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Chapter

Unsupervised Deep Hyperspectral
Image Super-Resolution

Zhe Liu and Xian-Hua Han

Abstract

This chapter presents the recent advanced deep unsupervised hyperspectral (HS)
image super-resolution framework for automatically generating a high-resolution
(HR) HS image from its low-resolution (LR) HS and high-resolution RGB
observations without any external sample. We incorporate the deep learned priors of
the underlying structure in the latent HR-HS image with the mathematical model for
formulating the degradation procedures of the observed LR-HS and HR-RGB
observations and introduce an unsupervised end-to-end deep prior learning network
for robust HR-HS image recovery. Experiments on two benchmark datasets validated
that the proposed method manifest very impressive performance, and is even better
than most state-of-the-art supervised learning approaches.

Keywords: deep learning, unsupervised learning, hyperspectral image,
super—resolution, generative network

1. Introduction

Hyperspectral images (HSI) feature hundreds of bands with extensive
spectral qualities that are helpful for a range of visual tasks, such as computer vision
[1], mineral exploration [2], medical diagnosis [3], remote sensing [4], and so on.
Due to technology restrictions, it is harder to capture high-quality HSI, and the
acquired HSI has substantially lower resolution. As a result, super-resolution (SR) has
been applied to obtain a HR-HSI, but it is a challenge because of texture blurring and
spectral distortion problems at high magnifications. Thus, researchers frequently
combine high-resolution PAN and low-resolution HSI [5] to achieve SR tasks. In
recent years, it is a trend to fuse a high-resolution multispectral/RGB (HR-MS/RGB)
image and a low-resolution hyperspectral (LR-HS) image for generating a
high-resolution hyperspectral (HR-HS) image, which is called hyperspectral image
super-resolution (HSI-SR). The HSI-SR methods are classified into two primary
categories based on reconstruction principles: conventional mathematical model-
based methods and deep learning-based approaches in a supervised/unsupervised
manner. The following sections go into further information about each of these
categories.
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1.1 Mathematical model-based methods

Since HSI-SR is typically an inverse problem, a mathematical model-based
approach yields a solution space that is far bigger than the actual result needed. In
order to tackle this issue, mathematical model-based HSI-SR constrains the
solution space using hand-crafted prior knowledge, regularizes the mathematical
model, and then optimizes the model by minimizing the reconstruction errors.

This method aims at establishing a mathematical formulation that simulates the
transformation of HR-HS images into LR-HS and HR-RGB images. This process is
extremely difficult, and direct optimization of the formed mathematical model
might result in very unreliable solutions, as the known variables in the LR-HS/
HR-RGB images under consideration are significantly less than the unknown
variables to be estimated in the latent HR-HS images. In order to narrow the set

of possible solutions, existing approaches often utilize a variety of priors to modify
the mathematical model.

Based on prior knowledge of various structures, three categories of mathematical
model-based HSI-SR methods can currently be distinguished: spectral unmixing-
based methods [6], sparse representation-based methods [7], and tensor
factorization-based methods [8]. For spectrum unmixing-based methods, Yokoya
et al. [9] proposed a coupled non-negative matrix decomposition approach (CNMF),
which alternatively unmixes LR-HS images and HR-RGB images to estimate HR-HS
images. Later, Lanaras et al. [6] proposed a similar framework to jointly unmix the
two input images by decoupling the initial optimization problem into two constrained
least square problems. Dong et al. [7] incorporated alternating multiplication method
(ADMM) techniques for solving the spectra unmixing model. Additionally, the sparse
representation is frequently used as an alternative mathematical model for HSI-SR. In
this model, the underlying HR-HS image is recovered by first learning the spectral
dictionary from the LR-HS image under consideration, and then calculating the sparse
coefficient of the HR-RGB image. Inspired by the existed spectral similarity of the
neighboring pixels in the latent HS image, Akhtar et al. [10] proposed to perform
group sparse and non-negativity representation within a small patch, while Kawakami
et al. [11] applied a sparse regularizer for the decomposition of spectral dictionaries.
Moreover, the tensor factorization-based method demonstrated that it could be used
to resolve the HSI-SR problem. He et al. [8] factorized the HR-HS image into two low-
rankness constraint matrices and achieved great super-resolution performances,
which were motivated by the intrinsic low dimensionality of the spectrum space and
the three-dimensional structure of the HR-HS image.

Despite some advancements in handcrafted prior, HSI-SR performance tends to be
inconsistent and can cause severe spectral distortion due to the under-representation
of handcrafted prior, depending on the content of the image under investigation.

1.2 Deep learning-based methods

Hyperspectral super-resolution is a hot field of research in hyperspectral imaging,
as it can improve low-resolution images in both the spatial and spectral domains,
turning them into high-resolution hyperspectral images. HSI-SR is a classic inverse
problem, and deep learning has a lot of promise for resolving it. Depending on
whether a training dataset is provided, supervised and unsupervised learning are the
two approaches used in deep learning-based HSI-SR. A labeled training dataset is
necessary for supervised learning in order to create a function or model from which
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subsequent data is fed in order to generate accurate predictions. But a labeled training
dataset is not necessary for unsupervised learning.

1.2.1 Deep supervised learning-based methods

Different vision tasks have been successfully resolved by DCNNSs. As a result,
DCNN-based methods have been suggested for HSI-SR tasks, which eliminate the
requirement to investigate various manually handcrafted priors. With the LR-HS
observation only, Li et al. [12] presented an HSI-SR model by combining a spatial
constraint (SCT) strategy with a deep spectral difference convolutional neural net-
work (SDCNN). Han et al. [13] utilized three straightforward convolutional layers in
the groundbreaking HS/RGB fusion work, whereas later work utilized more advanced
CNN architectures, such as ResNet [14] and DenseNet [15], in an effort to attain more
robust learning capabilities. By resolving the Sylvester equation using a fusion frame-
work, Dian et al. [16] first provided an optimization technique, and then they inves-
tigated a DCNN-based strategy to enhance the initialization results. Further, Han et al.
[17] proposed a multi-layer, multi-level spatial, and spectral fusion network that
successfully fused existing LR-HS and HR-RGB images. In order to investigate an MS/
HS fusion network and optimize the suggested MS/HS fusion system, Xie et al. [18]
employed a low-resolution imaging model and spectral low-level knowledge of HR-HS
images. In order to solve HS image reconstruction difficulties effectively and accu-
rately, Zhu et al. [19] researched the progressive zero-centric residual network (-
PZRes-Net), a lightweight deep neural network-based system. All the DCNN-based
methods mentioned above take training with a large number of pre-prepared training
instances that contain not only LR-HS and HR-RGB images but also the corresponding
HR-HS images as labels, that is, the set of training triples, despite the fact that the
reconstruction performance was significantly improved.

1.2.2 Deep unsupervised learning-based methods

Although HS images are difficult to obtain in the real world, deep learning net-
works for HSI-SR require a lot of hyperspectral images as training data. It is rather
challenging to collect good quality HSIs due to hardware restrictions, and the resolu-
tion of the acquired HSIs is relatively low. For supervised learning, which needs big
training datasets to succeed, this is an unsolvable problem. As a result, unsupervised
learning is one of the key research areas. Unlike supervised learning, unsupervised
learning does not require any HR-HS image as a ground-truth image and uses only
easily accessible HR-MS/RGB images and LR-HS images to generate HR-HS images.

It is well known that the corresponding training triplets, especially the HR-HS
images, are extremely hard to be collected in real applications. Thus, the quality and
amount of the collected training triplets generally become the bottleneck of the
DCNN-based methods. Most recently, Qu et al. [20] attempted to solve the HSI super-
resolution problem in an unsupervised way and designed an encoder-decoder archi-
tecture for exploiting the approximate low-rank prior structure of the spectral model
in the latent HR-HS image. This unsupervised framework did not require any training
samples in an HSI dataset and could restore the HR-HS image using a CNN-based end-
to-end network. However, this method needed to be carefully optimized step-by-step
in an alternating way, and the HS image recovery performance was still not enough.
Liu \emph({et al.} [21] proposed an unsupervised multispectral and hyperspectral
image fusion (UnMHF) network using the observations of the under-studying scene
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only, which estimates the latent HR-HS image with the learned encoder-decoder-
based generative network from a noise input and can only be adopted to the observed
LR-HS and HR-RGB image with the known spatial downsampling operation and
camera spectral function (CSF). Later, Uezato et al. [22] exploited a similar method
for unsupervised image pair fusion, dubbed a guided deep decoder (GDD) network
for the known spatial and spectral degradation operation only. Thus, the UnMHF [21]
and GDD [22] can be categorized into the non-blind paradigm, and lack of generali-
zation in a real scenario. Zhang et al. [23] proposed two steps of learning methods via
modeling the common priors of the HR-HS image in a supervised way and then
adapting to the under-studying scene for modeling it’s specific prior in an
unsupervised manner. In addition, the unsupervised adaptation is capable of learning
the spatial degradation operation of the observed LR-HS image but can only deal with
the observed HR-HS image with known CSF, and thus it would be categorized as a
semi-blind paradigm for possibly learning the spatial degradation operations only in
the observed LR-HS image. Moreover, Fu et al. [24] exploited an unsupervised
hyperspectral image super-resolution method using the designed loss function for-
mulated by the observed LR-HS and HR-RGB images only and integrated a CSR
optimization layer after the HSI super-resolution network to automatically select or
learn the optimal CSR for adapting to the target RGB image possibly captured by
various color cameras, which is also divided into the semi-blind paradigm for possibly
learning the spectral degradation operation: CSF only. Further, the unsupervised
adaptation subnet in ref. [23] and the method [24] utilize the under-studying
observed images only instead of the requirement of additional training samples for
guiding the network training, which achieved impressive performance as an
unsupervised learning strategy. However, these learning methods based on the under-
studying observed images only are easy to drop into a local solution, and the final
prediction heavily depends on the initial input of the network. Our method is also
formulated in this unsupervised learning paradigm, and we are going to clarify the
distinctiveness of our method in the next sub-section.

2. The proposed unsupervised learning-based methods

In this section, we first describe the problem formulation in the HSI-SR task and
then present the proposed deep unsupervised learning-based method.

2.1 Problem formulation

Let us consider image pairs: a LR-HS image X e R**"*L where w and h are the
width and height, and a HR-RGB image Y € RW*H>3 where w and h are the width and
height of Y and Z, respectively. A HR-HS image Z € RW>HXL where L is the number of
spectral channels in the HR-HS image, is what we are trying to reconstruct for HSI-SR.
The following formula can be used to represent the degradation between the HR-HS

target image and the observed images: X and Y.
X =k QZPI) | +n,Y =ZxCP 4 p, (1)

where ® stands for the convolution operator, (Spa) | for the spatial domain
downsampling operator, and k?* for the two-dimensional blur kernel in the spatial
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domain. Three one-dimensional spectral filters C“?* constitute the spectral sensitiv-
ity function of RGB cameras, which translates L spectral bands to RGB bands. The
additive white Gaussian noise (AWGN) with noise level ¢ is represented by n, and n,.
We rephrase the degenerate model as a matrix formulation to quantify the problem,
that is,

X = DBZ +ny,Y = ZC +n,, (2)

where B is the spatial blur matrix, D is the downsampling matrix, and C is the
transformation matrix representing the spectral sensitivity function (CSF). According
to Egs. (1) and (2), a general HSI-SR task should evaluate kP® (or B), (Spa) | (or
D), and C®7*) (or C) from observed image pairs X and Y, which makes it very
complicated to obtain the latent Z. It is a challenging problem that has rarely been
studied in the HSI-SR task. Therefore, the general solution is to assume that the blur
kernel type and spectral sensitivity function (CSF) of the RGB camera are known and
to approximate them by some mathematical operations in the application. The current
study followed to the previous setting in principle, but we also investigated whether it
was possible to reconstruct HR-HS images without knowing the kind of CSF or the
blur kernel beforehand as a generic solution for a specific scenario.

Let us begin by defining the generic formula of the HSI-SR task generally. The
maximum a posterior (MAP) framework is the foundation formula of the majority of
classical approaches.

Z* = argmaxPr(Z|X, Y, B, C) = argmaxPr ¢)(X, Y|Z)Pr(Z), (3)
z z

where Pr(Z) performs prior modeling of latent HR-HS images and Pr g ¢) (X,Y]Z) is
the likelihood of the fidelity term corresponding to the known kernel type and CSF
matrix. With regard to the latent HR-HS image Z, which we define as
—log (Pr(s, ¢)(X, Y|Z)), it is specifically assumed that the reconstruction errors of the
fidelity terms X and Y are independent Gaussian distribution in general. The prior
modeling of HR-HS images is subjected to the regularization requirement
—log (Pr(Z)) = ¢(Z). The reconstruction model of the MAP-based HSI SR in Eq. (3)
can be redefined using the following formula.

Z* = argminaf; |X — DBZ|7 + (1 — &)Y — ZClI7 + 4¢(Z), (4)
Z

where ||| represents the Frobenius norm. It is generally necessary to introduce
normalization weights, such as #; = 1/N; and f, = 1/N,, where N; and N, are
multiples of the number of pixels and spectral bands in LR-HS and HR-HS images,
respectively. This is because HR-RGB and LR-HS images have different numbers of
elements. In addition, we further modify the contribution of these two reconstruction
errors using the hyperparameter a(0 <a <1). On the other hand, the trade-off adjust-
ment parameter is A. We have experimentally developed appropriate prior parameters
as regularization term ¢(Z) in order to obtain a robust solution. Numerous prior
restrictions have been present. The employed priors, however, are often manually
determined and fall short of adequately describing the intricate structure of HR-HS
images. Furthermore, the established priors should vary depending on the details of
the situation being studied, and choosing the suitable priors for a specific scenario is
still an art.
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The DCNN method is one of the most recent deep learning-based HSI-SR tech-
niques. It effectively captures prospective HS image features (common prior) in a
fully supervised learning manner utilizing previously trained training samples (exter-
nal datasets). Particularly supervised deep learning methods seek to learn joint CNN
models by minimizing such loss functions given $N$ trainable triples.

(Xb Yia Zz)(l = 13 2) Tty N)

N
0* =argmin ) ||Z; — Fenn(Xi, Y0)7, (5)
o i

where Fcpny stands for a DCNN network transform with € learning parameters.
In contrast to directly searching in the ground-truth image space Z, these
approaches are trained to extract the optimal parameters 6* of the network, and
they are able to identify common prior variables concealed in the training samples
utilizing the powerful and effective DCNN modeling capabilities. The underlying
HR-HS images for each observation (X;,Y;) in the research can be simply rebuilt

as: Z; = F&(X,, Y;) after learning the network parameters 6*. Although these
supervised deep learning methods have shown encouraging results, it is necessary to
provide a substantial training dataset that includes LR-HS, HR-RGB, and HR-HS
images—all of which are particularly challenging to gather in HSI-SR tasks—in order
to learn a good model.

2.2 The overview motivation

Recent deep learning-based HSI-SR techniques have demonstrated that DCNNs
perform well and are capable of accurately capturing the underlying spatial and
spectral structure (joint prior information) of potential HS images. The training labels
(HR-HS images) for these algorithms, which are typically performed in a fully super-
vised way and need large-scale training datasets containing LR-HS, HR-RGB, and HR-
HS images, are challenging to gather. Numerous studies on natural image generation
(DCGAN [25]) and its variations have demonstrated that high-resolution, high-
quality images with specific features and attributes can be produced from noisy
random input data without the supervision of high-quality ground-truth data. This
indicates that originating from a random initial image and scanning the parameter
space of a neural network can capture the inherent structure (a prior) of possible
images with certain features. DIPs [26] have also been utilized to properly perform a
number of natural image restoration tasks, including image separation, blurring, and
super-resolution extraction, using just the degraded version of a scene to guide them.
This unsupervised paradigm is used in the current study, which tries to learn the
precise spatial and spectral structure (a prior) of HR-HS latent images from degraded
data (LR-HS and HR-RGB images).

The spatial and spectral structure of the underlying HR-HS image Z was specifi-
cally modeled using the generative neural network G, (€ is a network parameter that
must be learnt). The fusion-based HSI-SR model can be rebuilt as follows by
substituting Z with G4 in Eq. (4) and deleting the regularization term ¢(Z) connected
with the prior acquired automatically by the generative network.

0* = argminap; |X — DBGy(Zi)|l7 + (1 — a)BollY — Go(Zin)ClI7, (6)
]
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where Gy(Z;,); is the i-th component of the HR-HS estimation and Zj, is the input
to the generative neural network. Eq. (6) tries to explore the parameter space of the
generative neural network G, by leveraging the powerful modeling capability to
generate a more reliable HR-HS image, instead of directly searching the exceedingly
vast, non-uniquely determined raw HR-HS space.

To solve the above unsupervised HSI-SR task, there are still several issues to be
needed to elaborately address: (i) How to design the generative network’s architecture
so that both spectral correlations and low-level spatial statistics can be effectively
modeled during training. (ii) What kind of input to the generative network should be
employed so that the local minimization point can be avoided. (iii) How to implement
an end-to-end learning framework for incorporating different degradation operations
(blurring, downsampling, and spectral modification) following the generative net-
work. In the next sections, we embody the solutions to the aforementioned issues.

2.3 Architecture of the generative neural network

Generative neural networks G, can be implemented using arbitrary DCNN archi-
tectures. A generative neural network G, is required to offer acceptable modeling
skills due to the diversity of information, including potentially significant structures,
rich textures, and complicated spectra in HR-HS images. It has been demonstrated
that various generative neural networks have a great deal of promise for producing
high-quality natural images [Pix2pix and others], for example, in adversarial learning
settings [27]. In this study, a multi-level feature learning architecture is employed,
along with simplified encoder-decoder features and an encoder-decoder architecture
that allows for feature reuse via skip connections between the encoder and the
decoder. Figure 1 shows a thorough representation of a generative neural network.

Five blocks compensate the encoder and decoder, and they both learn representa-
tive features at various scales. To reuse the extracted detailed features, the output of
each of the 5 encoder-side blocks is straight-through forwarded to the corresponding
decoder. A maximum clustering layer with a 2 x 2 kernel is used to reduce the size of
the feature map between encoder blocks, and an upconversion layer is used to double

Estimated HR-HS image

Skip Connection :
» Z=g0(Zin)

a4
T 4 N
»

<+—>
Perturbation noise
-+ zm
— Encoder  Decoder
Noisy
input 4
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Upsampling 1o piop. y
[ 1

R &
=
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uonededold yoeg

Estimated HR-RGB | Speel
= bl i
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-«

Loss Functlon
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Figure 1.
Conceptual diagram of the proposed unsupervised deep HSI-SR.
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the size of the feature map between decoder blocks for recovery. Each block is
comprised of three convolutional layers that each follow the RELU activation func-
tion. Finally, the HR-HS images are estimated using the convolutional output layer.
The training state of the generative neural network cannot be estimated or guided in
an unsupervised learning environment as there is no ground-truth HR-HS image. The
assessment criteria listed in Eq. (6) are then generated using the observed HR-RGB
and LR-HS images.

2.4 Input data to the generative neural network

We classify the input data into two types. The first is a noisy input with a random
perturbation added to check the robustness, corresponding to the deep unsupervised
fusion learning (DUFL) model; in particular, to contrast with the addition of random
perturbation, we also perform experiments without random perturbation, that is, the
DUFL+ model. The second input data is the fusion context of fused observations HR-
RGB and LR-HS, which corresponds to the deep self-supervised HS image recon-
struction (DSSH) framework.

2.4.1 The noise input

The deep image prior network (DIP) [26] was developed to get low spatial statis-
tics using inputs of uniformly distributed noise vectors generated at random. Never-
theless, because the noise vectors are chosen at random, DIP has a limited ability to
discover spectral and spatial correlations and is more challenging to tune. Motivated
by the DIP, we proposed a deep unsupervised fusion learning (DUFL) model, in
which a common generative neural network is trained to generate target images with
predetermined features; typically, a randomly selected noise vector based on a distri-
bution function (for example, Gaussian or uniform distribution) is used as input to
ensure that the generated images have enough diversity and variability. The observed
degradation (LR-HS and HR-RGB images) of the corresponding HR-HS images is
required for our HSI-SR task. Therefore, it makes sense to determine the best network
parameter space for searching a given HR-HS image as the previously sampled noise
vector Z_ . However, a constant noise input could lead to a local minimum in the
generative neural network. As a result, the HR-HS image’s estimate is inaccurate.
Therefore, it is suggested to disturb the fixed initial input with a small randomly
generated noise vector in each training step to avoid the local minimum condition. For
a training step, the input vector i-th can be represented as follows:

Zi +Zo + D, 7)

where A stands for the interference level (small scale value) and #; is the noise
vector randomly sampled in the ith training. The final estimated HR-HS image uti-
lized for prediction is the fixed noise vector Z* = Gy (Zgl) , which is created by feeding
perturbed inputs into a neural network with coefficient Gy.

This deep unsupervised fusion learning model employs noise vectors produced at
random and sampled from a uniform distribution as input to provide low-level spatial
statistics. But this research is less effective at identifying spectral and spatial correla-
tions and is more challenging to optimize due to random noise vectors. We propose a
solution to this issue in the next section. In the next part, we substitute observed LR-
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HS and HR-RGB images for entirely artificial noise. Additionally, we approximate the
degradation operation using two distinctive convolutional layers that can be applied as
learning or fixed degradation models for a variety of real-world scenarios.

2.4.2 The fusion context

To deal with the mentioned problems, we improved the DUFL model above. The
underlying prior structure of HR-HS images is reflected by an internally designed
network structure in the deep self-supervised HS image reconstruction (DSSH)
framework, which also learns the network parameters exclusively using observed LR-
HS and HR-RGB images. In the proposed DSSH framework, we use the observed
fusion context in network learning to gain insight into specific spatial and spectral
priorities given the observed images: X reflecting hyperspectral properties of the
underlying HR-HS image although with lower spatial-resolution, and Y showing the
high-resolution spatial structure although with fewer spectral channels. To be more
specific, we utilize an upconversion layer to first transform the LR-HS image to the
same spatial dimension as the HR-RGB image before merging them, as seen below.

Z2 = Stack(UP(X), Y). (8)

A simple fused context can be used as input, but this generally results in local
minimum convergence. To train a more reliable model in this section that takes into
account specific spatial and spectral priors, we add additional perturbations. The
model is then represented as follows:

Zi = Z9, + A, )

where 4 is a small number indicating the intensity of the perturbation and y is a
sample of a 3D tensor generated at random from a uniform distribution equal to the
connection context Z_ . In this section, 4 is set at 0.01 and reduced by half every 1000
steps throughout the training phase. The perturbation is applied to the generative
network Gy during each training phase.

Our suggested approach is capable of using any DCNN architecture for the G,
generative network construction. Potential HR-HS images frequently have compli-
cated spectra, expressive patterns, and rich textures, all of which demand the full
modeling power of the generative network Gy. Significant advancements have been
achieved in generating higher natural images [28], and several generative architec-
tures have been presented, for instance in adversarial learning situations [29].

2.5 Degradation modules
2.5.1 Non-blind degradation module

We apply degradation operations to get approximations of the LR-HS and HR-RGB
images from the HR-HS images predicted by the generative network in order to
provide evaluation criteria for training the network. However, this part of the net-
work is removed and cannot be included in an integrated training system if only
mathematical operations are utilized to approximate the degraded model. In this
work, after constructing the backbone, we approximate the degradation model as a
conventional learning system utilizing two parallel blocks. To specifically accept
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blurred and downsampling transformations, we modified the conventional deep
convolutional layers. We apply the same kernel to various spectral bands in the
depth-wise convolution layer and set the step space expansion coefficients and bias
terms to “false” since the identical blurring and downsampling operations are applied
to each spectral band in a real scene. The blurring and downsampling transformations’
equations are written as follows:

X =fopw(Go(Zin)) = kspw ® Go(Zin) 7 1, (10)

where the convolution layer’s specific depth performs the role of f ¢/, (¢). To be
more precise, we refer to the same kernel that was used in the depth-wise convolution
layer to convolve Gy(Z;,) in the HR-HS images generated with each channel
independently as kspw € RY1x%s "False bias is accomplished by using conventional
two-dimensional mathematical convolution and nearest downsampling operations to
transform the spatial expansion factor of f ), (Go(Ziy)). If the spatially degraded blur
kernel is known, we simply set the values to be trained as false values and initialize the
weights of each layer based on the known kernel. Similar to this, we simply automat-
ically learned kernel weights of 1*1 during the network training phase or assigned
kernel weights of f ¢, (+) based on the known RGB camera CSF. Additionally, we

employ a conventional convolution kernel with output channels of $3$ and a kernel
size of 1*1to implement the spectral transform. We similarly set the stride to 1 and the
bias term to false, as shown in the following expression.

Y fSpe(Gg( m)) kSpe ® GQ( )(Spe‘) N P (11)

where the activity of the spectral convolution layer is indicated by f g, (+). The
detailed spectra of the obtained HR-HS images are transformed into degenerate RGB
images using the convolution kernel kg, € RE>3x1x1 Additionally, the kernel of kgpe
minimization that needs to be trained has the same dimension as the C‘*P* that
represents the spectrum sensitivity function of an RGB sensor, allowing us to approx-
imate it in our joint network. These two modules can be used concurrently in our
integrated learning model by employing the mentioned framework.

2.5.2 (semi-) blind degradation module

This section focuses on automatically learning the transform parameters of the
convolutional blocks embedded in the unknown decomposition. For spatially
semi-blind, the weight parameter of kspw in Eq. (10) can either be automatically
learned when the blur process is unknown while the weight parameter of kg, can be
predetermined by changing to the parameter of a known CSF kernel. Thus, we can
easily extract the approximation LR-HS image from the generated HR-HS image Gy
using a specified deep convolutional layer fspw with a fixed kspe convolutional kernel.
Similarly, it is adaptable to implement the opposite operation to achieve a spectrally
semi-blind process. Hence, these two modules can be learned concurrently in our
integrated learning framework as a blind degradation module. As a result, the inves-
tigated learning model is extremely adaptable and simple to fit into many real-world
scenarios. The loss function that was used to train our deep self-supervised network
can be rebuilt as follows by substituting the decomposition operation with an
improved convolutional block.
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(9* » Ospw> 95)'ka> = arg;ninaﬂluX —Fsow (Go)(Zin))II7

+(1 = BNY —f,(Go) (Zin)) I 5:t.0 <Gp(z, <1Vi.

(12)

As can be observed from Eq. (12), in order to rebuild the target well, we learn the
generative network parameters rather than directly optimizing the underlying HR-HS
image. In our network optimization procedure, the generative network Gy is trained
using only test image pairs (i.e., observed LR-HS and HR-RGB images), and no HR-HS
images are provided. This can be seen as a “zero-shot” self-supervised learning method
[30]. As a result, we refer to our model as a self-supervised learning model for HSI-SR.

3. Experiment results
3.1 Experimental settings
3.1.1 Datasets

The efficiency of the suggested method was evaluated using two benchmark HSI
datasets, namely, CAVE [31] and Harvard [32]. 32 HS images with a spatial resolu-
tion of 512 x 512 are included in the CAVE dataset, which includes various real-
world materials. The Harvard dataset includes 50 images of various natural settings,
each with a resolution of 1392/1040 pixels and 31 bands of spectral-resolution
between 420 and 720 nm. In the experiments, a part of the 1024 x 1024 sub-image
in the top left corner of the Harvard dataset’s original HS image was cropped,
resulting in a 512 x 512 -pixel image that served as the HS image’s main basis. Using
different spatial extraction factors (8 and 16) for the bicubic degradation, the
observed LR-HS images were generated from the actual HS images of the two
datasets, yielding sizes of 64 x 64 x 31 and 32 x 32 x 31. The observed HR-RGB
images were also generated by multiplying the HR-HS image by the spectral Nikon
D700 camera response function [9].

3.1.2 Evaluation metrics

The proposed method is evaluated against various state-of-the-art methods using
five widely used metrics, including root-mean-square error (RMSE), signal-to-noise
ratio (PSNR), structural similarity index (SSIM), spectral angle mapping (SAM), and
relative dimensional global error (ERGAS). The generated HR-HS image and the
ground-truth image were both acquired from the same spatial position. The recovered
HR is measured by RMSE, PSNR, and ERGAS which are quantitatively distinct from
the reference image to assess the spatial accuracy. Then, SAM offers the average
spectral angle of the two spectral vectors to show the spectral accuracy. Additionally,
SSIM was employed to evaluate how much the spatial organization of the two images
resembled one another. A greater PSNR or SSIM and a lower RMSE, ERGAR, or SAM
often indicate superior performance. Bold values mean promising results.

3.1.3 Details of the network implementation

Pytorch has adopted the suggested approach. The input noise was first set to the
same size as the HR-HS image that would be generated. Utilizing the Adams optimizer
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and a loss function based on the L, criteria, the generated network was trained. Initial
settings for the learning rate included 1e-3 with a decrease of 0.7 per 1000 steps.
Additionally, the perturbation was reduced by 0.5 every 1000 steps after being
initially set at 0.05. After 12,000 iterations, the optimization process was terminated,
and all ground-truth HR-HS images from various datasets with various upscale factors
were used. Using a Tesla K80 GPU in a training environment, all experiments were
carried out. According to our experiments, it takes around 20 minutes to learn an
image with a 512 x 512 size. Across all experiments, we first adjusted the
hyperparameter a in the loss function of Eq. (12) to 0.5.

3.2 Performance evaluation

In the study of HS image super-resolution, there are three main paradigms:
1) traditional optimization methods that form image priors based on practical
knowledge or physical properties, 2) fully supervised deep learning methods that
learn external image priors (training algorithms), and 3) unsupervised methods that
learn image priors automatically.

3.2.1 Comparison with traditional non-blind optimization-based methods

The generalization of simultaneous orthogonal matching pursuit (G-SOMP+)
method [33], sparse non-negative matrix factorization (SNNMF) method [34], couple
spectral unmixing (CSU) method [9], non-negative structured sparse representation
(NSSR) method [7], Bayesian sparse representation (BSR) method [35], and other
optimization-based HSI-SR methods have all recently been presented. To rebuild
stable HS images, conventional optimization-based approaches often employ a variety
of hand-crafted priors. The degradation processes (spatial blurring/downsampling
and spectral transformations) are a requirement for all approaches. To automatically
learn specific priors for latent HR-HS images, we propose a deep unsupervised learn-
ing network. In cases when the degradation pattern is unknown, this can yield results
for reconstruction. First, we approximated the bicubic decomposition using the
Lanczos kernel to initialize the weights of the spatial decomposition blocks, and then
we initialized the spectral transform blocks using the CSF of the Nikon D700 camera
without learning these blocks in order to make a fair comparison. We evaluate the
efficacy of 8 and 16 spatial expansion factors, and compared results on the CAVE and
Harvard datasets are shown in Table 1. And the visualization results are shown in
Figure 2.

3.2.2 Comparison with deep non-blind learning-based methods

Deep learning-based methods have recently been thoroughly investigated in the
HSI-SR tasks, the majority of them in both fully supervised and unsupervised ways.
The unsupervised sparse Dirichlet-net (uSDN) [20], deep hyperspectral image prior
(DHP) [36], and GDD method [22] are just a few examples of works that have
attempted to use unsupervised strategies in HSI-SR tasks. Our approach comes within
the unsupervised branch of HSI-SR methods. In this part, we compare supervised and
unsupervised deep learning algorithms, such as SSF-Net [33], ResNet [14], DHSIS
[16], uSDN [20], and DHP [36]. Only 12 test images from the CAVE dataset and
10 test images from the Harvard dataset were compared because supervised deep
learning methods need training examples to learn the model. The results of the
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Dataset CAVE Harvard

Method RMSE | PSNR 1 SSIM | SAM | ERGAS RMSE | PSNR 1 SSIM | SAM | ERGAS/
GOMP [33] 5.69 33.64 — 11.86 2.99 3.79 38.89 — 4.00 1.65
SNNMF [34] 1.89 43.53 — 3.42 1.03 1.79 43.86 — 2.63 0.85
BSR [35] 1.75 44.15 — 3.31 0.97 1.71 44.51 — 2.51 0.84
CSU [9] 2.56 40.74 0.985 5.44 1.45 1.40 46.86 0.993 1.77 0.77
NSSR [7] 1.45 45.72 0.992 2.98 0.80 1.56 45.03 0.993 2.48 0.84
DUFL (Our) 2.08 42.50 0.975 5.35 1.15 2.38 42.16 0.965 2.35 1.09
DUFL+ (Our) 1.96 42.98 0.977 522 1.10 212 43.23 0.971 2.30 1.01
DSSH (Our) 1.44 45.61 0.992 3.27 0.79 1.17 48.27 0.993 1.75 0.77

806901 uadoyr23u1/ /L5 0t/3n0"10p°xp1:d11Y ;TOT

Up-scale factor = 16
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GOMP [33] 6.08 32.96 - 12.60 1.43 3.85 38.56 — 4.16 0.77
SNNMF [34] 2.45 42.21 - 4.61 0.66 1.93 43.31 — 2.85 0.45
BSR [35] 2.36 41.57 — 4.57 0.58 1.93 43.56 — 2.74 0.42
CSU [9] 2.87 39.83 0.983 5.65 0.79 1.60 45.50 0.992 1.95 0.44
NSSR [7] 1.78 44.01 0.990 3.59 0.49 1.65 44.51 0.993 2.48 0.41
DUFL (Our) 2.61 40.71 0.967 6.62 0.70 2.81 40.77 0.953 3.01 0.75
DUFL+ (Our) 2.50 41.03 0.969 6.43 0.67 2.56 41.66 0.959 2.95 0.72
DSSH (Our) 1.76 43.84 0.999 3.76 0.49 1.32 47.16 0.992 1.99 0.47
Table 1.

Compared vesults of the conventional non-blind optimization methods with DUFL and DSSH methods in the CAVE and Havrvard datasets for up-scale factors: 8 and 16.
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(PSNR/Sam: Inf./0) (31.07/7.26) (38.63/8.42)  (37.44/9.46) (44.57/3.56)  (44.77/3.51)
DHP_diff.  uSDN_diff ~SNNMF_diff DUFL_diff  DUFL,_ diff.

LR
32%39

(a) CAVE dataset
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DUFL,

(PSNR/Sam: Inf./0) (26.78/2.81) (38.07/2.94)  (45.74/1.88)  (40.27/2.73) (40.90/2.70)
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... Eﬂ

(b) Harvard dataset

Figure 2.
Visualization of the DHP [36], uSDN [20], SNNMF [37], and difference images between the proposed DUFL+
method and the ground-truth/veconstructed images in CAVE and Harvard datasets for an up-scale factor 16.

comparison between the CAVE and Harvard datasets are shown in Table 2, with two
spatial expansion factors: 8 and 16. It is clear from Table 2 that our proposed method
can perform noticeably better than unsupervised methods based on deep learning, as
well as better than supervised methods. And the visualization results are shown in
Figure 3.

3.2.3 Comparison with (semi-)blind methods

Our proposed method is exploited in a unified framework, which is capable of
reconstructing the HR-HS image from the observations not only with the known
spatial and spectral degradation operations but also with the unknown spatial or
spectral degradation operations or both unknown. Thus, our proposed method can be
implemented in a semi-blind setting (the unknown spatial downsampling kernel for
LR-HS image or the unknown CSF for HR-RGB image). Consequently, our suggested
solution can also be used in total blind mode (unknown spatial degradation operations
for LR-HS images and unknown CSF for HR-RGB images). The compared results
using our proposed method with semi-blind and complete-blind settings, the state-

14



ST
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Compared results of the deep non-blind learning-based methods with DUFL and DSSH methods in the CAVE and Harvard datasets for up-scale factors: 8 and 16.

Data CAVE Harvard
Method RMSE | PSNR 1 SSIM | SAM | ERGAS | RMSE | PSNR 1 SSIM |, SAM | ERGAS |
Supervised SSFNet [13] 1.89 44.41 0.991 3.31 0.89 2.18 41.93 0.991 4.38 0.98
ResNet [14] 1.47 45.90 0.993 2.82 0.79 1.65 44.71 0.984 2.21 1.09
DHSIS [16] 1.46 45.59 0.990 3.91 0.73 1.37 46.02 0.981 3.54 1.17
Unsupervised uSDN [20] 4.37 35.99 0.914 5.39 0.66 2.42 4211 0.987 3.88 1.08
DHP [36] 7.60 31.40 0.871 8.25 4.20 7.94 30.86 0.803 3.53 3.15
GDD [22] 1.68 44.22 0.987 3.81 0.96 1.30 47.02 0.990 1.94 0.90
DUFL (Our) 2.10 42.53 0.978 5.30 1.12 2.15 42.63 0.975 2.32 1.01
DUFL+ (Our) 2.09 42.39 0.977 4.54 0.91 2.75 40.41 0.965 0.03 0.58
DSSH (Our) 1.44 45.61 0.992 3.27 0.79 1.17 48.27 0.993 1.75 0.77
Up-scale factor = 16
Supervised SSFNet [13] 2.18 41.93 0.991 4.38 0.98 1.94 43.56 0.980 3.14 0.98
ResNet [14] 1.93 43.57 0.991 3.58 0.51 1.83 44.05 0.984 2.37 0.59
DHSIS [16] 2.36 41.63 0.987 4.30 0.49 1.87 43.49 0.983 2.88 0.54
Unsupervised uSDN [20] 3.60 37.08 0.969 6.19 0.41 9.31 39.89 0.931 4.65 1.72
DHP [36] 11.31 27.76 0.805 10.66 3.09 10.38 38.44 0.754 4.57 2.08
GDD [22] 2.12 42.24 0.983 4.41 0.61 1.66 44.64 0.986 2.50 0.64
DUFL (Our) 2.60 40.75 0.970 6.42 0.70 9.46 38.14 0.876 8.52 771
DUFL+ (Our) 2.95 40.56 0.948 2.25 1.15 3.12 39.79 0.945 2.76 0.66
DSSH (Our) 1.76 43.84 0.999 3.76 0.49 1.32 47.16 0.992 1.99 0.47
Table 2.
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HR Csu NSSR DHSIS uSDN DHP DSSH

CSU_diff. NSSR_diff. DHSIS_diff. uSDN_diff. DHP_diff. DSSH_diff.
32*32 ‘
(a) CAVE dataset
HR NSSR DHSIS uSDN DHP DSSH
.... .

CSU_diff. NSSR_diff. DHSIS_diff. uSDN_diff. DHP_diff. DSSH_diff.

3232

(b) Harvard dataset

Figure 3.

Visualization of the traditional optimization-based method: CSU [9] and NSSR [7], the supervised deep learning-
based methods: DHSIS [16], and the unsupervised deep learning-based methods: uSDN [20], DHP [36], and the
proposed DSSH method in the CAVE and Harvard datasets for an up-scale factor 16.

of-the-art unsupervised semi-blind methods: UAL method [23] for spatial blind only,
and the spatial blind implementation of NSSR [7] via setting the incorrect spatial
kernel, have been given in Table 3.

3.2.4 Ablation study

We adjusted the hyperparameters a to 0.3, 0.5, and 0.7 in order to assess the
impact of various data circumstances on the loss function of the DUFL method. The
comparative results are shown in Table 4. The quantitative measurements of our
DUFL+ method, PSNR, SAM, and ERGAS, are also shown in Table 4, and they
demonstrate that the performance of overfitting is not significantly affected by the
specific assignment of the hyperparameter a. Similarly, the performance of the DSSH
reconstruction method in the ablation study was then evaluated by adjusting «
between 0 and 1.0 with an interval of 0.2, and the compared results are shown in
Table 5.

4, Conclusions

In order to address the super-resolution issue for hyperspectral images, we provide
an unsupervised deep hyperspectral image super-resolution framework. A deep
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Method Real downsampling kernel

CAVE

Harvard

RMSE | PSNR 4+ SSIM{| SAM | ERGAS| RMSE| PSNR41 SSIM{| SAM | ERGAS)/|

NSSR (Bic) [7] Bicubic 3.41 38.03 0.968 5.35 1.52 2.76 39.77 0.981 2.00 1.30
NSSR (Ave) [7] Average 2.76 39.77 0.981 2.00 1.30 3.27 38.55 0.972 5.17 1.78
UAL [23] K1 1.85 43.23 0.986 6.72 — 2.08 42.38 0.982 2.67 —
K2 2.01 42.72 0.986 6.78 — — — — — —

DSSH (Our) (Spatial blind) K1 1.47 45.14 0.990 3.54 0.66 1.15 47.59 0.994 1.70 0.78
K2 1.56 44.71 0.989 3.64 0.69 1.12 47.75 0.994 1.70 0.79

Bicubic 1.70 44.05 0.988 3.70 0.75 1.33 46.28 0.992 1.95 0.93

DSSH (Our) (Spectral blind) Bicubic 1.64 44.36 0.989 3.66 0.72 1.28 46.67 0.992 1.86 0.89
DSSH (Our) (Complete blind) Bicubic 1.68 44.10 0.988 3.72 0.74 1.32 46.44 0.992 191 0.91

Table 3.

Compared vesults of the (semi-)blind methods with DUFL and DSSH methods in the CAVE and Harvard datasets for an up-scale factor 8.
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Up-scale Factor o CAVE Harvard

PSNR 1 SAM | ERGAS | PSNR 1 SAM | ERGAS |

8 0.3 42.19 5.09 0.95 43.07 2.16 0.93
0.5 42.91 4.40 0.86 41.68 2.19 1.06
0.7 42.16 4.75 0.92 41.85 2.18 1.09
16 0.3 40.74 5.71 0.55 40.95 2.90 0.66
0.5 40.75 5.87 0.54 40.79 2.70 0.62
0.7 40.42 5.64 0.58 41.90 2.48 0.52
Table 4.

Ablation rvesults of the DUFL+ method with different weights a values of 0.3, 0.5, and 0.7 in the CAVE and
Harvard datasets for up-scale factors: 8 and 16.

Dataset CAVE

o RMSE | PSNR 4 SSIM | SAM | ERGAS |
0.0 25.98 19.97 0.631 40.02 12.50
0.2 1.52 44.99 0.990 3.24 0.67
0.4 1.45 45.45 0.991 3.16 0.63
0.5 1.46 45.35 0.991 313 0.64
0.6 1.49 42.26 0.991 3.15 0.66
0.8 1.47 45.20 0.991 313 0.66
1.0 3.33 38.36 0.961 4.73 1.51

Table 5.

Ablation vesults of the DSSH method with different weights a values of 0.0 to 1.0 in the CAVE and Harvard
datasets for an up-scale factor 8.

convolutional neural network is used to automatically learn the spatial and spectral
features of latent HR-HS images from perturbed noisy input data and the fusion
context that naturally collects a significant quantity of low-level image statistics. A
special depth-wise convolution layer is designed to achieve degenerate transforma-
tions between observations and desired targets, and this generates a universally
learnable module that only uses low-quality observations. Without requiring training
samples, the proposed unsupervised deep learning framework can efficiently take
advantage of the HR spatial structure of HR-RGB images and the detailed spectral
characteristics of LR-HS images to deliver more accurate HS image reconstruction.
We simply train the network parameters using the observed LR-HS and HR-RGB
images and a generative network structure to reconstruct the underlying HR-HS
images. Extensive research using the CAVE and Harvard datasets demonstrate prom-
ising results in the quantitative evaluation.
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