats to operational information quality) is proposed to be estimated for the option
when only those cases are taken into account for which the actions were not
performed properly (they are the real cause of the failure)

Rrel Tð Þ ¼ 1�
X

K

k¼1

Wk 1� Ract k Tkð Þ½ � Ind αkð Þ=
X

K

k¼1

Wk, (4)

where T is the specified total time for a process performance for the entire set of
actions from different groups, including all particular values Tk, taking into account
their overlaps; theWk is the number of actions taken into account from the k-th group
for multiple performances of the process.

For the k-th group, the requirement to perform the process actions using the
indicator function Indk αkð Þis taken into account

Ind αð Þ ¼
1, ifthe specified requirements∧conditions are met, i:e:α is true,

0, otherwise, i:e:if the condition α is false:

�

(5)
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The condition α used in the indicator function is determined by the analysis of
different specific conditions, proper to the process. It is to allow take into account the
consequences associated with the failure of the process—see (3) and (4). Condition αk
means a set of conditions for all process actions required from the k-th group.

6.5 The case of the assumed repeatability

There may be recommended the models from Section 5 and Appendices A and B,
which do not exhaust the whole set of possible probabilistic models.

6.6 About estimation of generalized measure

The generalized probability Rgener Tð Þ of failure to perform standard process
considering additional specific threats Radd Tð Þ for the given period T may be
calculated by the formula:

Rgener Tð Þ ¼ 1� 1� Rrel Tð Þ½ � � 1� Radd Tð Þ½ �: (6)

Here the probabilistic measure Rgener Tð Þ of failure to perform reliable process
considering specific threats are estimated according to proposition of section 5,
subsections 6.1�6.5 and Appendices A and B considering the possible consequences.

6.7 Approach for risks integration from different processes

The integral risk of violation of the acceptable performance of standard processes
set is proposed to be evaluated depending on the real or hypothetical initial data
characterizing each process (see subsections 6.1–6.4), from the possible scenarios of
using each process during the given prediction period. The prediction period can
cover any period during the system life cycle, including at least 1 complete process of
each of the types involved in the specified set of standard processes in the scenario
under consideration. An example of the standard processes performed on the time
axis is shown in Figure 8. In general, the scenario of using standard processes i1, i2,… ,
ik is proposed to be determined by the real or hypothetical frequency of these

Figure 8.
An example of standard processes performed on the time axis.
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processes (taking into account the typical actions performed at the same time that
affect the time characteristics of the implementation of the processes). This approach
allows us to take into account such opportunities when one process can be part of the
work performed within other standard processes in the system lifecycle and, if
necessary, includes other processes.

The integral risk of violation of the acceptable performance of standard processes
set RÐ Tstatedð Þ for given prediction period Tstated is proposed to be estimated by the

formula

Rð Tstatedð Þ ¼ 1�
X

I

i¼1

λi 1� Ri Tstated ið Þ∙ Ind αið Þ½ �f g=
X

I

i¼1

λi, (7)

where λi is the expected frequency of execution of standard processes of the
i-th type for the prediction period. If the duration of the executed process can go
beyond the prediction period (which depends on the actions performed and their time
characteristics), this frequency can be a fractional number that characterizes the
number of executions of each type of process, greater than one;

Tstated i – the expected period specified in the source data for modeling for the
acceptable execution of standard type i process;

Tstated – the given prediction period that covers the duration of all the specified
periods Tstated i of each from standard processes involved in the scenario. The assump-
tion about a partially completed process that can start at the end of the prediction
period and not finish (if the total number of processes of each type is greater than
one) can be satisfied by setting the fractional value λi.

At the same time, the criterion for meeting the requirements and conditions (αi)
for each type of process, including the requirements for acceptable risks and damages,
is set using the indicator function (5).

Note. The expression (6) is a special case of expression (7).
The proposed in Section 6 models and methods are applicable for solving practical

problems related to risk prediction and the justification of effective proactive mea-
sures to reduce risks or their prevention within acceptable limits.

7. Optimization of problem statements for rationale proactive actions

The proposed optimization problem statements for rationale actions help to
implement concept 7. The matter is the metrics calculated in sections 5 and 6, in
the models from Appendixes A and B depend on many parameters. The values of
some parameters may be given and often variated within system life cycle. These
values of some parameters may be specified or selected to achieve pragmatic goals
and solve the different analytical problems of systems rational concept, develop-
ment, utilization and support (described in Section 2). They are impacting the values
of the estimated probabilistic risks. It means many optimization problems may be
solved by rationale proactive actions connected with providing rational values of
these parameters. For example, such parameters for optimization may be the dura-
tion of prediction period, parameters, impact on the information quality (see
Appendix A), system structure, for the compound components: time between the
end of diagnostic and the beginning of the next diagnostic, diagnostic time (see
Appendix B) etc.
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The proposed concepts 2�6 may be supported by the following typical optimiza-
tion problem statements for various systems [9, 14, 28–31]:

1.on the stages of the system conceptual design, development, production and
support: system parameters, software, technical and control measures (they are
described by a set Q of parameters, which may be optimized) are the most
rational for the given prediction period if the minimum of expenses Z(Q) can be
reached

Z Q rationalð Þ ¼ min
parameters of Q

Z Qð Þ, (8)

a. with limitations on probability of an admissible level of quality
Pquality Qð Þ ≥Padm and expenses for development, production, and support

C Qð Þ≤Cadm and under other development, operation or maintenance
conditions; or

b. with limitations on admissible risk to lose system integrity R Qð Þ≤Radm and
expenses for development, production and support C Qð Þ≤Cadm and under
other development, operation or maintenance conditions; or

c. with limitations based on a combination between 1a) and 1b);

2.utilization stage:

• System parameters, software, technical and control measures (Q) are the
most rational for the given period of system operation if the maximum of
the probability of successful operation can be reached

Pquality Q rationalð Þ ¼ max
parameters of Q

Pquality Qð Þ, (9)

a. with limitations on probability of an admissible level of quality
Pquality Qð Þ ≥Padm and expenses for operation C Qð Þ≤Cadm and under

other operation or maintenance conditions; or

b. with limitations on the admissible risk to lose system integrity
R Qð Þ≤Radm and expenses for operation C Qð Þ≤Cadm and under other
operation or maintenance conditions; or

c. with limitations based on a combination between 2.1a)and 2.1b);

• System parameters, software, technical and control measures (Q) are the
most rational for the given period of system operation if the minimum of the
risk to lose system integrity can be reached

R Q rationalð Þ ¼ min
parameters of Q

R Qð Þ, (10)

a. with limitations on the quality Pquality Qð Þ ≥Padm and expenses

C Qð Þ≤Cadm and under other operation or maintenance conditions; or
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b. with limitations on the admissible risk to lose system
integrityR Qð Þ≤Radm and expenses C Qð Þ≤Cadm and under other
operation or maintenance conditions; or

c. with limitations based on a combination between 2.2a) and 2.2b).

These statements may be retransformed into the other problems statements of
expenses minimization for different limitations.

In system life cycle, there may be a combination of these formal statements.
Note. There may be another applicable variants of optimization.

8. Examples

The applications of the proposed approach cover: the analysis of the reliability
of complex systems built from unreliable components; the estimation of the
expected reliability and safety for complex constructions and intelligent
manufacturing, the modelling of robotic and automated systems operating in cosmic
space, the optimization of a centralized heat supply system, the analysis of the
possibilities to keep “organism integrity” by continuous monitoring, the risk analysis
during longtime grain storage, the control of timeliness, the completeness and
validity of used information; the comparison between information security pro-
cesses in networks; resources management and predicting quality for information
systems operation; the estimation of human factor, the research of mutual monitor-
ing operators actions for transport systems, rational dispatching of a sequence of
heterogeneous repair works, the analysis of sea oil and gas systems vulnerabilities in
conditions of different threats, the development of recommendations to reduce risks
for the important land use planning (including Arctic region), the rationales of
preventive measures by using “smart systems” etc.—see [9, 14–31]. Here the
examples are intended to demonstrate some probabilistic risk prediction sectorial
applications.

8.1 Example 1 of predicting the mean residual time before the next parameter
abnormality

The example demonstrates system possibility on the base of solving the inverse
problem by models described in subsection 5.2 and Appendix B. The research results
are applied to rationale actions in real time for coal companies.

The conditions of parameters, traced by dispatcher intelligence centre, are data
about a condition before and after the current moment of time. But always the
scientifically justified predictions open new possibilities in the prevention of risks.
With the use of predicted residual time, the responsible staff (mechanics, technolo-
gists, engineers, etc.) can determine the admissible time for rational changing of
system operational regime to prevent negative events after expected parameter
abnormality. For monitored critical parameters, the probabilistic approach to predict
the mean residual time before the next parameter abnormality is proposed.

For every subsystem (element) monitored parameter, the ranges of possible values
of conditions are established—see Figures 7 and 9. The condition “Abnormality”
means system (element) integrity loss (it may simply mean “system failure” that
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includes also “functional failure”). To prevent the possible cross-border abnormalities
propagation, through the prediction of the residual time on the base of the data about
parameter condition fluctuations. Given that the information quality also is estimated
and provided (by using models from Appendix A).

The predicted residual time Tresid is the solution t0 of the following equation:

R Tpenetr, t, Tbetw, Tdiag, Treq:

� �

¼ Radm: Treq

� �

(11)

concerning of unknown parameter t, i.e. Tresid = t0.
Here R(Tpenetr, t, Tbetw, Tdiag, Treq.) is the risk to lose integrity, calculated

according to the model of Appendix B. Tpenetr is the probabilistic expectation of PDF
Ωpenetr (τ), defined by the transition statistical parameter from “green” to “yellow”—

see Figures 7 and 9. The other parameters Tbetw and Tdiag in (11) are known—see
Appendix B. The example explains a method to rationally estimate the value of
prediction time Treq.

The properties of the function R(Tpenetr, t, Tbetw, Tdiag, Treq.) are the next:

• if t increases from 0 to ∞, for the same another parameter, the function
R(… , t, … ) is monotonously decreasing from 1 to 0;

• if parameter Treq increases, from 0 to ∞ for the same another parameter, the
function R(… , Treq) is monotonously increasing from 0 to 1,i.e. for large Treq, the
risk approaches to 1. It means that the such maximal x exists when t = x and
Treq. = x and 0 < R(Tpenetr, x, Tbetw, Tdiag, x) < 1, i.e. the mean residual time

Figure 9.
Example of predicted residual time before the next parameter abnormality.
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before the next abnormality is equal to “x” with the confidence level of the
admissible risk R(Tpenetr, x, Tbetw, Tdiag, x). See details in [18].

The proposed ideas, probabilistic methods, models and justified normative
requirements are implemented in Russia at the level of the national standard for
system engineering—see for example GOST R 58494–2019 regarding the
multifunctional safety systems of the coal mines (in the part of a remote monitoring
system of critical industrial systems).

8.2 Examples related to socio-economic and pharmaceutical safety in a region

Examples 2�4 below demonstrate some analytical capabilities of the proposed
approach for infrastructure management process related to socio-economic and phar-
maceutical safety in a region of Russia. It concerns some problems in the creation and
application of enterprise (S-N-T)-system � the manufacturer of pharmaceuticals
denoted further as (S-N-T)-ESMP. Let the purposes of S-N-T-ESMP are to solve the
following tasks:

• for the development of socio-economic infrastructure (tasks of the 1st type):
ensuring the population with high-quality medications in a low-cost range (more
than a hundred items); providing the emergence of new jobs; increasing tax
revenues to the region; making profit from economic activities in the interests of
strengthening and expanding business and stakeholders satisfaction;

• for the development of production and transport infrastructure (tasks of the 2nd
type): ensuring strict compliance with the rules of production of good practice
(GMP); development of a laboratory complex for ensuring and controlling the
quality of products as part of microbiological, physical–chemical laboratories and
air-liquid chromatography laboratories; expansion of the composition of
manufacturers of substances and excipients, their suppliers and consumers of
finished products; increasing the stability of the parameters of the production
processes in order to ensure the reproducibility of the properties of finished
medications;

• for the development of information and communication infrastructure (tasks
of the 3rd type), providing the creation of an effective control system for
ensuring the safety and quality, information security, integration of the
enterprise into the state information system for monitoring the movement of
medications.

In relation to the mentioned tasks, which allows achieving the demonstration
goals of the examples, the application of methodological approach illustrates
predicting on probability level: the risk of failure to reliable perform system infra-
structure management process without consideration of specific abnormal impacts
(see example 2); the risk of unacceptable damage because of abnormal impacts; the
integral risk of failure to reliable perform system infrastructure management pro-
cess considering specific abnormal impacts (see example 4). Assuming the com-
mensurability of possible damages, a system analysis using probabilistic risk
measures is carried out in the examples.
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Taking into account possible damages, the objectives of risk prediction are formu-
lated as follows. In the conditions of existing uncertainty, to carry out: a quantitative
predicting of the risks of failure to reliable perform system infrastructure manage-
ment process without consideration of specific abnormal impacts; a quantitative
predicting of the risks of unacceptable damage because of abnormal impacts on (S-N-
T)-ESMP (both piecemeal for each type of infrastructure tasks and for the entire set of
tasks); identification of critical factors affecting risks; determination of such a period
in which guarantees of risks retention within admissible limits are maintained; a
quantitative predicting of the integral risk of failure to reliable perform system infra-
structure management process considering specific abnormal impacts.

Example 2. Here, the infrastructure model without consideration of specific
abnormal impacts is focused on a set of output results and assets for solving tasks of
the 1st, 2nd and 3rd types—see system structure in Figure 10. The following inter-
pretation is applicable: During the given prediction period, the modeled complex
structure is in an elementary state “the integrity of the infrastructure is maintained” if
an implementation of the system infrastructure management process is reliable to
solve the tasks “AND” for socio-economic, “AND” for production and transport
“AND” for information and communication infrastructure. Many possible threats
affecting the reliability of output results for each of the structural elements have been
identified. Without delving into the numerous technical aspects of setting and solving
the tasks of developing socio-economic, production and transport, information and
communication infrastructure in a region, Table 2 reflects hypothetical averaged
input data for research by the models (see sections 5, 6 and Appendix B considering
application of Appendix A models).

Figure 10.
The abstract complex structure for modelling (example 2).

Input for every element (see model in Appendix B) Values

for 1st

element

for 2nd

element

for 3rd

element

σ—frequency of the occurrences of potential threats 2 times in a

year

1 time in a

year

1 time in

a month

β—mean activation time of threats up to unacceptable damage 6 months 2 months 2 weeks

Tbetw � time between the end of diagnostics and the beginning

of the next diagnostics

1 week 1 week 1 hour

Tdiag � diagnostics time of element integrity 1 hour 1 hour 1 minute

Trecov � recovery time after integrity violation 3 days 1 week 30 minutes

T � given prediction period From 1 to 4 years

Table 2.
Input for probabilistic modelling (example 2).
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For modelling a period from 1 to 4 years was chosen because it is a typical period
for short- and medium-term plans according to an infrastructure project. Analysis of
the calculation results showed that in probabilistic terms the risk of failure to reliable
perform system infrastructure management process without consideration of specific
abnormal impacts for 2 years will be 0.282 totally for all elements (see Figure 11). In
turn, for 1 year the risk will not fall below 0.150 (see Figure 12), and for 4 years with
weekly diagnostics, the probabilities of “success” and “failure” will almost equal (0.51
vs. 0.49). In practice, such a level of risks is inadmissible, i.e. it is necessary to identify
the critical factors (affecting risks) and effective ways to reduce risks.

Additional calculations have shown that one of the critical factors is the parameter
“time between the end of diagnostics and the beginning of the next diagnostics” (that
can also be called “Mean Time Before Diagnosis-MTBD” because of “diagnostics time
of element integrity” is much less—see Table 2) for the 1st and 2nd elements (Tbetw).
Due to the management decision, expressed in changing the frequency of diagnostics
from weekly to daily and the adoption of the appropriate measures to counter threats,
with other conditions unchanged, it is possible to reduce risks several times. It is
enough to compare the risks in Figures 11 and 13. About 2.1-fold reduction in risk has
been achieved totally for all elements. That is, due to the most simply implemented

Figure 11.
The risks of failure to reliable perform system infrastructure management process without consideration of specific
abnormal impacts on elements 1�3 for 2 years (for weekly diagnostics).

Figure 12.
The dependence of total risk of failure to reliable perform system infrastructure management process without
consideration of specific abnormal impacts from duration of prediction period (for weekly diagnostics).
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organizational measures related to the introduction of more frequent diagnostics of
work on the development of socio-economic and production and transport infra-
structure, a significant risk reduction is achievable. This finding is the result of the
used models. Despite the high value of this logical finding for example conditions,
frequent diagnosis generates higher running costs and lower services supply capacity.
Diagnosis costs money and time. It should be considered in other optimization
problems (see Section 7).

For 1 year, the risk of failure of the infrastructure management process without
considering the specific abnormal impacts will be about 0.08 (see Figure 14). In turn,
as a result of the analysis of the risk dependence on the prediction period (from 1 to
4 years), it is additionally revealed that under the conditions of the example with daily
diagnostics the risk level of 0.10 will not be exceeded for 1.3 years. Accordingly, and
for infrastructure management process during development, focusing on admissible
risk at the level of 0.10, in the conditions of the example, guarantees risks prevention
within the admissible limits for about 1.3 years. Recommended measures to reduce
risks are to increase the stability of the mechanical properties of the critical areas of
structures, to timely carry on preventive and repair maintenance, to perform statisti-
cal analysis of emergency situations, and to predict critical unacceptable values of
critical parameters inherent in the unacceptable risks.

Figure 14.
The dependence of total risk of failure to reliable perform system infrastructure management process without
consideration of specific abnormal impacts from duration of prediction period (for daily diagnostics).

Figure 13.
The risks of failure to reliable perform system infrastructure management process without consideration of specific
abnormal impacts on elements for 2 years.
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Example 3. In contrast with Example 2, the model of specific abnormal impacts
covers a set of actions related to the maintenance of buildings and constructions
(element 1), ensuring the operation of engineering and technical systems (element 2),
ensuring the operation of engineering networks (element 3), solving development
problems of socio-economic infrastructure (element 4), production and transport
infrastructure (element 5) and information and communication infrastructure (ele-
ment 6)—see model on Figure 15. The following interpretation is applicable: during
the given prediction period, the modeled complex structure is in an elementary state
“the integrity of the system in case of abnormal impacts is maintained”, if all the
system elements are taken into account during the entire prediction period are in the
state “the integrity of the system element in case of specific abnormal impacts is
maintained”.

Figure 15.
The abstract complex structure for modelling specific abnormal impacts.
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Without delving into the numerous technical, engineering and functional aspects
of (S-N-T)-ESMP, Table 3 reflects hypothetical averaged input data for research by
models, described in sections 5�7, Appendices A, B and [1–7]. Input values for
element 1 consider additional factors leading to degradation and destruction of
techno-sphere systems (seismic, wind, snow, corrosion and other natural impacts).
For element 6, proper impacts may be from “human factor” and/or from “cyber
threats”. For elements 2�5, input values have usual explanation.

Analysis of the results showed that in probabilistic terms the risk of unacceptable
damage due to specific abnormal impacts for 2 years will be about 0.219 totally for all
elements (see Figure 16). In turn, for the predict for 4 years with daily monitoring of
the state of the engineering infrastructure of the (S-N-T)-ESMP (i.e. elements 1, 2, 3),
the risk of unacceptable damage from specific impacts for all elements 1�6 will be
about 0.39, and for the predict 1, this probability is about 0.12 (see Figure 17). In
general, the results are comparable with the results of Example 2 (Figures 18 and 19).

Moreover, due to the management decision, expressed in changing the frequency
of diagnostics from daily to 1 time every 8 hours it is possible to reduce total risk from
0.219 to 0.091 (see Figure 18). And owing to diagnostics every 8 hours the admissible
risk level of 0.10 will not be exceeded about 2.3 years (see Figure 19).

Example 4. In continuation of Examples 2 and 3, the integral probability
RÐ Tð Þ of failure of the infrastructure management process considering specific

system abnormal impacts for the prediction period T = 1 year is calculated using the
recommendations of Section 6. It depends on probabilities Rrel Tð Þ and Radd Tð Þ � see
formula (6). Considering that Rrel 1year

� �

= 0,08 and Radd 1year
� �

= 0,05,

Input for every element (see model in [1–7]) Elements Values

σ � frequency of the occurrences of potential threats Element 1 4 times a year

Element 2 2 times a year

Element 3 1 time in a year

Element 4 1 time in 2 years

Element 5 1 time in 2 years

Element 6 2 times a year

β � mean activation time of threats up to unacceptable damage For all elements 1–6 1 month

Tbetw � time between the end of diagnostics and the beginning

of the next diagnostics

Element 1 24 hours

Element 2 24 hours

Element 3 24 hours

Element 4 8 hours

Element 5 8 hours

Element 6 1 hour

Tdiag � diagnostics time of element integrity For all elements 1–6 30 seconds

Trecov � recovery time after integrity violation For all elements 1–6 10 minutes

T � given prediction period For all elements 1–6 From 1 to

4 years

Table 3.
Input for probabilistic modelling (example 3).

25

Probabilistic Predictive Modelling for Complex System Risk Assessments
DOI: http://dx.doi.org/10.5772/intechopen.106869



Rð 1year
� �

¼ 1─ 1─0, 08ð Þ � 1─0, 05ð Þ≈0,126:

Interpretation: the integral risk for the prediction period of 1 year is about 0.126
considering possible damage. In general, such risk is considered elevated. It can be
considered acceptable only in exceptional cases when there are no real possibilities
of any counteraction to threats. As measures to improve the process, additional con-
trol systems for damaging natural factors, emergency protection systems for

Figure 16.
The risks of unacceptable damage because of specific abnormal impacts on elements 1–6 for 2 years (for daily
diagnostics).

Figure 17.
The dependence of total risk of unacceptable damage because of specific abnormal impacts on elements 1�6 from
duration of prediction period (for daily diagnostics).

Figure 18.
The risks of unacceptable damage because of abnormal impacts on elements 1–6 for 2 years (for diagnostics every
8 hours).
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techno-sphere systems, operators and personnel under extreme natural hazards, and
measures to increase safety against specific system threats (the sources of specific
abnormal impacts) can be used. Since such opportunities are far from being
exhausted, an additional search for measures to reduce the integral risk is necessary.
Decision-making on ways to reduce risks may be quantitatively justified using the
proposed models and methods.

8.3 What about the possible pragmatic effects?

In general pragmatic effects are connected with achieving pragmatic goals (see
Section 2). It may characterize the efficiency of the implementation of the state and/or
corporate strategy in the economy, effects from improving the safety and sustainabil-
ity of the region’s development, from ensuring the protection of the population and
territories from natural and man-made hazards, etc. For example, the authors of this
chapter took part in the creation of the complex of supporting technogenic safety in
the systems of oil and gas transportation and distribution and have been awarded for
it by the award of the Government of the Russian Federation in the field of a science
and technic. Through the Complex intellectual means, it is possible to detect remote-
sensing technology: vibrations, fire, flood, unauthorized access, hurricane; and to
recognize, identify and predict the development of extreme hazardous situations, and
to make decisions in real-time. The applications of this Complex for 200 objects in
several regions of Russia during the period 5 years have already provided economy
about 8,5 Billion Roubles (reached at the expense of effective risks prediction and
processes optimization [7]).

9. About directions for development

It is proposed to focus on scientific and technical efforts on the meta-level of
system engineering, which allows, by universal probabilistic models, to set and ana-
lytically solve the problems of rational development and efficient operation of com-
plex systems of various functionalities and purposes.

Figure 19.
The dependence of total risk of unacceptable damage because of abnormal impacts on elements 1�6 from duration
of prediction period (for diagnostics every 8 hours).

27

Probabilistic Predictive Modelling for Complex System Risk Assessments
DOI: http://dx.doi.org/10.5772/intechopen.106869



The proposed prioritization of development directions for predicting are: 1 �
focusing on scientific and technical efforts on achieving the goals of ensuring the
required safety, quality, balanced effects, sustainable operation and development of
complex systems; 2 � providing capabilities for predicting and rational risk managing
in standard processes of the system life cycle, improving and accumulating knowl-
edge, patterns discovery; 3 � expansion of the functionality of the created models and
methods, software and technological and methodological solutions (for predicting and
rational risk managing) to all spheres of human activity, cross-application of knowl-
edge bases; 4 � transformation of the existing approach to the creation and use of
models and methods into artificial intelligence technology to support logical decision-
making (based on proactive research with traceability of logic from the idea to the
achieved effect).

The proposed steps to implement these directions are 1st step: from pragmatic
filtering of information ! to promising ideas and purposeful conceptions; 2nd step:
from promising ideas and purposeful conceptions ! to the formalization of uncer-
tainties; 3rd step: from the formalization of uncertainties ! to the knowledge of
patterns and logical solutions; 4th step: from the knowledge of patterns and logical
solutions ! to rational risk management; 5th step: from rational risk management !
to achieving the required safety, quality, balanced effects and sustainable operation
and development.

The expected results will equally be understood at the level of probabilistic risk
predictions, identically interpreted and comparable, the traceability of the
effectiveness of scientific and technical system efforts from the conceptions to the
results obtained will also be ensured. The purposeful aspirations “From uncertainties
formalization � to sustainable harmony” (see Section 1) may be really supported.

10. Conclusion

On the generalizations of goals and objectives throughout the system’s life cycle and
existing approaches to risks prediction, there are proposed main goals of applying prob-
abilistic methods. The goals of probabilistic concepts of risks prediction are connected
with: an analysis of opportunities, achievable quality, safety and efficiency; a rationale
for achieving desirable characteristics and acceptable conditions; an optimization of
systems and processes; and finding and developing new ideas and concepts.

The enlarged classification of probabilistic methods for solving various objectives
is explained for all stages of the system life cycle: concept, development, production,
utilization, support and retirement.

The conceptual approach, proposed to risk prediction, covers social sphere
(person, society, state and world community), natural sphere (earth and space) and
techno-sphere (man-made infrastructures and life support facilities).

The essence of the proposed probabilistic concepts of risks prediction for the
system is described on the level of probability distribution function. The described
methods of risks prediction for complex systems include probabilistic models,
methods for risks prediction and integration, optimization methods for rationale
actions and examples for solving the problems of system analysis and rationale
proactive actions in uncertain conditions. The achievable practical effects are
explained.

The prioritization of development directions for risk prediction in standard system
processes and targeted steps for their implementation are proposed. They support the
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purposeful aspirations “From uncertainties formalization � to sustainable harmony”
in application to the life cycle of various systems.

Appendix A. The recommended models to predict information system
operation quality

The proposed models are presented in Table A.1.

Appendix B. The models to predict risks for “Black box”

B.1. The model for technology 1 (“Black box”) � see 5.2, [9, 14, 15].
Input:
Ωpenetr tð Þ—is the PDF of time between neighboring influences for penetrating a

danger source;
Ωactiv tð Þ– is the PDF of activation time up to “accident event”;
Tbetw:—is time between the end of diagnostic and the beginning of the next

diagnostic,
Tdiag—is diagnostic time.

R ¼ 1� P considering consequences.
Variant 1— Treq: <Tbetw: þ Tdiag

� �

:

P 1ð Þ Treq:

� �

¼ 1�Ωpenetr ∗Ωactiv Treq:

� �

: (12)

Variant 2—the assigned period Treq: is more than or equals to an established period

between neighboring diagnostics Treq: ≥Tbetw: þ Tdiag

� �

:

measure a)

P 2ð Þ Treq:

� �

¼ N Tbetw: þ Tdiag

� �

=Treq:

� �

∙PN
1ð Þ Tbetw: þ Tdiag

� �

þ Trmn=Treq:

� �

∙P 1ð Þ Trmnð Þ,

(13)

where N ¼ Tgiven= Tbetw: þ Tdiag

� �� �

is the integer part,

Trmn ¼ Tgiven �N Tbetw: þ Tdiag

� �

;

measure b)

P 2ð Þ Treq:

� �

¼ PN
1ð Þ Tbetw: þ Tdiag

� �

∙P 1ð Þ Trmnð Þ, (14)

where the probability of success within the given time P 1ð Þ Treq:

� �

is defined by (B.1).

B.2. The model for technology 2 (“Black box”)—see 5.2, [9, 14, 15].
Input:
Additionally to Input for technology 1: A tð Þ—is the PDF of time from the last finish

of diagnostic time up to the first operator error.
Evaluated measures:
Risk to lose system integrity Rð Þ. Probability of providing system integrity Pð Þ.
R ¼ 1� P considering consequences.
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Models. Input Evaluated measures

The model of functions performance by a complex

system in conditions of unreliability of its components.

Input:

N tð Þ—is the PDF of time between neighboring failures;

W tð Þ—is the PDF of repair time; and V tð Þ—is the PDF of

given time if this time is a random value

Probability Prel of providing reliable function performance during given time

Prel ¼
Ð

∞

0

Ð

∞

t
V τ � tð ÞdN τð Þ

� �

dt=
Ð

∞

0

td N ∗W tð Þ½ �, (A.1)

*—is the convolution sign.

The model of calls processing for the different

dispatcher technologies.

Input for M/G/1/∞:

λi– frequency of the i-th type calls for processing;

βi—mean processing time of the i-th type calls (without

queue).

Probability Ptim:i of well-timed processing of i-type calls during the required term Treq:i

Ptim:i ¼ P tfull:i ≤Treq:i

� �

¼

Ð

γ2
i
Treq:i=Tfull:i

0

t
γ�1
i e�tdt

Ð

∞

0

t
γ�1
i e�tdt

, (A.2)

γi ¼
Tfull:i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tfull:i2�T2
full:i

p :

Relative portion of all well-timed processed calls—S and relative portion of well-timed processed calls of those types for

which the customer requirements are met—C:

S ¼

PI

i¼1
λiPtim:i

PI

i¼1
λi

,C ¼

PI

i¼1
λiPtim:i Ind α1ð ÞþInd α2ð Þ½ �

P

I

i¼1

λi

,

Ind αð Þ ¼
0, if α ¼ true

1, if α ¼ false

�

,

α1 ¼(criterion 1); α2 ¼(criterion 2). Criterion 1 is requirement to mean processing time Tfull:i ≤Treq:i, which means that i-

type calls must be processed in time (in average), criterion 2 is requirement on the level of PDF Ptim:i ¼

P tfull:i ≤Treq:i

� �

≥Padm:i, which means hard processing in real time, Padm:i—is admissible level for well-timed processing of i-

type calls during the required term Treq:i:

The model of entering into system current data

concerning new objects of application domain.

Input:

qm—the probability that m new objects appear in

random moment, intervals between these moments are

exponentially distributed with parameter λ. Φ zð Þ ¼
P

m>0qmz
m—is productive (generating) function; B tð Þ

—is the PDF of time for new information revealing and

preparing, transfer and entering into database

Probability Pcomp: that system contains information about states of all real objects and coincides

Pcomp: ¼ exp �λ
Ð

∞

0

1�Φ B tð Þð Þ½ �

� �

, (A.3)
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The model of information gathering.

Input:

C tð Þ is the PDF of time between essential changes of

monitored object states, ξi—is the mean time for this

PDF; B tð Þ is the PDF of time for information gathering,

preparing, transfer and entering into system; Q tð Þ is the

PDF of time between information updating, q is mean

time; the mode D1 of gathering: information is gathered

in order “immediately after an essential object state

change; the mode D2 of gathering: information is

gathered without any dependencies on changes in

objects’ current states (including regulated information

gathering).

Probability Pact of information actuality on the moment of its use:

1) for the mode D1 when information is gathered in order “immediately after an essential object state change:

Pact ¼
1
ξi

Ð

∞

0

B tð Þ 1� C tð Þ½ �dt, (A.4)

2) for the mode D2 when information is gathered without any dependencies on changes in objects’ current states

(periodical gathering)

Pact ¼
1
q

Ð

∞

0

1� Q tð Þ½ � 1�
Ð

∞

0

C tþ τð ÞdB τð Þ

	 
� �

dt, (A.5)

The model of information analysis.

Input:

Treq:—assigned term for analysis;

N tð Þ � is the PDF of time between operator error

(“false” instead of “true” (on time line), i.e. type I

errors, η�1 is the mean time; M tð Þ is the PDF of time

between the neighboring errors in analyzed information

(on timeline); A tð Þ is the PDF of time between skipping

an error (type II errors on timeline), TMTBF is mean

time; μ is the possible relative fraction of errors in

information content (destined for problems of checking)

or the possible relative fraction of information, which is

essential for analysis (destined for problems of analysis);

Treal ¼ V=ν—is the real time for complete information

analysis; V—is a content of analyzed information; ν—is

an analyzed speed; Tcont:—is time of continuous analyst’s

work. Treq:– is given term for analysis (deadline)

Probability Pafter to be without errors after checking (or probability Pafter of correct analysis):

Variant 1—(Treal ≤Treq:) and (Treal ≤Tcont:):

Pafter 1ð Þ V, μ, ν, n, TMTBF , Tcont:, Treq:

� �

¼

¼ 1� N̂ V=νð Þ
� �

�
Ð

V=ν

0

dA τð Þ 1�M V=ν� τð Þ½ � þ
Ð

∞

V=ν

dA tð Þ

( )

(A.6)

Variant 2—(Treal ≤Treq:) and (Treal >Tcont:):

Pafter 2ð Þ ¼ Pafter 1ð Þ Vpart 2ð Þ, μ, ν, η, TMTBF , Tcont:, τpart 2ð Þ

� �� �N
, (A.7)

N ¼ V= ν � Tcont:ð Þ,Vpart 2ð Þ ¼ V=N, τpart 2ð Þ ¼ Treq:=N:

Variant 3—(Treal >Treq:) and (Treal ≤Tcont:):

Pafter 3ð Þ ¼ Vpart 3ð Þ=V
� �

� Pafter 1ð Þ � Vpart 3ð Þ,μ,ν,η,TMTBF,Tcont:,

þ V � Vpart 3ð Þ

� �

=V
� �

� Pwithout, (A.8)

where Vpart 3ð Þ ¼ ν � Treq:, Pwithout ¼ e�μ� V�Vpart 3ð Þð Þ.

Variant 4—(Treal >Treq:) and Treal >Tcont:.

Pafter ¼

¼

(

Vpart 4ð Þ=V
� �

� Pafter 1ð Þ � Vpart 4ð Þ, μ, ν, η, TMTBF , Tcont:, Treq:

� �

þ

þ V � Vpart 4ð Þ

� �

=V � e�μ� V�Vpart 4ð Þð Þ, ifTreq: ≤Tcont:;
h

Vpart 4ð Þ=V
� �

� Pafter 1ð Þ � Vpart 4:2ð Þ, μ, ν, η, TMTBF , Tcont:, τpart 4:2ð Þ

� �� �N
þ

þ V � Vpart 4ð Þ

� �

=V
i

� e�μ� V�Vpart 4ð Þð Þ, ifTreq: >Tcont:,
h

(A.9)
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The model of authorized access to system resources

during objective period.

Input:

M is the conditional quantity of security barriers in

counteraction to unauthorized access; Fm tð Þ is the PDF

of time between changes of m-th barrier parameters, fm
is mean time for this PDF; Um tð Þ is the PDF of

parameters decoding time of the m-th security system

barrier, H tð Þ—is the PDF of objective period, when

resources value is high.

If the mean objective period, when resources value is

high ! ∞, this he model is transformed into the model

of an authorized access to system resources (see below)

Probability Pvalue of system protection against unauthorized access during objective period

Pvalue ¼ 1�
Q

M

m¼1
Pover:m, (A.10)

where Pover:m—is the risk of overcoming the m-th barrier by violator during objective period when resources value is high,

Pover ¼
1
ƒm

Ð

∞

0

dt
Ð

∞

t
dFm τð Þ

Ð

t

0

dUm θð Þ 1�H θð Þ½ �:

The model of dangerous influences on a protected

system.

Input:

Ωpenetr tð Þ—is the PDF of time between neighboring

influences for penetrating danger source; Ωactiv tð Þ—is

the PDF of activation time of penetrated danger source;

Treq:—is the required period of permanent secure system

operation; Tbetw: is time between the end of diagnostic

and the beginning of the next diagnostic, Tdiag:—is

diagnostic time; A tð Þ—is the PDF of time from the last

finish of diagnostic time up to the first operator error.

Probability Pinfl of faultless (correct) operation during given time:

Variant 1— Treq: <Tbetw: þ Tdiag

� �

:

P 1ð Þ Treq:

� �

¼ 1�
Ð

Treq:

0

dA τð Þ
Ð

Treq:

τ

dΩpenetr *Ωactiv θð Þ: (A.11)

Variant 2— Treq: ≥Tbetw: þ Tdiag

� �

:

measure a)

P 2ð Þ Treq:

� �

¼ N Tbetw: þ Tdiag

� �

=Treq:

� �

� PN
1ð Þ Tbetw: þ Tdiag

� �

þ

þ Trmn=Treq:

� �

� P 1ð Þ Trmnð Þ, (A.12)

measure b)

P 2ð Þ Treq:

� �

¼ PN
1ð Þ Tbetw: þ Tdiag

� �

� P 1ð Þ Trmnð Þ, (A.13)

where N is the same and the probability of success within the given time P 1ð Þ Treq:

� �

, which is defined by (A.11)

The model of authorized access to system resources.

Input (for estimation of confidentiality):

M is the conditional quantity of a barriers against an

unauthorized access; Fm tð Þ is the PDF of time between

changes of the m-th barrier parameters, fm is the mean

time for this PDF; Um tð Þ is the PDF of parameters

decoding time of the m-th security system barrier

Probability Pprot of system protection against unauthorized access:

Pprot ¼ 1�
Q

M

m¼1
Pover:m, (A.14)

where Pover:m—is the probability of overcoming the m-th barrier by violator,

Pover:m ¼ 1
ƒm

Ð

∞

0

1� Fm tð Þ½ �∙Um tð Þdt: (A.15)

Note. The final clear analytical formulas are received by Lebesque-integration of (A.1), (A.3)–(A.6), (A.10), (A.11), and (A.15).

Table A.1.
The proposed models (for the details—See [7–9, 14, 15]).
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For variant 1 Treq: <Tbetw: þ Tdiag

� �

: see (A.11).

For variant 2 Treq: ≥Tbetw: þ Tdiag

� �

: see (A.12), (A.13), and the same (B.2), (B.3).

Evaluated measures:
Risk to lose system integrity (R). Probability of providing system integrity (P).
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