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Chapter

Multi-Metric Near-Optimal Image
Denoising
Kenji Hara and Kohei Inoue

Abstract

It is necessary to optimize the parameters for each image input to achieve the
maximum denoising performance because the performance of denoising algorithms
depends largely on the selection of the associated parameters. The commonly used
objective image quality measures in quantitatively evaluating a denoised image are
PSNR, SSIM, and MS-SSIM, which assume that the original image exists and is fully
available as a reference. However, we do not have access to such reference images in
many practical applications. Most existing methods for no-reference denoising
parameter optimization either use the estimated noise distribution or a unique no-
reference image quality evaluation measure. In the chapter, for BM3D, which is a
state-of-the-art denoising algorithm, we introduce a natural image statistics (NIS)
based on the generalized Gaussian distribution (GGD) and the elastic net regulariza-
tion (EN) regression method and propose its use to perform the BM3D parameter
optimization for PSNR, SSIM, and MS-SSIM, respectively, which are the popular
image quality evaluation measures, without reference image and knowledge of the
noise distribution. Experimental results with several images demonstrate the effec-
tiveness of the proposed approach.

Keywords: denoising parameter optimization, BM3D, full-reference image quality,
Kullback-Leibler divergence, elastic net regularization regression

1. Introduction

Image denoising is used for various tasks, such as segmentation, enhancement,
frequency decomposition, and local feature extraction. The performance of denoising
algorithms generally depends largely on the selection of the parameters. We address
the problem of optimizing the parameters of denoising algorithms to achieve maxi-
mum performance. The most common image quality evaluation metrics used to
quantitatively evaluate the performance of denoising methods include full-reference
metrics such as peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM) [1], and multi-scale structural similarity index measure (MS-SSIM) [2], which
assume that the original image exists and is fully available as a reference. However,
such reference images are not available in many practical applications. Therefore, no-
reference image denoising approaches have been intensively developed.
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Several methods for optimizing denoising parameters without reference have been
proposed that use cross-validation [3, 4] and the L-curve method [5, 6]. These
methods are somewhat empirical and hence not necessarily optimization methods in
the strict sense. Subsequently, a class of parameter optimization methods [7–9] was
developed to minimize an estimate of the mean-squared error (MSE) obtained using
Stein’s unbiased risk estimate (SURE) [10]. This approach performs PSNR optimiza-
tion without requiring a reference. Although PSNR is not necessarily a good evalua-
tion measure of image quality, it remains among the most popular objective image
quality metrics. However, this SURE-based approach generally necessitates the accu-
rate estimation of the noise variance in the noisy image, which is not trivial.

Recently, Zhu et al. [11] proposed a no-reference optimization method based on a
perceptual and no-reference image quality evaluation metric, which requires no
knowledge of the noise distribution. Their image quality evaluation metric is very
interesting in itself, but is not necessarily widely used. To the best of knowledge, most
existing methods for no-reference denoising parameter optimization either use the
estimated image noise or individual no-reference image quality evaluation metrics.
The only exception is the no-reference parameter optimization method by D’Elia et al.
[12], which requires no estimation of noise statistics and achieves its optimality only
under the SSIMmetric. However, PSNR and MS-SSIMmetrics are also widely used for
the assessment of image quality. Thus, a denoising algorithm to guarantee the near-
optimality with respect to the non-SSIM criterion, particularly for PSNR and MS-
SSIM, is proposed in this chapter. The proposed framework can also easily be
extended to incorporate any full-reference image quality measurement metrics that
might be discovered in the future.

In the chapter, we propose a novel technique for no-reference parameter optimi-
zation in the BM3D denoising algorithm, which is the current state-of-the-art
denoising method. Our method adaptively depends on which of the following most
widely used full-reference image quality evaluation metrics is optimized: PSNR, SSIM,
and MS-SSIM, and requires no knowledge of the noise distribution. To do so, we
introduce a natural image statistics (NIS) model based on the generalized Gaussian
distribution (GGD) and an elastic net regularization regression model. The pipeline of
our method is illustrated in Figure 1. Experimental results using SIDBA images are
presented to show the effectiveness of the proposed method.

The reminder of chapter is organized as follows. In Section 2, we describe a
statistical model of natural images in the wavelet transform domain. In Section 3, we
formulate a minimization problem of a statistical distance measure to estimate the
optimal parameters under the SSIM and MS-SSIM metrics. In Section 4, we derive
a regression-based bias correction procedure to estimate the optimal parameter
under the PSNR metric by refining a quasi-optimal parameter. In Section 5, we

Figure 1.
Pipeline of our method.
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present experimental results obtained by applying the proposed framework to each
state-of-the-art denoising method. Section 5 concludes the chapter.

2. Statistical model of natural images

In this section, we use a slight modification of Mallat’s statistical model of natural
images [13] based on generalized Gaussian modeling in the wavelet transform
domain. The generalized Gaussian distribution (GGD) [14] refers to a family of
symmetric distributions, which includes the Gaussian, the Laplacian, and the
uniform distributions as special cases. Recently, GGD has been successfully used in
the fields of pattern recognition and image processing, in applications such as
texture retrieval [15], digital watermarking [16], face recognition [17], and image
segmentation [18–20].

The probability density function (pdf) of GGD with a mean zero is given by

p x; α, βð Þ ¼
β

2αΓ 1=βð Þ
e� x=αj jβ , (1)

where α and β are, respectively, the scale and shape parameters (GGD parameters)
and Γ zð Þ ¼

Ð

∞

0 e�ttz�1dt z>0ð Þ is the gamma function. For β ¼ 2, Eq. (2) is equivalent
to the Gaussian distribution, whereas for β ¼ 1, it is equivalent to the Laplace distri-
bution. When β ! 0þ, Eq. (2) becomes a Dirac delta function distribution, and when
β ! þ∞, the distribution converges to a uniform distribution, as shown in Figure 2,
and when β ! þ∞, the distribution converges to a uniform distribution. The
maximum-likelihood estimation (MLE) [21, 22], moment-based [23], and global
convergence (GCM) [24] methods are widely used to estimate the GGD parameters
α, βð Þ. As described below, a statistical feature for natural image is described as a set of
the estimated parameters of GGD from the marginal distribution of multiresolution
wavelet coefficients of a given set of training images [25].

In the proposed approach, we first acquire a large number (K) of grayscale natural
images. We first apply the discrete wavelet transformation (DWT) to each compo-
nent image to decompose it into high-pass subbands (SB) of three different frequency
levels and three different orientations, including horizontal subbands Hj

� �

j¼1,2,3
,

Figure 2.
The probability density functions of generalized Gaussian distribution with different shape parameters β.
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vertical subbands V j

� �

j¼1,2,3
, diagonal subbands Dj

� �

j¼1,2,3
, and low-pass subbands

A3, where j ¼ 1,2,3 denotes the resolution level of the DWT. Then, for each of the

9 ¼ 3� 3ð Þ high-pass subband components Gj

� �

G¼H,V,D

n o

j¼1,2,3
, of each image, we

generate a normalized histogram (SB histogram) with a bin width h ¼ 3:5s=n1=3, where
n is the number of pixels and s is the standard deviation of the pixel values, using
Scott’s rule [26]. For each of the 9 SB histograms of each image, we estimate the

GGD parameters α̂
kð Þ
Gj
, β̂

kð Þ

Gj

n o

G¼H,V,D

� �

j¼1,2,3

, by the MLE method [21, 22], where

k ¼ 1,⋯,K is the image number. Finally, as a learning result from natural images,
we obtain a set of GGDs for the 9 SB components whose pdfs are given by

pGj
xð Þ ¼ f x; αGj , βGj

� �

, (2)

where f �; � , �ð Þ is the pdf of GGD defined by Eq. (2). αGj
and βGj

are respectively

the mean values of the total number K of the estimated α and β parameters for each SB
component; that is,

αGj
¼

1

K

X

K

k¼1

α̂
kð Þ
Gj
, βGj

¼
1

K

X

K

k¼1

β̂
kð Þ

Gj
: (3)

3. Parameter quasi-optimization

In the study, we address the problem of optimizing the parameters of the BM3D
algorithm (block-matching and 3D filtering) [27]. The BM3D algorithm is designed to
denoise images corrupted with zero-mean additive Gaussian noise. A modified ver-
sion called SAR-BM3D has also been proposed, which assumes multiplicative speckle
noise.

Firstly, the algorithm divides a noisy image into blocks. The similar blocks are
stacked together to form a 3D array. Then, based on the structural similarity in each
group, collaborative filtering and weighted averaging are carried out. The BM3D
algorithm requires that an associated parameter σ be set to the noise variance of the
image. However, accurate estimation of the noise distribution present in an image is
not trivial. In addition, such an optimal denoising parameter generally varies
depending on the selection of evaluation criteria.

Here, we consider that the quasi-optimal parameter σ is obtained as the value of σ
selected such that a statistical difference between the set of SB histograms of the
denoised image using BM3D algorithm and the set of GGD pdfs is minimized. We
adopt as the Kullback-Leibler divergence (KLD) [28] as one of the most widely used
statistical measures. We solve the following optimization problem.

σ ¼ argmin
σ

X

3

j¼1

X

G∈ H, V, Df g

DKL PGj
kQGj

σð Þ
� �

, (4)

where DKL PGj
kQGj

Θð Þ
� �

denotes the KLD between two distributions PGj
and

QGj
Θð Þ as
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DKL PGj
kQGj

σð Þ
� �

¼
X

i

pGj
xið Þ log

pGj
xið Þ

QGj
i jσð Þ

, (5)

where xi and QGj
i jσð Þ G ¼ H, V, D; j ¼ 1,2,3ð Þ are the center and the value of the

i-th bin in each SB histogram of the denoised image using BM3D algorithm, respec-
tively. pGj

�ð Þ G ¼ H, V, D; j ¼ 1,2,3ð Þ is the GGD pdfs defined in Eq. (3).

However, the quasi-optimal parameter σ did not necessarily achieve an optimal
denoising in some evaluation criteria. Thus, we used a paired t test at a signifi-
cance level of α ¼ 0:05, to determine whether there was a statistically significant
difference between the quasi-optimal parameter σ and each of σ ∗

PSNR, σ
∗
SSIM, and

σ ∗
MS�SSIM, which denote the ground-truth optimal parameters for the popular

image quality evaluation metrics PSNR, SSIM, and MS-SSIM, respectively. As
described in Section 5, our experimental results suggest that there is a statistically
significant difference in only PSNR between the quasi-optimal and ground-truth
optimal parameters. Thus, hereinafter we assume that both of the estimated
SSIM-optimal parameter σ̂SSIM and the estimated MS-SSIM-optimal one σ̂MS�SSIM

are given by the quasi-optimal parameter σ and that there was a bias between the
ground-truth PSNR-optimal parameter σ ∗

PSNR and σ. In the next section, we
describe a method to correct the bias to obtain the estimated PSNR-optimal
parameter σ̂PSNR.

4. Regression-based bias correction

We generate N training pairs of noisy and noise-free images by adding zero-mean
Gaussian noise of different levels of noise variance and different random seed numbers

to original images. Let yi
� 	

PSNR
i ¼ 1, ⋯, Nð Þ (the subscript PSNR is omitted hence-

forth for brevity) be the objective variable that is the ground-truth PSNR-optimal

parameter σ ∗
PSNR for the i-th training pair. Let xi ¼ xi, x2i , ⋯, x

p
i

� 	T
i ¼ 1, ⋯, Nð Þ be

the explanatory variable vector, where xi is the estimated quasi-optimal parameter σ
from the i-th noisy image. Let ξ0, ξð ÞPSNR be the regression parameter, where ξ0 ∈ and

ξ ¼ ξ1, ξ2, ⋯, ξp

� �T
∈

p.

Ordinary least squares regression is commonly used to perform polynomial
regression. Least squares regression is a simple method, but it is widely known that a
more stable and interpretable solution is obtained by incorporating regularization into
the solution of ordinary least squares. In such regularization regression models, lasso
regression is a typical and well-known approach to impose a L1 norm penalty [29].
However, if there are training samples with high correlation as the noisy training
images in our learning system, lasso tends to select only one sample and ignore others.
Therefore, the bias correction described in this section is achieved with an elastic net
[30], which is a robust regression model and avoids this problem. Using the elastic net
regularization regression, the regression parameter is obtained by solving the follow-
ing optimization problem.

ξ̂0, ξ̂
n o

¼ argmin
ξ0, ξð Þ∈

pþ1

X

N

i¼1

yi � ξ0 � x
T
i ξ

� 	2
þ Pλ ξð Þ, (6)
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where the regularization term Pλ ξð Þ is expressed as a linear combination of the L1

norm ∥ξ∥1 and the L2 norm ∥ξ∥22 as

Pλ ξð Þ ¼ λ1∥ξ∥1 þ λ2∥ξ∥
2
2 ¼ λ1

X

p

j¼1

∣ξj∣þ λ2
X

p

j¼1

ξ2j , (7)

where λ1 and λ2 are the positive magnitudes of the L1 and L2 norm penalties,
respectively. By using the solutions of Eq. (7), the estimated PSNR-optimal parameter
σ̂PSNR is expressed as follows.

σ̂PSNR ¼ σ þ
X

p

j¼0

ξ̂j

� �

PSNR
σj: (8)

Note that for correctness the subscript PSNR is shown explicitly in Eq. (8). In our
experiments, we used the degree p of the polynomial as p ¼ 3 and the tuning param-
eter λ of the elastic net as λ1 ¼ λ2 ¼ 5.

5. Experimental results

K ¼ 6000 training images described in Section 3 were randomly selected from
photography websites such as http://pro.foto.com and http://sozaing.com. All the
images were cropped to be the size of 256 � 256 pixels. Figure 3(a, b, c) shows the
plots of the KLD (red curves, left vertical axes) and PSNR, SSIM and MS-SSIM (blue
curves, right vertical axes) for different values of the BM3D parameter σ (horizontal
axes) for the Lena image corrupted by Gaussian noise N 0, 30ð Þ, respectively. From
Figure 3, it may be observed that the quasi-optimal parameter σ, which is the value of
σ minimizing KLD, was slight smaller than the ground-truth PSNR-optimal parameter
σ ∗
PSNR, whereas σ was almost equal to the ground-truth SSIM-optimal and MS-SSIM-

optimal parameters σ ∗
SSIM and σ ∗

MS�SSIM.
Next, a total of 50 ¼ 5� 5� 2ð Þ noisy SIDBA images (Lena, Pepper, Airplane,

Parrots, and Girl) corrupted by five different zero-mean Gaussian noise
N 0, σnð Þ, σn ¼ 10, 20, ⋯, 50ð Þ for different two seeds of random number generator
were prepared as training images, and then, the regularization regression described in
Section 4 was applied on the training image set to determine the relationships
between the quasi-optimal parameter σ and each of the ground-truth optimal
parameters σ ∗

PSNR, σ
∗
SSIM, and σ ∗

MS�SSIM.

Figure 3.
Plots of KLD (red curves) and popular image quality evaluation metrics (blue curves) versus different BM3D
parameters σ. (a) KLD and PSNR. (b) KLD and SSIM. (c) KLD and MS-SSIM.
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To this end, first we qualitatively evaluated the denoising parameter
quasi-optimization described in Section 3. Figure 4(a, b, c) shows the plots of the
ground-truth optimal parameters σ ∗

PSNR, σ
∗
SSIM, and σ ∗

MS�SSIM (vertical axes) versus the
quasi-optimal parameter σ (horizontal axes), respectively. From Figure 4(a), it may
be observed that σ is smaller than σ ∗

PSNR and the trend becomes more significant for
larger noise variance. In contrast, from Figure 4(b, c), it may be observed that σ was
very close to both of σ ∗

SSIM and σ ∗
MS�SSIM. Furthermore, to quantitatively evaluate the

denoising parameter quasi-optimization, we used a paired t test at a significance level
of α ¼ 0:05 to compare the quasi-optimal parameter σ with each of the ground-truth
optimal parameters σ ∗

PSNR, σ
∗
SSIM, and σ ∗

MS�SSIM. The results showed no statistically
significant differences for SSIM (the paired t test yielded a p value of 0:1167>0:05)
and MS-SSIM (the paired t test gives a p value of 0:1744>0:05), and hence, we
estimate the SSIM-optimal and MS-SSIM-optimal parameters as σ̂SSIM ¼ σ̂MS�SSIM ¼ σ.
In contrast, the above results showed a statistically significant difference for PSNR

(the paired t test gives a p value of 5:2962� 10�8
<0:05), and thus, we calculated

Eq. (8) to find the estimated PSNR-optimal parameter σ̂PSNR.
To qualitatively evaluate the parameter optimization described in Section 4, we

illustrate in Figure 5(a) the plots of the ground-truth PSNR-optimal parameter σ ∗
PSNR

(vertical axis) versus the quasi-optimal parameter σ (blue plots, horizontal axis) and
the estimated PSNR-optimal parameter σ̂PSNR (red plots, horizontal axis) for the

Figure 4.
Plots of ground-truth optimal parameters versus different quasi-optimal parameters σ. (a) σ ∗

PSNR versus σ. (b)
σ ∗
SSIM versus σ. (c) σ ∗

MS�SSIM versus σ.

Figure 5.
Plots of ground-truth PSNR-optimal parameters σ ∗

PSNR versus different quasi-optimal parameters σ (blue points)
and estimated PSNR-optimal parameters σ̂PSNR (red points) on the training and test image sets. (a) The training
image set. (b) The test image set.
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training image set. From Figure 5(a), it may be observed that bias correction based on
the elastic net regularization regression improved the quasi-optimal parameters. To
quantitatively evaluate the parameter optimization described in Section 4, we used
a paired t test at a significance level of α ¼ 0:05 to compare the estimated PSNR-
optimal parameter with the ground-truth PSNR-optimal parameter. The results
showed no statistically significant differences (the paired t test gives a p value of
p ¼ 0:2692>0:05).

In Tables 1 and 2, we summarize the pairs of the ground-truth optimal parameters
and the metric values and the pairs of the estimated optimal parameters and the

Image σn Ground-

truth

Estimated Ground-truth Estimated Ground-truth Estimated

(σ ∗

PSNR,

PSNR)

(σ̂PSNR,

PSNR)

(σ ∗

SSIM, SSIM) (σ̂SSIM, SSIM) (σ ∗

MS�SSIM,

MS-SSIM)

(σ̂MS�SSIM,

MS-SSIM)

Lena 10 (10.8, 37.49) (10.4, 37.48) (10.2, 0.9950) (9.0, 0.9946) (10.0, 0.9930) (9.0, 0.9927)

20 (22.8, 35.42) (19.5, 35.29) (19.6, 0.9887) (18.6, 0.9884) (20.0, 0.9847) (18.6, 0.9843)

30 (32.4, 34.35) (31.6, 34.31) (29.2, 0.9814) (28.4, 0.9814) (29.8, 0.9755) (28.4, 0.9752)

40 (42.6, 33.52) (43.1, 33.52) (40.2, 0.9722) (37.8, 0.9715) (40.2, 0.9644) (37.8, 0.9611)

50 (49.6, 32.79) (49.6, 32.78) (49.6, 0.9643) (44.4, 0.9626) (45.8, 0.9531) (44.4, 0.9527)

Pepper 10 (11.4, 35.89) (10.4, 35.88) (10.4, 0.9930) (10.0, 0.9930) (10.4, 0.9917) (10.0, 0.9916)

20 (24.8, 34.19) (25.7, 34.17) (20.8, 0.9848) (23.8, 0.9843) (20.8, 0.9837) (23.8, 0.9833)

30 (34.0, 33.46) (37.8, 33.46) (30.4, 0.9754) (33.4, 0.9749) (30.4, 0.9744) (33.4, 0.9738)

40 (45.0, 32.90) (46.2, 32.89) (40.2, 0.9638) (40.8, 0.9636) (40.2, 0.9631) (40.8, 0.9630)

50 (53.0, 32.41) (51.6, 32.40) (45.0, 0.9525) (47.2, 0.9522) (44.6, 0.9522) (47.2, 0.9517)

Airplane 10 (10.2, 36.53) (10.9, 36.53) (10.2, 0.9635) (9.8, 0.9634) (9.4, 0.9903) (9.8, 0.9902)

20 (22.2, 35.21) (20.3, 35.17) (20.6, 0.9371) (19.4, 0.9358) (19.0, 0.9787) (19.4, 0.9786)

30 (34.0, 34.51) (32.0, 34.49) (30.0, 0.9137) (28.8, 0.9125) (28.2, 0.9666) (28.8, 0.9663)

40 (41.4, 33.68) (40.6, 33.66) (39.0, 0.8893) (37.4, 0.8884) (37.0, 0.9529) (37.4, 0.9529)

50 (51.6, 32.78) (50.4, 32.76) (44.8, 0.8720) (44.2, 0.8717) (43.0, 0.9424) (44.2, 0.9417)

Parrots 10 (10.6, 37.74) (10.4, 37.73) (10.6, 0.9889) (9.0, 0.9873) (10.4, 0.9905) (9.0, 0.9897)

20 (23.8, 35.46) (20.4, 35.41) (20.2, 0.9770) (18.6, 0.9753) (20.6, 0.9793) (18.6, 0.9780)

30 (34.0, 34.46) (31.5, 34.43) (30.6, 0.9645) (28.4, 0.9631) (30.6, 0.9675) (28.4, 0.9662)

40 (42.4, 33.88) (43.3, 33.86) (40.2, 0.9512) (38.0, 0.9462) (42.0, 0.9549) (38.0, 0.9475)

50 (51.0, 33.32) (50.9, 33.31) (48.2, 0.9379) (44.8, 0.9362) (48.0, 0.9420) (44.8, 0.9400)

Girl 10 (9.6, 35.53) (10.9, 35.43) (9.0, 0.9385) (9.8, 0.9373) (10.4, 0.9878) (9.8, 0.9877)

20 (20.4, 33.95) (19.9, 33.94) (19.0, 0.9044) (19.0, 0.9044) (19.8, 0.9742) (19.0, 0.9741)

30 (31.6, 33.22) (30.8, 33.19) (28.6, 0.8711) (27.8, 0.8706) (28.6, 0.9569) (27.8, 0.9566)

40 (43.8, 32.74) (41.4, 32.72) (40.4, 0.8384) (36.4, 0.8323) (40.2, 0.9376) (36.4, 0.9353)

50 (53.4, 32.33) (48.5, 32.32) (50.2, 0.8066) (43.2, 0.8046) (47.2, 0.9179) (43.2, 0.9177)

Table 1.
Comparison of the ground-truth optimal parameters, the ground-truth metric values, the estimated optimal
parameters, and the estimated metric values. The comparisons are shown for the training image set.
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metric values for different levels of zero-mean Gaussian noise variance and different
metrics for the training image set and a test image set consisting of four SIDBA images
(Balloon, Couple, Earth, and Barbara; hereinafter are referred to as “the testing image
set”), respectively.

In Figure 5(b), we show the plots of the ground-truth PSNR-optimal parameter
(vertical axis) versus the quasi-optimal parameter (blue plots, horizontal axis) and the
estimated PSNR-optimal parameter (red plots, horizontal axis) for the test image set.
From Figure 5(b), as well as the results in Figure 5(a), our bias correction visually
improves the quasi-optimal parameters. As in Figure 5(a), we used a paired t test at a
significance level of α ¼ 0:05 to compare the estimated PSNR-optimal parameter with
the ground-truth PSNR-optimal parameter. The results showed no statistically signif-
icant differences (the paired t test gives a p value of p ¼ 0:1920>0:05), and hence, we
can confirm the validity of σ̂PSNR.

Figure 6 illustrates a visual comparison of the denoising results. Figure 6(a)
shows the standard Barbara image. Figure 6(b) shows the enlarged detail in the eye

Image σn Ground-

truth

Estimated Ground-truth Estimated Ground-truth Estimated

(σ ∗

PSNR,

PSNR)

(σ̂PSNR,

PSNR)

(σ ∗

SSIM, SSIM) (σ̂SSIM, SSIM) (σ ∗

MS�SSIM,

MS-SSIM)

(σ̂MS�SSIM,

MS-SSIM)

Balloon 10 (10.6, 38.64) (10.26, 38.61) (10.0, 0.9767) (8.8, 0.9736) (10.2, 0.9888) (8.8, 0.9876)

20 (22.4, 36.54) (20.2, 36.44) (19.6, 0.9515) (18.4, 0.9489) (20.6, 0.9721) (18.4, 0.9709)

30 (33.2, 35.52) (31.1, 35.46) (30.2, 0.9287) (28.0, 0.9254) (29.6, 0.9533) (28.0, 0.9520)

40 (47.0, 34.90) (43.7, 34.87) (40.2, 0.9068) (38.4, 0.8960) (40.2, 0.9348) (38.4, 0.9235)

50 (56.4, 34.36) (51.7, 34.34) (48.4, 0.8886) (45.8, 0.8860) (48.4, 0.9167) (45.8, 0.9155)

Couple 10 (9.8, 36.33) (10.5, 36.29) (9.2, 0.9303) (9.2, 0.9303) (9.6, 0.9872) (9.2, 0.9871)

20 (20.2, 33.60) (19.3, 33.59) (18.8, 0.8535) (17.6, 0.8530) (17.6, 0.9665) (17.6, 0.9665)

30 (30.2, 32.66) (28.2, 32.63) (27.4, 0.7847) (25.8, 0.7835) (26.0, 0.9420) (25.8, 0.9419)

40 (40.2, 32.25) (37.8, 32.22) (35.6, 0.7216) (33.4, 0.7199) (34.0, 0.9157) (33.4, 0.9154)

50 (56.8, 32.18) (49.3, 32.14) (43.4, 0.6704) (43.0, 0.6702) (43.0, 0.8893) (43.0, 0.8893)

Earth 10 (11.0, 36.26) (11.4, 36.24) (10.8, 0.9862) (10.4, 0.9862) (10.2, 0.9899) (10.4, 0.9897)

20 (22.4, 34.57) (22.3, 34.57) (20.6, 0.9711) (20.2, 0.9709) (17.4, 0.9759) (20.2, 0.9742)

30 (34.0, 33.74) (33.3, 33.74) (31.0, 0.9551) (29.8, 0.9549) (27.0, 0.9582) (29.8, 0.9557)

40 (41.6, 33.11) (44.8, 33.09) (40.2, 0.9405) (39.4, 0.9351) (34.0, 0.9347) (39.4, 0.9295)

50 (54.6, 32.55) (52.4, 32.53) (47.2, 0.9257) (46.8, 0.9256) (43.0, 0.9191) (46.8, 0.9141)

Barbara 10 (11.6, 37.40) (11.4, 37.38) (10.8, 0.9702) (8.4, 0.9599) (10.8, 0.9951) (8.4, 0.9940)

20 (22.8, 35.26) (22.3, 35.25) (21.0, 0.9396) (18.4, 0.9324) (21.4, 0.9872) (18.4, 0.9862)

30 (33.6, 34.24) (33.3, 34.23) (30.4, 0.9029) (28.6, 0.9756) (30.4, 0.9761) (28.6, 0.9557)

40 (43.8, 33.81) (44.8, 33.79) (40.2, 0.8717) (38.6, 0.8462) (40.2, 0.9662) (38.6, 0.9578)

50 (54.0, 33.33) (52.4, 33.32) (46.8, 0.8374) (45.0, 0.8348) (45.8, 0.9532) (45.0, 0.9530)

Table 2.
Comparison of the ground-truth optimal parameters, the ground-truth metric values, the estimated optimal
parameters, and the estimated metric values. The comparisons are shown for the test image set.
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Figure 6.
Visual comparison of denoising results. (a) Barbara image. (b) Enlarged detail of (a). (c) Image corrupted by
Gaussian noise N 0,σn ¼ 30ð ). (d) Enlarged detail of (c). (e) Denoised image with the BM3D algorithm the
parameter σ of which is the estimated noise variance from (c) (σ̂n ¼ 20:6). (f) Denoised image with the BM3D
algorithm the parameter σ of which is the estimated PSNR-optimal parameter σ̂PSNR ¼ 33:3. (g) Denoised image
with the BM3D algorithm the parameter σ of which is the estimated SSIM-optimal parameter σ̂SSIM ¼ 28:6. (h)
Denoised image with the BM3D algorithm the parameter σ of which is the estimated MS-SSIM-optimal parameter
σ̂MS�SSIM ¼ 28:6. (i) Enlarged detail of (e). (j) Enlarged detail of (f). (k) Enlarged detail of (g). (l) Enlarged
detail of (h).

10

Denoising - New Insights



area of the original Barbara image shown in (a). Figure 6(c) shows the noisy
Barbara image corrupted by additive zero-mean Gaussian noise N 0, σn ¼ 30ð Þ.
Figure 6(d) shows an enlarged detail in (c). Figure 6(e) shows the denoised image
by the BM3D with the directly estimated noise variance from the noisy Barbara
image shown in (c) as the parameter value. Figure 6(f, g, h) shows the denoised
images by the BM3D with the estimated PSNR-optimal, SSIM-optimal and MS-
SSIM-optimal parameters, respectively. Figure 6(i–l) shows the enlarged details in
(e), (f), (g), and (h), respectively. These results indicate that the BM3D model was
able to denoise the noisy image with reasonable accuracy by using our estimated
optimal parameters.

Finally, for each of the image quality evaluation metrics PSNR, SSIM, and MS-
SSIM, we compare the measure value of the BM3D denoised image using our esti-
mated optimal parameters, against that using the estimated noise variance from the
input noisy image. Figure 7(a, b, c) shows the plots of the mean values of PSNR,
SSIM, and MS-SSIM at each noise variance across the test image set, respectively.
From these results, it may be observed that the BM3D algorithm with our estimated
optimal parameter outperformed that with the directly estimated noise variance from
the input images.

6. Conclusions

We addressed the problem of estimating the optimal parameter of state-of-the-art
denoising algorithm BM3D algorithm without any reference and without any knowl-
edge of the noise distribution, adaptively depending on which of the following widely
used image quality evaluation metrics are optimized: PSNR, SSIM, and MS-SSIM. The
proposed method for SSIM and MS-SSIM optimization is formulated as a minimiza-
tion problem for a Kullback-Leibler divergence measure based on the natural image
statistics and generalized Gaussian distribution based prior. The method for PSNR
optimization is formulated as a combination of the above optimization and an elastic
net regression, which provides a very robust regression model. From our experimental
results, we have confirmed that the proposed statistical measure and robust regression
approach can be used to optimize the denoising parameter of the BM3D algorithm.

Figure 7.
Plots of image quality evaluation metric values versus different levels of image noise variance for the direct
estimation of the image noise variance (blue lines and points), our proposed method (red lines and points), and the
ground-truth (black lines and points). The comparisons are shown for the test image set. (a) PSNR. (b) SSIM. (c)
MS-SSIM.
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