
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

148,000 185M

TOP 1%154

6,000



1

Chapter

Non-Small Cell Lung Cancer Brain 
Metastasis: The Link between 
Molecular Mechanisms and Novel 
Therapeutic Approaches
Shiva Najjary, Dana A.M. Mustafa and Johan M. Kros

Abstract

The prognosis of patients suffering from non-small cell lung carcinomas (NSCLC) 
worsens significantly when brain metastasis occurs. Seeding to the brain usually 
happens relatively early in the course of disease and therefore, new therapies antici-
pating this complication would result in considerable improvement in outcomes. In 
this review, we address recent molecular data of NSCLC with a focus on the risk of the 
formation of brain metastasis. Included is new data on the involvement of miRNAs 
and lncRNAs in the rise of the cerebral seeding of NSCLC. We summarize novel 
therapeutic approaches developed in the light of these recent molecular discoveries.

Keywords: brain metastasis, lung cancer, blood-brain barrier, microRNAs, targeted 
therapy, immunotherapy

1. Introduction

Lung carcinoma is among the deadliest cancers and its treatment is an important 
challenge for oncologists. Approximately 16–20% of patients with lung cancer 
develop brain metastasis, regarded as the most life-threatening complication of the 
disease. Population-based incidence proportions for brain metastasis are highest for 
lung cancer (20% against 9.6% for all common cancers) [1]. The frequency of the 
diagnosis of lung cancer brain metastasis (LCBM) has increased and the reasons for 
this are not entirely clear. Certainly, advances in radiology have resulted in increased 
sensitivity for tracing brain metastatic sites. In addition, metastatic tumor cells 
behind the blood-brain barrier (BBB) are less vulnerable to chemotherapeutic agents 
(“pharmacologic sanctuary”). Further, there are effects of the increasing age of 
the population [2]. The incidence and severity of the cerebral symptoms vary from 
minimal to severely debilitating. Less than 4% of patients with metastatic NSCLC live 
longer than five years after the diagnosis [3–5]. Obviously, protecting patients from 
developing brain metastases would significantly alleviate the disease burden and 
improve outcomes. Knowledge of the subsequent steps tumor cells need to take before 
growing as metastases in the brain is essential. In this review, we will summarize 
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current knowledge on the genes and pathways operative in the development of brain 
metastasis of NSCL and summarize the application of targeted drugs.

2. Brain metastasis development and the blood-brain-barrier

A significant part of the disease burden and death of cancer is caused by the 
 seeding of tumor cells to the brain [6]. The stages of the development of brain 
metastasis include the detachment of cancer cells from the primary tumors and 
their penetration of the BBB followed by extravasation, colonization, and macro-
metastatic growth [7]. The detachment of tumor cells from the primary tumor mass 
depends on cell adhesion molecules (CAMs) including immunoglobulins (IgCAMs), 
selectins, integrins, and cadherins [8–10]. The tumor cells require the loss of func-
tional E-cadherin (CDH1) in order to increase their motility, and close relation 
between reduced E-cadherin expression and poor outcome due to tumor spread 
in NSCLC exists [11]. CDH1 regulates EGFR activity through receptor tyrosine 
kinases (RTKs) and provides functions in intracellular signaling. Subsequent events 
include the epithelial-mesenchymal transition (EMT), a crucial phenomenon in 
the dissemination and motility of cancer cells [12, 13]. The process of EMT relays 
on proteases such as secreted matrix metalloproteinases (MMPs) that degrade 
the extracellular matrix (ECM) components including proteoglycans, collagen, 
fibronectin, and laminin, and modify the structural and mechanical features of the 
ECM [14]. MMPs also break down cell-ECM - and cell-cell connections by cleaving 
CDH1 and CD44. MMP-1, MMP-2, and MMP-9 are particularly associated with 
metastases of lung cancer [15]. Once detached and motile, the tumor cells enter the 
circulation to become circulating tumor cells (CTCs). Some CTCs resist the forces 
of the blood flow and by using surface receptors adhere to the endothelial cells. 
Subsequently, the cells will migrate through the endothelial layer by the expression 
of selectins, integrins, and chemokines. This process is accompanied by the creation 
of a permissive immune microenvironment through the activation of integrins and 
the release of cytokines such as vascular endothelial growth factor (VEGF) [16]. 
VEGF is vital in the process of neovascularization and takes part in the creation of 
high endothelial venules, to increase lymphocyte extravasation and infiltration in 
the perivascular niches (PVN) at the metastatic sites [17]. The altered microenviron-
ment promotes further migration of CTCs to the brain parenchyma by secreting 
site-specific chemokines such as CXCR4 and its ligand, CXCL12 [17, 18]. There is 
high expression of CXCR4/CXCL12 in brain metastases of NSCLC and, together with 
integrins, CXCR4 enhances further tumor cell invasion. The metastatic cells in the 
PVNs activate tumor-associated macrophages (TAMs) and microglia. TAMs play a 
role in the survival of CTCs and induce extravasation and colonization by expressing 
survival factors such as epidermal growth factor (EGF) [19]. While the TILs try to 
combat the tumor cells, the microglia switches from the M1 (anti-tumor) phenotype 
to the M2 (anti-inflammatory) phenotype by factors secreted from tumor cells [20] 
and display tumor-supporting activity. The M2 microglia counteracts TILs activity 
via the induction of immunosuppressive factors including programmed cell death 
protein 1(PD1) /programmed death-ligand 1 (PD-L1) [21]. Also, activated astrocytes 
promote the proliferation and brain invasion of the tumor cells [22]. Obviously, cell 
types and pathways that initially are activated to counter-act the metastatic process 
become collaborators in progressive colonization of the brain later on. So far, thera-
peutic interventions aimed at the elimination of the tumor cells growing in the brain. 
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Future therapeutic strategies may target any of the preceding events, including CTC 
trafficking and penetration of the BBB.

3. Genetic alterations in NSCLC associated with brain metastasis

Targeted therapies that successfully combat tumor cells outside the brain may fail 
to be effective behind the BBB. There are several reasons for this, one of which are dif-
ferences in genetic alterations between the primary tumors and their metastases [23]. 
Patients suffering from NSCLC have been classified according to the genetic changes 
in the primary tumor, which include epidermal growth factor receptor (EGFR), 
Kirsten rat sarcoma (KRAS), and anaplastic lymphoma kinase (ALK). NSCLC brain 
metastasis-specific mutations can be detected in the cerebrospinal fluid (CSF) and 
can also be used to evaluate the presence of disease and response to therapy [24].

3.1 EGFR mutations

EGFR is a receptor for extracellular growth factors such as epithelial growth factor 
(EGF) and tumor growth factor-α (TGFα). Binding of these factors causes a struc-
tural change and activation of the receptor complex, resulting in the activation of sig-
naling pathways that promote cell proliferation, motility, and survival. Dysregulation 
of the receptor is associated with various human cancers. The prevalence of EGFR 
mutations is dependent on a variety of factors, including ethnicity, gender, smoking, 
tumor heterogeneity, and tumor progression. EGFR is often overexpressed in NSCLC 
and the two most frequent EGFR mutations encountered involve exon 19 (deletions) 
and 21 (L858R mutations) [25, 26]. [27]. There is data supporting that CNS metasta-
ses of NSCLC are promoted by EGFR-activated mesenchymal–epithelial transition 
(MET) through mitogen-activated protein kinases (MAPK) signaling. EGFR activates 
signal transducer and activator of transcription 3 (STAT3) via the expression of 
interleukin-6 (IL-6) which would increase the risk of BM [28]. NSCLC patients with 
EGFR mutations at the time of diagnosis or in the early stages of the disease seem 
to have two times higher risk of brain metastasis [29–31]. In a series of 30 primary 
tumor/metastasis series, there was discordance between EGFR status as measured by 
IHC of one-third of sample pairs and a little less by FISH [32]. In 14 out of 54 paired 
samples of lung adenocarcinomas, EGFR alterations of EGFR were restricted to the 
brain metastases [33]. In a recent paper by Haim et al., the EGFR mutational status of 
brain metastasis could be predicted with an accuracy of almost 90% by using clinical, 
radiological, and molecular data for deep learning strategies [34]. Obviously, the pres-
ence of CNS metastases leads to poorer outcomes (viz., 11.6 months vs 18.7 months) 
as shown in a study on 101 EGFR positive metastatic NSCLC previously treated with 
either combination chemotherapy or oral TKI [35]. The progression of the cerebral 
lesions is also relatively high during treatment in these patients and there is a connec-
tion between the EGFR mutations and EMT-related tumor invasion [36, 37].

3.2 KRAS mutations

The K-Ras protein is encoded by the KRAS gene and is part of the RAS/MAPK 
pathway, where it transfers signals to proliferate and divide from extracellular into the 
nucleus. A single substitution of a nucleotide may serve as an activator of the signal-
ing pathway turning tissue hyperplasia into invasive cancers. Although it is believed 
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that KRAS and EGFR mutations are mutually exclusive [38, 39], yet cases of simul-
taneous occurrence were found [40–42]. Nearly 15–30% of NSCLCs have activating 
mutations in the KRAS gene that are associated with adenocarcinoma initiation and 
clinical aggressiveness [38, 43, 44]. There is a clear connection between KRAS muta-
tions and smoking history [45, 46]. In a study of 482 lung adenocarcinomas (LADC), 
it was found that KRAS mutations also occur in patients who had never smoked, but 
the mutations differ from those in the tumors of smokers. For instance, transition 
mutations (G > A) prevail in those who never smoked while transversion mutations 
(G > T or G > C) are typical for NSCLCs in smokers [47]. The relation between KRAS 
mutations in NSCLC and propensity for brain metastasis is still unknown and need 
to be further studied [36, 42]. Approximately 25% of brain metastatic tumors with 
KRAS mutations were observed in smokers [44]. Other mutations, including ROS 
proto-oncogene 1, liver kinase B1 (LKB1), and hepatocyte growth factor receptor 
(HGFR), were associated with the development of lung carcinoma [48–50], but their 
relations with brain metastasis of lung cancer is also unknown. LKB1 is inactivated 
in nearly 30% of all NSCLCs [46] and its effects are synergistic with those of KRAS 
mutation on the progression of lung cancer and the development of metastases in 
general [51, 52]. In a study of 154 patients with NSCLC, Zhao et al. concluded that 
KRAS mutations in combination with low LKB1 copy numbers (CNs) are related to a 
20-fold increase in brain metastasis [53]. So far, therapeutic KRAS targeting has been 
unsuccessful.

3.3 ALK translocations

ALK gene mutations, copy number changes, or fusion with other genes have 
oncogenic effects. Similar to EGFR mutations, translocations of ALK are predic-
tive of response to Tyrosine Kinase Inhibitors (TKIs) [54]. ALK testing is mostly 
recommended for non-squamous cell lung cancers lacking EGFR mutations. The 
fusion between ALK and EML4 (echinoderm microtubule-associated protein-like 
4) produces molecular variants with diverse biological functions and affects various 
signaling pathways [55, 56]. The incidence of cerebral metastases in NSCLC with ALK 
mutations is high and ALK translocations of primary tumors and their brain metas-
tases are often similar. Interestingly, the progress of brain metastases of tumors with 
ALK mutations slows down significantly when treated with targeted therapy: over 
45% of patients with BM had overall survival rates of three years [57]. Because nearly 
45% of patients with ALK-positive NSCLC have developed BM at death [58], cerebral 
seeding is an important clinical challenge for developing strategies for personalized 
care in NSCLC [59].

3.4 MET and RET mutations

The large variety of mutations in EMT: (mesenchymal epithelial transition factor) 
affects a range of cancers, including NSCLC. The MET gene codes for a tyrosine-
kinase receptor that plays role in developmental processes and wound healing. 
Hepatic growth factor/scatter factor (HGF/SF) and their splice isoforms NK1 and 2 
are the only known ligands of the MET receptor. In cancer, abnormal MET activation 
triggers proliferation, angiogenesis, and metastasis. The MET pathways interfere 
with the key oncogenic pathways RAS, P13K, STAT3, and beta catenin. In general, 
mutations consist of duplications of mutant alleles, intronic splice site alterations, and 
mutations affecting the receptor downstream targets. In NSCLC BM, the majority of 
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MET mutations found at metastatic sites affect the extracellular SEMA: Semaphorin 
superfamily domain of the receptor [60–62]. Remarkably, mutations in MET occur 
more frequently in CNS metastasis from NSCLC than in their primary tumors. 
RET chromosomal rearrangements have been detected in 1–2% of all patients with 
NSCLC, particularly in patients with adenocarcinoma. The rearrangements are mutu-
ally exclusive with EGFR, ALK, or RAS mutations [63]. Importantly, NSCLC with 
RET rearrangement is associated with an increased risk of BMs [64].

4. The role of MicroRNAs in NSCLC brain metastasis

MicroRNAs (miRNAs) are conserved short endogenous RNA molecules (21–25 nt)  
that play critical roles in gene expression patterning by interfering with target mRNAs 
[65]. MiRNAs regulate cellular functions including cell growth, cell differentiation, 
and cell death. About half of the miRNAs participate in tumorigenesis [66]. The 
expression of miRNAs may lead to the rise of tumors by activating the pathways 
implicated in carcinogenesis. The function of miRNAs in the development of tumor 
metastasis to brain has recently attracted attention and various studies have addressed 
the role of miRNAs in the progression of brain metastases of lung cancers in particular 
(Table 1) [83, 84]. The effects of miRNAs vary widely, depending on the expressional 
cascades they influence.

In Table 1, a summary of currently known miRNA associations with NSCLC 
and their brain metastases is presented. MiRNA-184 and miRNA-197 are highly 
expressed in EGFR-mutant NSCLCs of patients with cerebral metastases and may 
serve as biomarkers for the risk of cerebral seeding [67]. Expression of miRNA-9 and 
miRNA-1471 has also been found in lung cancer with brain metastasis. Up-regulation 
of miRNA-145 inhibits the proliferation of human tumor cells in lung adenocarcino-
mas via targeting of c-Myc and EGFR [79]. [85, 86]. MiRNA-146a is overexpressed 
in NSCLC and is associated with down-regulation of heterogeneous nuclear ribo-
nucleoprotein (hnRNP) C1/C2 and up-regulation of β-catenin, resulting not only 
in tumor cell invasion and migration but also in the metastatic potential to brain 
[87, 88]. Also, MiRNA-95-3p is upregulated in lung adenocarcinoma but overex-
pression of this MiRNA seems to suppress the formation of brain metastasis via 
down-regulation of cyclin D1 [75]. MiRNA-378 is overexpressed in NSCLC and their 
brain metastases and increases tumor growth and metastasis via the upregulation of 
MMP-7, VEGF, and MMP-9 [74]. Also, MiRNA-328 is overexpressed in NSCLC and 
allegedly promotes the formation of brain metastases via PRKCA and urokinase-type 
plasminogen activator (uPA) [71]. PRKCA mediates the expression, resulting in the 
migration of the cancer cells [89]. Lastly, increased miRNA-21 levels suppress cell 
death and promote the proliferation and invasion of NSCLC and lung adenocarci-
noma cells [68, 90].

Some miRNAs are downregulated in the context of cerebral seeding of lung can-
cer. MiRNA-768-3p is downregulated in lung cancer cells co-cultured with astrocytes, 
leading to increased KRAS expression, tumor outgrowth, and propagation of brain 
metastasis [91]. MiRNA-375 is another miRNA that reportedly is down-regulated in 
primary NSCLC and reduced levels of miRNA-375 are associated with NSCLC brain 
metastasis [72]. In tumors in which miRNA-375 was downregulated MMP9 and VEGF 
were found overexpressed [72]. Reduced miRNA-145 levels also seem to promote 
brain metastasis in lung adenocarcinoma, while overexpression reduces tumor dis-
semination [69].
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miRNA Tissue Target Tumor suppressor/

Oncogene

Effect References

miR-184, 

miR-197

EGFR-

mutant 

lung 

tumors

[67]

miR-21 In vivo SPRY2, 

TIMP3, 

CDKN1A, 

SERPINB5 

and PTEN

Oncogene Initiating cell 

proliferation 

promoting brain 

metastasis-

[68]

miR-145-5p Brain 

and 

lung 

tumors

TPD52 Suppressor Inhibited cell 

invasion and 

migration

[69]

miR-142-3p TCGA 

data

TRPA1 Suppressor Suppressing 

NSCLC 

progression

[70]

miR-328 Brain 

and 

lung 

tumors

PRKCA Oncogene Increasing cell 

migration

[71]

miR-375 Brain 

and 

lung 

tumors

VEGF and 

MMP-9

Suppressor [72]

miR-590 Lung 

tumors

ADAM9 Suppressor Suppressing 

tumorigenesis 

and invasion

[73]

miR-378 Brain 

and 

lung 

tumors

MMP-2, 

MMP-9 and 

VEGF

Oncogene Promoting 

migration, 

invasion, and 

angiogenesis

[74]

miR-95-3p In vivo Cyclin D1 Suppressor Inhibiting 

invasion and 

proliferation

[75]

miR-330-3p Lung 

tumors

GRIA3 Oncogene Promoting 

growth, tumor 

invasion, and 

migration.

[76, 77]

miR-490-3p Brain 

tissues

PCBP1 Oncogene Promoting 

proliferation, 

invasion, and 

migration

[78]

miR-145 Brain 

and 

lung 

tumors

Suppressor Inhibiting cell 

proliferation

[79]

miR-423-5p Lung 

tumors

MTSS1 Oncogene Promoting cell 

invasion and 

migration.

[80]
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Taken together, miRNAs appear to have great potential for cancer diagnosis, 
prognosis, and treatment at the molecular level, but the use of miRNAs for the clinical 
treatment of brain metastases requires further investigation. Many studies focused on 
the identification of alterered expression patterens of miRNAs after outgrowth in the 
brain microenvironment, but validation of data in larger groups of tumor samples is 
needed [31].

5. Role of lncRNAs in NSCLC brain metastasis

Long non-coding RNAs (lncRNAs) are non-coding transcripts comprising > 200 
nucleotides that have substantial functions in various physiological and pathological 
pathways. Similar to miRNAs, lncRNAs also regulate a variety of molecular targets 
by various mechanisms. Recently, the effective role of lncRNAs in tumorigenesis 
was shown [92]. lncRNAs are important regulators of lung cancer progression. Some 
lncRNAs serve different functions in various types of cells [93]. MALAT1 (Metastasis-
associated lung adenocarcinoma transcript 1) is a large non-coding RNA gene that is 
highly conserved in mammals and regulates gene expression via splicing-independent 
mechanisms in NSCLC metastasis [94]. MALAT1 is located on chromosome 11q13 and 
increased MALAT1 levels were recently discovered in patients with NSCLC who had 
developed cerebral metastasis, while not in patients without brain locations [95, 96]. In 
addition, functional studies revealed that overexpression of MALAT1 leads to overex-
pression of vimentin in highly invasive metastatic lung cancer cell lines while silencing 
MALAT1 affects EMT programming and suppresses metastasis of the lung cancer 
cells [96]. Moreover, RNAi-mediated repression of MALAT1-RNA has a negative 
impact on the migration and outgrowth of human NSCLC cell lines. Overexpression of 
MALAT1 in NIH/3T3 fibroblasts significantly enhanced migration [97] and stimulated 
cell motility via the regulation of related genes [98]. The oncogene c-MYC influences 
cerebral metastasis of NSCLC by inducing the overexpressing of Non-coding RNA 
BCYRN1 (brain cytoplasmic RNA 1) in NSCLC cells [99, 100]. c-MYC-activated 
BCYRN1 induces NSCLC metastasis by the expression of MMP9 and MMP13, members 
of the matrixin subfamily that behave as ECM-degrading enzymes [101–103]. HOTAIR 
(HOX transcript antisense RNA) is a lncRNA that is highly expressed in NSCLCs with 
brain seeding [104]. In vitro studies have revealed that HOTAIR expression enhances 

miR-15a, 

miR-210, 

miR-214

Lung 

tumor

Predicting brain 

metastasis in 

patients with lung 

adenocarcinoma

[81]

miR-4317 Lung 

tumors

FGF9 and 

CCND2

Suppressor Inhibiting 

proliferation, 

migration, colony 

formation, and 

invasion

[82]

TPD52: tumor protein D52; TRPA1: transient receptor potential ankyrin 1; GRIA3: glutamate receptor, ionotropic, 
AMPA 3; PRKCA: protein kinase C-α; MMP: matrix metalloprotease; ADAM9: a disintegrin and metalloproteinase 9; 
PCBP1: poly r(C)-binding protein 1; MTSS1: metastasis suppressor protein 1; FGF9: fibroblast growth factor 9; CCND2: 
cyclin D2; and TCGA: The Cancer Genome Atlas.

Table 1. 
MicroRNAs associated with brain metastasis from NSCLC.



Cancer Metastasis - Molecular Mechanism and Clinical Therapy

8

tumor cell migration and outgrowth [105]. At this point, the relationship between 
MALAT1 and HOTAIR in NSCLC brain metastasis is still unknown [104].

6. Novel therapeutic approaches

For many years, the rise of brain metastases of lung cancer has been considered 
the final stage of the disease. Patients were treated with standard therapeutic 
options such as palliative care or whole brain radiotherapy (WBRT). However, since 
the discovery of new systemic and targeted therapies, additional effective treat-
ments for lung cancer were introduced with the aim to enhance local control and 
survival [106].

6.1 Targeted systemic therapy

The BBB is an obstacle to enter the brain for many agents and has limited the 
application of drugs used for systemic therapy [107]. The application of drugs target-
ing EGFR and ALK has heightened the interest in utilizing systemic agents to treat 
brain metastases [108–111]. In Table 2 clinical trials of targeted therapy for NSCLC 
brain metastases are listed.

6.2 EGFR tyrosine kinase inhibitors

Patients with tumors harboring EGFR mutations are prone to develop brain 
metastases [112, 113]. Although the efficacy of EGFR-TKIs for NSCLCs with EGFR 
mutations has been proven, its effectiveness is not clear in patients with brain metas-
tases since they were excluded from controlled clinical trials. In a prospective study, 
41 patients with unselected NSCLC brain metastasis were treated with Gefitinib 
resulting in 10% intracranial partial responses (PR) with an average response 
period of 13.5 months [114]. However, most information on the efficacy of TKIs in 
patients with brain metastases was obtained from retrospective studies [110]. Firstly, 
it appeared that recorded concentrations of Afatinib, Erlotinib, and Gefitinib in 
cerebrospinal fluid (CSF) clearly exceeded those needed to inhibit the growth of cells 
with EGFR mutations in vitro. In patients with lung adenocarcinoma, about 70% 
intracranial tumor response was obtained with Gefitinib or Erlotinib as first-line 
treatment [115]. Other retrospective clinical studies revealed that patients with brain 
metastases from EGFR-mutant NSCLC have more favorable responses to WBRT or 
TKI therapy than patients with brain metastases from EGFR–wild-type NSCLC [116]. 
The progression periods were 11.7 months for patients with EGFR-mutant NSCLCs 
treated with Erlotinib and 5.8 months for patients with EGFR-wild-type NSCLCs, 
respectively [117]. The potent EGFR-TKI, AZD3759 showed significant penetration of 
the BBB in pre-clinical models for the treatment of EGFR-mutant NSCLC with brain 
metastasis [118]. Moreover, the third-generation EGFR inhibitors osimertinib and 
rociletinib targeting the T790M-EGFR resistance mutation in NSCLC appeared effec-
tive in treating patients with NSCLCs with these mutations [119, 120]. Unfortunately, 
a phase 3 trial conducted by RTOG using WBRT plus SRS with Temozolomide and 
Erlotinib in unselected patients with a maximum of three brain metastases was closed 
prematurely because of low accrual [121]. No significant benefit of adding Gefitinib 
to WBRT in phase 2 trials in patients with unselected NSCLC with brain metastasis 
was recorded [122]. At present, there is not sufficient data to draw conclusions on TKI 
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Targeted agent Target Pretreatment with 

radiotherapy

Progression-free 

survival (month)

Phase Status NCT identifier

Alectinib, bevacizumab ALK, VEGF No NA I/II Recruiting NCT02521051

AT13387, Crizotinib c-MET, ALK, ROS1, Hsp90 No NA I/II Completed NCT01712217

MK-3475 PD-L1 No NA II Completed NCT02085070

Sunitinib VEGF, KIT, PDGF, FLT-3 Yes 2.1 II Completed NCT00372775

GRN1005 - Yes NA II Completed NCT01497665

Dasatinib BCR-ABL Yes NA II Completed NCT00787267

Cetuximab EGFR Yes NA II Completed NCT00103207

Certinib ALK No NA II Active, not recruiting NCT02513667

Erlotinib EGFR Yes 1.6 III Completed NCT01887795

Afatinib HER2, EGFR, HER4 No NA III Completed NCT02044380

Osimertinib EGFR No NA IIIb/IV Completed NCT03790397

c-MET: tyrosine-protein kinase Met, hepatocyte growth factor receptor; ROS1: Proto-oncogene tyrosine-protein kinase ROS; Hsp90: heat shock protein 90; KIT: Proto-oncogene c-KIT; PDGF: 
Platelet-derived growth factor; FLT-3: fms like tyrosine kinase 3, CD135; HER2: human epidermal growth factor receptor 2; and HER4: human epidermal growth factor receptor 4.

Table 2. 
Clinical trials of targeted therapy for the treatment.
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therapy plus CNS-directed radiation therapy for patients with NSCLCs with EGFR 
mutations.

6.3 ALK tyrosine kinase inhibitors

ALK rearrangements are found in about 4–8% of NSCLCs, representing a distinct 
subgroup [110]. ALK-TKIs are active against CNS metastases and novel drugs are 
effective in treating brain metastases, even in patients with multiple intracranial 
tumors [123]. Crizotinib (Xalkoric) was the first ALK-TKI for metastatic ALK-
positive NSCLCs. In phase 3, randomized clinical trial with a single-arm of crizotinib 
for patients with NSCLC with cerebral metastases, better intracranial response 
was obtained for patients who were also treated with RT [124] and median surviv-
als of almost 50 months were recorded for patients with ALK-positive tumors [58]. 
Second-generation ALK-TKIs including brigatinib, ceritinib (Zykadia), and alectinib 
(Alecensa) have shown a better BBB penetration and activity against BM in crizo-
tinib-resistant tumors [125]. Ceritinib appeared to be a powerful drug for patients 
with metastatic ALK-positive NSCLCs in whom treatment with crizotinib was not 
effective anymore. Ceritinib also showed activity against crizotinib-resistant tumors 
in the mouse models [126]. Patients with ALK-positive tumors with CNS lesions 
were treated with alectinib against crizotinib in the ALEX trial. The results showed 
that patients treated with alectinib had a longer progression-free survival (PFS) rate 
than patients treated with crizotinib [123]. In addition, nearly half of patients with 
ALK-positive NSCLCs with cerebral metastasis improved significantly upon treat-
ment with alectinib. Taken together, these results indicate that Alectinib can be used 
as an effective treatment option for patients with NSCLC-positive ALK with cerebral 
metastasis [123].

6.4 MET inhibitors

In recent years, several MET inhibitors have been approved and have entered 
clinical trials. There are limited data available on the role and efficacy of monoclonal 
antibodies that inhibit MET in brain metastasis [127]. The effectiveness of Sym015, 
which consists of two monoclonal antibodies targeted to non-overlapping epitopes of 
MET, was high in inhibiting MET-amplified tumors as compared to emibetuzumab, a 
humanized monoclonal antibody developed for patients with NSCLC [128]. Among 
the new small inhibitors, cabozantinib, an inhibitor of MET, RET, and VEGFR2, 
appeared effective in radiation-resistant MET-mutated BM in renal cell carcinoma 
[129]. In addition, cabozantinib yields rapid responses in crizotinib-resistant NSCLC 
harboring a MET exon 14 alteration [130]. Simultaneous activation of the MET 
receptor and the ALK fusion gene in NSCLC yielded effective responses to crizotinib 
in patients with brain metastases [131]. The oral administered selective MET inhibitor 
capmatinib came with controllable toxicity profiles in treatment-naive patients with 
MET-exon14 positive NSCLC. Preliminary studies in mice that were injected with 
human BM cells from NSCLC showed that capmatinib is able to cross the BBB and is 
active in the brain. In in vivo models, the combination of capmatinib and afatinib was 
found to suppress tumor growth [132]. Recently it was demonstrated that bozitinib, 
another novel orally administered PLB-1001 compound, better penetrated the BBB 
as compared to other MET inhibitors in MET-mutated glioblastoma [133]. These 
preliminary results raise hopes for the effectiveness of PLB-1001 in the treatment of 
secondary brain lesions from various primary sites.
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6.5 RET inhibitors

Cabozantinib and vandetanib are oral multi-kinase, non-selective RET inhibitors 
that have a modest advantage but significant toxicity. Cabozantinib is effective in 
RET-rearranged NSCLC and has limited activity against RET, while vandetanib more 
effectively targets RET. No specific activity against CNS seedings of NSCLC has been 
reported for these drugs [134, 135]. Selpercatinib and pralsetinib are small highly selec-
tive RET inhibitors approved by the FDA for the treatment of NSCLC with RET fusion 
[136, 137]. Selpercatinib (LOXO-292) is an oral tyrosine-kinase inhibitor specifically 
targeting the RET kinase domain. Its activity profile and clinical safety were evaluated 
in phase I/II clinical trial LIBRETTO-001. The study included patients with advanced 
RET-positive NSCLC who had progressed disease after platinum-based chemotherapy 
in patients who were treatment naïve. In the phase II trial, 105 patients were pretreated 
with platinum-based chemotherapy. The ORR was 64% (95% confidence interval (CI): 
54% to 73%) with a median duration of response of 17.5 months. A major advantage was 
observed among the 39 treatment naïve patients, with an ORR of 85% (95% CI: 70% 
to 94%). Selpercatinib was also designed to have an effect on the CNS. Eleven patients 
with BM participated and Intracranial responses were observed in 10/11 patients with 
response rates of 91% (95% CI: 6.7% to NE) [138]. The FDA granted to accelerate the 
approval of selpercatinib for treating patients with metastatic RET-positive NSCLC, 
regardless of specific treatment strategy. The RET kinase domain inhibitor Pralsetinib 
(BLU-667) is currently applied in a multicenter phase I/II ARROW trial. Based on the 
results of this trial, the FDA approved the efficacy of pralsetinib in patients with RET 
alteration-positive NSCLC with/without prior therapy. Patients with asymptomatic 
BM were allowed to be included in this trial. In total, 79 patients participated, and the 
majority were pretreated primarily with chemotherapy (76%) and immunotherapy 
(41%). CNS metastasis at the baseline observed in 39% of patients. Efficacy was based 
on 57 patients, all of whom had at least one follow-up evaluation [139, 140].

6.6 Immune therapy

Although the immune system plays a role in all stages of the development of 
 cerebral metastasis, so far therapeutic interference was limited to the immune response 
around the tumor cells present in the brain. The inflammatory microenvironment of 
brain metastases mainly consists of infiltration by tumor-infiltrating lymphocytes 
(TIL) expressing immunosuppressive factors like programmed death-1 (PD-1) ligand 
(PD-L1). Immunotherapeutic agents include anti-cytotoxic T lymphocyte-associated 
antigen-4 (CTLA-4), anti- PD-1, and PD-L1 monoclonal antibodies (mAbs). There are 
limited data available on the efficacy and safety of immunotherapy for patients with 
NSCLC brain metastasis. Approximately, 15% of patients participated in studies and 
all had stable BM or had been treated for BM, while patients with symptomatic BM 
were excluded from trials [16]. The available data were derived from single-arm phase 
I/II trials [141–143], pre-arranged analyses of phase III trials [143–145], and expanded 
access programs [146, 147]. In the phase I multi-cohort CheckMate 012 study of the 
tolerability and safety of nivolumab in patients with NSCLC with BM only twelve 
patients were included. Their median PFS and OS were 1.6 months and 8.0 months, 
respectively, and no more than two intracranial responses were observed [143].

In a phase 2 trial, the PD-1 blockade by pembrolizumab was studied in patients with 
advanced NSCLC with untreated brain metastases. Forty-two patients were treated with 
Pembrolizumab. The cohort with PD-L1 ≥1% 1, 29.7% of patients had a BM response, 
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while the patients with PD-L1 <1% did not show a response. The median OS and PFS 
of patients in cohort 1 was 9.9 months and 1.9 months, respectively¸ confirming that 
pembrolizumab activity in CNS metastasis is limited to NSCLC with higher PD-L1 
expressions. Moreover, the PD-L1 expression was associated with long-term OS [142]. In 
two nivolumab EAP studies conducted in Italy and France, 409 and 130 patients respec-
tively, were included with advanced NSCLC and asymptomatic and stable BM. Part of 
the patients received corticosteroids and the other part underwent concomitant brain 
radiotherapy. The OR was 17% in the Italian study and 12% in the French study; the OS 
was 8.6 and 6.6 months, respectively [146, 147]. In another pooled analysis of larger trials 
on pembrolizumab monotherapy (KEYNOTE 001, 010, 024, and 042) and pembroli-
zumab combined with chemotherapy (KEYNOTE 021, 189 and 407), the OS of patients 
who received pembrolizumab alone or with chemotherapy was better as compared to 
patients who received chemotherapy alone [144, 145].

7. Conclusions

Brain metastasis of NSCLC is most life-threatening for patients and the treatment 
is a major challenge. Traditional therapies do not eradicate cerebral cancer cells and 
recurrent disease is common. A significant obstacle in treating patients with brain 
metastases is the BBB, which prevents chemotherapeutic agents from entering the 
brain. Due to this obstacle and the failure of conventional therapies, novel therapeutic 
approaches are being explored. Despite recent advances in lung cancer treatment, 
a better understanding of the molecular mechanisms and pathways implicated in 
lung cancer is essential to identify appropriate targets to prevent brain metastasis. 
It is undeniable that many factors in the tumor microenvironment contribute to the 
outgrowth of tumor cells, not only at the primary site but also at the sites of seeding 
in distant organs. The formation of brain metastases is largely the result of tumor-
microenvironment interactions. The brain micro-environment not only contributes 
to colonization by tumor cells but also affects the results of therapeutic interven-
tions. Obviously, detailing the entire spectrum of genomic alterations and molecular 
mechanisms involved in lung cancer brain metastasis is important to develop effective 
treatments. Specifically scrutinizing the mechanisms by which cancer cells cross the 
BBB is important for establishing preventive brain metastases strategies.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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