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Abstract

Genetically engineered crops are different from genetically modified crops. 
Changes in genetic make-up of crops by any conventional or any means technology 
fall under genetically modified crops category. In general, among different traits, 
herbicide and pest tolerance were more exploited in which herbicide tolerant crops 
occupy more than 90% of the total cultivated area of genetically engineered crops as 
the mode of actions of herbicides are well known and tolerant gene sources are readily 
available in wild weedy forms and various microorganisms. By knowing the pathway 
of mode of action of herbicides and pest tolerance, herbicide and pest tolerant crops 
were transformed by altering the structure and functions of rate limiting enzymes 
without affecting the normal functionalities of plants. Other than these two economi-
cally important characters, several characters were engineered in different crop plants 
such as disease resistant, increased yield and biomass production, male sterility 
and quality characters like anti-allergy factors, modified composition of fatty acid, 
protein, increased micronutrients and enzyme contents, reduced contents of anti-
nutritional factors and toxic substances. Through genetic engineering, transformed 
plants are used for establishing pharmaceutical products. In terms of area coverage, 
soya-bean followed maize, cotton, canola, alfalfa. Apart from genetically engineered 
crops, genome edited crops are developed for nullifying the negative effects and up-
regulating the target traits having positive effects thus ultimately assisting in achiev-
ing food and nutritional security.

Keywords: agriculture, GE/GM crops, RNAi, ZFN, TALEN, CRISPR/Cas9

1. Introduction

Plant genome engineering aims to modify crops by incorporating agronomically 
desirable traits, which could not be achieved through conventional plant breeding 
methods. Genetically modified crops vary considerably from genetically engineered 
crops in that the former recruits the modification through both natural and artificial 
means, whereas the latter is distinguished only by artificial means that would not 
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occur naturally. Genetically modified (GM) crops have proven to be great comple-
ment to conventional crops in meeting global demands for increased yields, increased 
food security, decreased pesticide use, and higher nutritional quality. The modi-
fied composition of fatty acid, protein and increased micronutrients, resistance to 
pests and disease, male sterility, quality characters like anti-allergy factors, reduced 
contents of anti-nutritional factors and toxic substances and medical benefits among 
which herbicide and pest tolerance are more remarkably exploited. The genetically 
modified herbicide tolerance crops occupy more than 90% of the total cultivated 
area of genetically engineered crops as the mode actions of herbicides are familiar 
and tolerant gene sources are more obtainable in wild weedy forms and microorgan-
isms, which paved way for transformation by altering the structure and functions of 
rate-limiting enzymes without affecting the normal functionalities of plants. In terms 
of global acreage, genetically modified soya beans are widely cultivated followed by 
maize, cotton, canola, and alfalfa. However, apart from genetically modified crops, 
genome-edited crops are generated by nullifying the negative effects of traits of inter-
est while up-regulating the positive effects of the target traits. Genetically modified 
crops benefit humanity by increasing the availability and quality of food and medical 
care, as well as contributing to a cleaner environment and alleviating hunger and 
disease around the world. In this chapter, a detailed discussion addressing the global 
need for resistance to insect pests, disease, herbicide tolerance, stress tolerance, qual-
ity improvement, male sterility and yield improvement through genetic modification 
in crop plants have been made.

2. Insect resistance

One of the most difficult issues in plant crop cultivation is dealing with insect 
pests. Insect pests are primarily managed using insecticides, but the rising occurrence 
of insect resistance genes in many organisms could be harnessed and introduced to 
crop plants through the effective use of transgenic technology. The cloning of genes 
codes for insecticidal δ-endotoxins dates back to the early 1980s [1]. Transgenic 
tomato and tobacco produce modified toxin genes which provide insect resistance 
res the first examples of genetically modified plants [2–4]. As insect-resistance genes 
transferred into plants predominantly act on the digestive system of insects, research-
ers are currently identifying genes with distinct modes of action to combat the 
development of resistance in the target insects, and to enhance potency. Few note-
worthy insect control proteins (ICPs) such as protease inhibitors, different enzymes, 
ribosomal inactivating proteins, and lectins derived from various genus and domains 
that have an antimetabolic or toxic effect on insect digestion are being viewed as an 
alternative to control insect infestation or confer resistance to plants.

2.1 Source of transgenes

2.1.1 Resistance gene from microorganisms

2.1.1.1 Cry gene from Bacillus thuringiensis

The most important and successful example of a transgene derived from the 
bacterium B. thuringiensis is Bt gene toxin [5]. It is a significant soil borne spore-
forming bacteria that produces insecticidal crystal (Cry) proteins encoded by cry 
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genes (cry-represents gene; Cry-represents protein) during sporulation [5, 6]. 
Proteinases in the insect gut proteolytically cleave the inactive protoxins to produce 
the active 60–65Kd toxin made up of high homology regions interspersed with 
(hyper)variable regions. Sequence analysis [7, 8] and X-ray crystallography were used 
to infer the structure and functional roles of the toxin’s three domains [9] that bind 
to glycoprotein receptors in the brush border membrane of the midgut epithelium 
of susceptible insects. The nature of the receptors that explicitly play a significant 
role in establishing susceptibility/resistance to a specific Bt toxin, is under intensive 
investigation, with a number of midgut integral membrane glycoproteins, including 
aminopeptidase and a cadherin-like protein, being identified [10–13]. Following 
binding, the toxin rapidly and irreversibly inserts into the cell membrane resulting in 
the formation of a pore supposedly by Cry proteins leading to disruption of the elec-
trical, K+ and pH gradients eventually causing irreversible damage to the midgut wall 
which gives rise to epithelial cell lysis [6, 14] paving way to gut paralysis, cessation 
of feeding and finally (typically after 1–3 days) death from starvation and/or septi-
caemia. These toxins are mainly targeted enzymes and lectins of digestive systems of 
Lepidopteron and coleopteran pests.

2.1.1.1.1 Codon optimization for higher expression

Specificity, efficiency and insecticidal activity of toxins are more in codon  optimised 
proteins than native form of Bt toxin and hence the former was introduced into various 
plants for increased level of expression [14]. Plants harbouring modified codon with 
plant preference rather than bacterial preference in which G:C rich codons are preferred 
over A:T rich codons, and undesirable mRNA secondary structure and polyadenylation 
signals eliminated, produced 100X higher than plants were transformed with unmodi-
fied (native) Bt gens [15, 16]. Genes are frequently inserted with constitutive promoters 
such as maize ubiquitin, CaMV35S, or rice actin 1, promoted protein expression at all 
times and in all parts of the plant allowing broader-spectrum ICPs to be targeted at dif-
ferent components of the pest complex. The use of tissue specific (e.g., RsS1 promoter 
for phloem-specific expression or PHA-L promoter for seed-specific expression) or 
inducible (e.g., potato pin2 wound-induced promoter) promoters is recommended to 
conserve the space and time of expression of toxic proteins and thus avoid unfavourable 
interactions with the beneficial insect’s ecosystem [17].

The highest risk of resistance development would most likely arise from prolonged 
exposure to ineffective levels of the transgene, a situation that farmers would not 
tolerate and would almost certainly necessitate additional (different) control mea-
sures (deployment of which would in fact reduce the risk of resistance development). 
CaMV35S has a notoriously low/no expression in pollen. Temporal and spatial pro-
moters are used to target the pest at its most vulnerable stage and time of infestation.

2.1.1.1.2 Cry protein classification

Cry protein classification is based on the degree of homology of Cry proteins. 
Primary Cry protein group: Cry proteins with less than 45 percent amino acid simi-
larity fall into this category. Cry 1 to Cry 78, for example (in 2018). Secondary Cry 
protein group: Cry proteins with less than 78 percent amino acid similarity fall into 
this category. Cry 1A and Cry 1B are two examples. Tertiary Cry protein group: Cry 
proteins with less than 95% amino acid similarity fall into this category. Cry 1Aa, Cry 
1Ac, etc. Cry proteins that share more than 95% of their amino acid sequences are 



Plant Breeding - New Perspectives

4

classified as part of the Quandary Cry protein group. Cry 1Aa1, Cry 1Aa2 (Cry 1Aa25 
was recently discovered in 2019). Each Cry protein of the Bt bacterium has a distinct 
host range cry protein (Table 1) [18].

Even within the Cry protein subfamily, the toxic spectrum varies depending on the 
host. Cry1A and Cry1C proteins, for example, are toxic to larvae of lepidopteran pests 
such as the codling moth (Cydia pomonella), the European corn borer (Ostrinia nubi-
lalis) [19], and heliothine bollworms, respectively. The Cry3A protein, on the other 
hand, is toxic to coleopteran pests such as the Colorado potato beetle (Leptinotarsa 
decemlineata) [20]. So far, 26 plant species have been genetically engineered and 
expressed for the Bt toxin [18].

2.1.1.2 Ipt gene from Agrobacterium tumefaciens

The introduction of Isopentenyl transferase gene (ipt) isolated from Agrobacterium 
tumefacien encoding a key rate limiting enzyme in the cytokinin biosynthetic pathway 
into the tobacco with wound inducible promoter recorded reduced consumption of 
leaves by the tobacco hornworm (Manduca sexta) and reduced survival of the peach 
potato aphid (Myzus persicae) leaving negative effects on plant development, such as 
an underdeveloped root system and a reduced total chlorophyll content [21].

2.1.1.3 Cholesterol-oxidase gene from streptomycete fungus

A cholesterol-oxidase gene from a streptomycete fungus has also been engineered 
into tobacco that was highly toxic to larvae of the boll weevil (Anthonomus grandis) 
and retarded the growth of the tobacco budworm (Heliothis virescens) by damaging 
the membranes of the insect-midgut epithelium [21–23].

2.1.1.4 Chitinase gene from Serratia marcesens

A bacterial endochitinase (from Serratia marcesens) has been shown to work in tan-
dem with Bt toxin against S. littoralis larvae [24], but not (yet) in transgenic plants.

2.1.2 Resistance gene from higher plants

Plants have co-evolved with insects for millions of years, and have developed many 
adaptations in terms of antifeeding and anti-shelter, among which digestive enzyme 
inhibitors (proteinase and amylase inhibitors) and lectins have shown significant 
effect on insects, which have been transferred into crop plants without major altera-
tion, and expression has been at a similar level to codon-optimised Bt toxins [25].

Classification Percentage of homology of amino acids (%) examples

Primary group < 45 Cry 1 to Cry 78

Secondary group < 78 Cry 1A, Cry 1B

Tertiary group < 95 Cry 1Aa, Cry 1Ac

Quandary group > 95 Cry 1Aa1, Cry 1Aa2

Table 1. 
Classification of cry proteins based on their amino acids classification.
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2.1.2.1 Proteinase inhibitors (PI)

Serine-like proteinases (trypsin-, chymotrypsin- and elastase-like endoproteases) 
dominant in lepidopteran larvae [26], a wider range of dominant gut proteinases in cole-
opteran species [27] and thiol proteases observed in corn rootworms (Diabrotica spp.) are 
some of the proteinases in insect which catalyse the release of amino acids from dietary 
protein, thereby providing nutrients essential for normal growth and development 
and thus the proteinase inhibitors plays an important part of the plant’s natural defence 
system against herbivory by inhibiting the protein metabolism. Although the mode of 
action of PIs are not fully understood, it may be claimed that hypersecretion of digestive 
enzymes caused by the presence of the inhibitors, would result in depletion of essential 
amino acids [28, 29].

Serine and cysteine-proteinase inhibitors have been shown to inhibit the growth and 
development of a variety of insects, primarily lepidopteran and coleopteran species  
[29, 30]. The expression of a gene encoding a sweet potato trypsin protease inhibitor 
(TPI) in transgenic tobacco (at a relatively low level for a plant-derived ICP – 0.2%) 
results in severe growth retardation of Spodoptera litura caterpillars fed on it besides the 
presence of high levels of the same naturally in it [31].

The first instance of a plant-derived ICP gene being used in transgenic plants 
was the constitutive expression (through the CaMV35S gene promoter) of a trypsin 
inhibitor gene taken from cowpea (Vigna unguiculata) and in tobacco [32]. Proteinase 
inhibitors do not just alter gut digestive enzymes; they can also affect insect water 
balance, moulting, and enzyme regulation [33]. The majority of research has focused 
on serine-proteinase inhibitors derived from the plant families Fabaceae, Solanaceae, 
and Poaceae, which are mostly aimed against not only lepidopteran pests but also 
some coleopteran and orthopteran pests. The cowpea trypsin inhibitor (CpTI), which 
has been introduced into at least 10 different plant species, is the most active inhibitor 
discovered to date the protection provided by CpTI was less pronounced and consis-
tent than that of tobacco containing a truncated Bt-toxin gene [34].

2.1.2.2 α-Amylase inhibitors

To block carbohydrate metabolism, a-amylase inhibitors from wheat (WAAI) 
and common bean (Phaseolus vulgaris) (BAAI) are utilised. When introduced into 
transgenic tobacco, the former increased mortality of lepidopteran larvae fed on it by 
30–40% [35], while the latter, when expressed in transgenic pea seeds and driven by 
the pha1 gene promoter, elevated resistance to bean weevils [36, 37].

2.1.2.3 Lectins

Lectins are a diverse group of carbohydrate-binding proteins, that are toxic to 
insects of the orders Homoptera, Coleoptera, Lepidoptera, and Diptera. The very 
first demonstration of enhanced resistance of transgenic plants expressing a foreign 
lectin used is the gene encoding the glucose/mannose-binding lectin from pea (Pisum 
sativum) [38]. The mode of action of lectins against insects is unknown, but it has 
been shown that some bind to midgut-epithelial cells [39], and some insecticidal 
lectins also show significant mammalian toxicity, including lectins from P. vulgaris 
(phaeton haemagluttinin, PHA), and the greater insecticidal activity is shown by 
chitin-binding lectins from wheatgerm (WGA) expression in transgenic maize [40].
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Recent interest has primarily focused on the mannose specific lectin from snowdrop 
(GNA), which has shown activity against peach potato aphids, potato tuber moths 
[41] and the rice brown planthopper (Nilaparvata lugens) [42]. GN expressed in 
potato and tomato significantly reduced fecundity and enhanced resistance, respec-
tively, in laboratory experiments [42]. When overexpressed in different species of 
tobacco, tomato, and sweet gum, the tobacco anionic peroxidase, which is involved in 
crosslinking and polymerisation, inhibition of digestive enzymes, and the generation 
of highly reactive, toxic species, led to significant levels of resistance to several lepi-
dopteran, coleopteran, and peach potato aphid [43]. The expression of tryptamine 
and tryptamine-derived alkaloids in plants may serve as anti-oviposition and anti-
feedant agents, or as inhibitors of larval and pupal development, and when expressed 
in tobacco, inhibition of reproduction of the whitefly Bemisia tabaci by observed up 
to 97 percent [44].

2.1.3 Resistance genes from animals

Based on in vitro testing of proteolysis inhibition by several lepidopteran larvae 
midgut extracts, as potential insect-resistance proteins like bovine pancreatic 
trypsin inhibitor (BPTI), a1-antitrypsin (a1AT), and spleen inhibitor (SI) were 
identified and introduced into a variety of crop. Proteinase inhibitors derived from 
M. sexta and expressed in cotton and tobacco were reported to impede B. tabaci 
reproduction [45, 46]. Despite the introduction of chitinase (from the tobacco 
hornworm) into tobacco, these plants only exhibited a limited level of resistance to 
lepidopteran larvae and peach potato aphids [47].

2.1.4 Microbial proteins

The bulk screening of microbial culture supernatants against specific pests has 
been one strategy to the discovery of novel insecticidal proteins. Two proteins, Vip1 
and Vip2, were isolated from vegetative Bacillus cereus culture supernatants and have 
been shown to be acutely poisonous to maize rootworms [47]. Some B. thuringiensis 
vegetative culture supernatants include a protein (Vip3A) that is acutely poisonous to 
Agrotis and Spodoptera caterpillars [48]. These proteins activity is extremely similar 
to that of Bt-endotoxins, yet they are distinctly separate from them.

2.1.5 Predator toxins

Genes producing neurotoxins from predatory mites [49] and scorpions [50] have 
been inserted into recombinant baculoviruses, where they effectively boost the rate 
of killing.

3. Disease resistance

Since the identification of the chemicals and genes involved in disease resistance in 
plants, attempts have been made to develop permanent disease resistance in commer-
cially significant crop plants. Unfortunately, many of these efforts have failed because 
to the complexities of disease-resistance signalling and the wide range of infection 
routes employed by various pathogens. Although disease-resistant transgenic plants 
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or seeds are not currently commercially accessible, future product development looks 
to be feasible as our understanding of pathophysiology and plant defence deepens.

In general, plants are protected by structural defence (plant cell wall, thick and 
waxy epidermis, trichomes, thorns) and chemical defence (production of secondary 
metabolites, proteins, and digestive enzymes) [51]. Plant defence response genes are 
classified into susceptibility genes (S), resistance genes (R), and non-host resistance 
genes (NHR). Pathogen-associated molecular pattern (PAMP)-triggered immunity 
(PTI) is broad-spectrum resistance, effective against non-host pathogens that fail to 
establish virulence [52, 53], and ETI is regarded to be the basis of R-gene resistance 
(host resistance). NHR is regarded as a quantitative trait encompassing numerous 
genes and varied pathways, whereas R gene resistance is regarded as a qualitative trait 
that adheres to Flor’s gene-for-gene model and is dependent on a complex regulatory 
mechanism for pathogen detection and defence response [54, 55].

The successful transfer of R genes that express specific effector proteins in a 
gene-for-gene manner among plant species has resulted in long-term resistance and 
crop protection against a variety of pests and diseases. Polymorphisms in the coiled-
coil (CC) and nucleotide-binding (NB) domains have been shown to be critical for 
recognition specificity, hence R genes could be edited [56]. In wheat, a two-amino 
acid mutation in the NB domain of the R gene (PM3F) protein was known to 
improve the resistance spectrum and HR response. S gene mutations can give both 
broad-spectrum and pathogen-specific resistance. Most S genes play functional 
roles in the plant, and mutations in them can cause serious pleiotropic defects. For 
example, CRISPR–Cas9-mediated disruption of the OsSEC3A gene in rice improved 
defence response against Magnaporthe oryzae, but the resistant plant also had dwarf 
stature and a lesion-mimic phenotype [57]. Similarly, leaf chlorosis was observed 
in wheat plants that had been MLO gene-edited for resistance to powdery mildew 
[58–60]. Rice OsSWEET14 and 11 mutations resulted in shorter height and pollen 
abortion [61, 62].

Understanding the processes of NHR, which has a long lifespan and a broad 
spectrum, is essential for breeding disease-resistant cultivars. Type I NHR is asymp-
tomatic [63, 64], whereas Type II NHR is similar to host resistance (“gene-for-gene”) 
and is associated with the hypersensitive response triggered by pathogen penetration 
into plant tissue and activation of the resistance gene [65–68]. For conferring and 
developing disease resistance technologies are RNAi, TALENS, CRISPR/Cas, ZFN 
used transfer gene in various crops (Table 2) [76].

4. Herbicide resistance

Herbicides are essential components of today’s integrated weed management 
strategy. To address the issue of repeated use of the same herbicide resulting in the 
evolution of resistant weeds, complicating their control, the development of diverse 
herbicide-tolerant crops is critical.

4.1 Photosystem based herbicides

Herbicides of various types disrupt various organelles and parts of plants. For 
example, now recognised by numerous names, including QB (Quinone), D1, encoded 
by the psbA gene,the 32-kDa weighted protein found in the thylakoid membrane acts 
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as a herbicide binding protein for a variety of proteins was identified using a pho-
toaffinity marker (azidoatrazine) [73, 75]. This is the first gene found for herbicide 
tolerance research. Atrazine, the most commercially important PS II herbicide, is the 
most extensively used herbicide in maize and sorghum as these crops can extensively 
degrade atrazine by glutathione conjugation. Herbicide-tolerant weeds (Senecio 
vulgaris) discovered in maize for atrazine, simazine, and other s-traizine category 
herbicides, which were previously susceptible for these herbicides, demonstrated 
maternal inheritance and conferred 100 times less binding affinity for herbicide in 
thylakoid membrane [77–79]. There have been six recorded amino acid exchanges 
(Table 3) [80–83]. The 3D arrangement of the amino acids revealed that different 
herbicide classes had different binding sites on the QB protein.

4.1.1 Glyphosate

Glyphosate N-(phosphonomethyl) glycine is a post emergence herbicide and is a 
potent competitive inhibitor of the enzyme 5-enol-pyruvyl shikimic acid 3-phosphate 
(EPSP) synthase and it is rate limiting enzyme for aromatic amino acids synthesis 
pathway [84]. A gene (aroA) from gram negative bacteria Salmonella typhinutrium 
(now the same found in Aerobacter aerogenes [85], possessing mutation on 101th 

Amino acid position in QB protein Wild type Mutant

264 Serine Alanine

264 Serine Glycine

219 Valine isoleucine

251 Alanine Valine

255 Phenyl alanine Tyrosine

275 Leucine Phenyl alanine

Table 3. 
Amino acid exchanges in wild and mutant plant proteins.

Crop Disease Gene and its function GE Methods used Ref.

Wheat Blumeria graminis TaMLO Repress immunity 
against powdery mildew

RNAi [69]

Rice Xanthomonas oryzae 
pv. Oryzae

EBS of OsSWEET14 
and OsSWEET12, 
Transcriptional induction

TALEN [70–73]

Wheat powdery mildew Three homoallele TaMLOof 
A1, B1, D1 homoeologs

TALEN [59, 60, 74]

Rice Rice tungro spherical 
virus (RTSV)

eIF4G Translation of viral 
RNA genomes

CRISPR/ Cas9 [75]

Rice Magnaphorthe oryzae OsERF922 Negative 
regulator of blast resistance

RNAi CRISPR/Cas9 [59, 60]

Table 2. 
RNAi, CRISPR/Cas 9 and TALEN mediated gene transfer for various diseases in different crops.
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position of amino acid wherein proline is changed to serine a gene (aroA) encoding 
resistant EPSP enzyme against glyphosate was transformed to tobacco with octopine 
synthase promoter through agrobacterium transformation which led to insensitive 
response to herbicide [86]. The mutated gene was fused to an octopine synthetase pro-
motor to enable expression in plants leading to regeneration of transgenic plants with 
glyphosate tolerance and impaired growth due to compartmentation of aromatic amino 
acid biosynthesis and disruption of EPSP synthase and other shikimic acid pathway 
enzymes located in chloroplasts. The precursor protein is directed into the chloroplast 
by amino-terminal regions known as transit peptides, which are eliminated during 
the absorption process. EPSP synthase is also a precursor protein that is enzymatically 
active and binds glyphosate. A fusion gene encoding the sequence of a plastidic transit 
peptide before the aroA sequence, which exhibits a 40-fold increase in EPSP-synthase 
activity in petunia plants, is likely to provide a greater level of resistance [87, 88].

4.1.2 Sulfonylurea and Imidazolinone herbicides

The herbicides imidazolinones and sulfonylureas operate by limiting acetolactate 
synthase (ALS), the first enzyme in the biosynthetic chain that results in the produc-
tion of branched chain amino acids [89–91]. Thus, chlorsulfuron is readily detoxified 
by wheat, barley, or oats by phenyl ring hydroxylation and consequent conjugation 
with glucose. Sulfonylurea-resistant mutant strains have been isolated from species as 
varied as bacteria, fungi, and plant cell cultures. Using cell biology techniques, maize 
plants resistant to imidazolinone and tobacco plants resistant to sulfonylurea herbi-
cides have been successfully established [90, 91].

4.1.3 Phosphinothricin

L-Phosphinothricinis (an analogue of glutamate), a component of the tripeptide 
“bialaphos” produced by several Streptomyces viridochromogenes, is a potent irre-
versible inhibitor of glutamine synthetase with herbicidal activity causing a rapid 
increase of ammonia concentration in plants which leads to the inhibition in pho-
tosynthesis, which derives the plants to death of the plant cell [92, 93]. Resistance 
to L-phosphinothricin in alfalfa was established via overproduction of a glutamine 
synthetase gene connected to the promoter of the 35S transcript of cauliflower mosaic 
virus, and the construct was incorporated into the genome of N. Tobaccum var. W38 
by A. tumefaciens [94, 95]. Transgenic plants demonstrated superior resistance to high 
doses of commercial formulations of phosphinothricin and bialophos after integrat-
ing the resistance gene from Streptomyces hygroscopicus to tobacco and regulating it 
with the 35S promotor of the cauliflower mosaic virus.The treated plants showed no 
elevation in ammonia concentration, signifying the total shielding of the plant glu-
tamine synthetase from the herbicide’s activity [94]. Herbicide resistance is acquired 
via TALENs-mediated gene mutation of OsALS in rice and ALS (SurA and SurB) in 
tobacco [96, 97] (Table 4).

5. Stress

Abiotic stress is a highly complicated phenomena that involves biochemical 
and physiological changes in plant cells causing increased amounts of ROS (reac-
tive oxygen species), that are extremely reactive, toxic and impact chlorophyll 
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production, photosynthetic capability, and carbohydrate, protein, lipid, and 
antioxidant enzyme activities.

Genes that code for synthesis of osmolytes (proline, betain, etc.), water uptake 
and transport (ion transporters and aquaporin), transcriptional regulation and signal 
transduction mechanisms (MAPK) are identified from a variety of organisms and 
transformed into sensitive genotypes for generation of stress-protecting chemicals 
[98, 99]. The most efficient candidates for genetic transformation are transcription 
factors (TFs) that regulate the expression of a number of genes involved in conferring 
abiotic stress tolerance in plants [100].

5.1 Drought tolerance

Stress-related ring finger protein 1 (OsSRFP1), drought-induced SINA protein 
1 (OsDIS1), and dry- and salt-tolerant protein 1 (OsDST) are negative regulators of 
drought tolerance, whose silencing increased antioxidant enzyme levels, reduced 
H2O2 concentrations, and enhanced drought tolerance in rice.

The CRISPR–Cas9 system was used to introduce novel alleles in Arabidopsis 
OPENSTOMATA 2 (OST2)-encoding gene—a key plasma membrane H+ ATPase 
causing two significant mutations at the ost2 locus that led to constitutive functioning 
of proton pumps, induction of necrotic lesions and exhibiting a substantially higher 
rate of stomatal closure coupled with a lower rate of transcriptional water loss which 
resulted in enhanced drought tolerance (Table 5).

6. Quality

Over two billion people worldwide are malnourished as a result of nutritional 
stress. Genetically modified (GM) crops have the potential to fulfil the worldwide 

S. No Herbicide Gene Source of gene Mutation

1. Glyphosate aroA Salmonella spp. P101 → S

2. Sulphonylurea ilvGM Escherichia coli A26 → V

ILV2 Saccharomyces cerevisiae P192 → S

SURBHra Nicotiana tabacum P196 → A
W573 → L

SURBc3 P196 → Q

Csr1 A. thaliana P197 → S

3. Phosphinothricin GS M. sativa G245 → S,C,R
R264 → K

4. Triazines psbA Amaranthus S264 → G

S. nigrum S264 → G

Chlamydomonas S264 → A
F255 → Y
V219 → I

Table 4. 
Genes from various sources responsible for mutation in herbicide tolerance.



11

Genetically Modified Crops and Their Impact on New Era of Agriculture
DOI: http://dx.doi.org/10.5772/intechopen.105937

Crop Gene Stress Reference

Rice AtDREB1A from Arabidopsis 
thaliana

Resistance to drought [101]

BrCIPK1 gene from Brassica rapa Enhanced abiotic stress tolerance [102]

A. thaliana transcriptional 
regulator DNA polymerase II 
subunit B3-1 (DPB3-1) gene

Induced heat tolerance [103]

Rice LSD1-like type ZFP gene 
OsLOL5

Tolerance against salt and oxidative [104]

JERF3 transcription factor 
(Solanum lycopersicum)

Drought tolerance [105]

OsDREB2A from Oryza sativa Drought and salinity tolerance [106]

OsERF4a from O. sativa Increased tolerance to drought stress [107]

Wheat TaPIE1 from Triticum aestivum Enhanced tolerance to Cold [108]

A. thaliana SPDS (Spermidine synthase) from 
Cucurbita ficifolia

Multiple environmental stress [109]

Tomato Monodehydroascorbate 
reductase (LeMDAR) gene

Increased tolerance to protoplast 
abiotic stresses

[110]

Wheat WRKY2 and WRKY19 
genes

Salt, drought and freezing stress 
tolerant

[111]

Maize Rab28 LEA gene Osmotic stress tolerance [112]

Potato Strawberry D-galacturonic acid 
reductase (GalUR) gene

Increased stress tolerance to methyl 
viologen, NaCl and mannitol

[113]

Rat GLOase Resistant to methyl viologen, NaCl 
and mannitol

[113]

DHAR from A. thaliana Increased tolerance to salt and 
drought

[114]

Soyabean Salinity stress tolerance and fungal 
resistance

Overexpression of tobacco osmotin [115]

Soybean Osmotin-like protein 
isolated from Solanum nigrum var. 
americanum (SnOLP)

Increased drought tolerance [116]

Chick pea tolerance by expression of Vigna Enhanced salinity [117]

Increased drought tolerance overexpression of miR408 [118]

Red gram Expressing Vigna pyrroline-5-
carboxylate synthetase

Increased salt tolerance [119]

Black gram Overexpression of glyoxalase 1 Salt tolerance [120]

Expression of Arabidopsis alate 
transporter, AtALMT1

Increased aluminium tolerance [121]

ALDRXV4 gene Tolerance to H2O2, drought, salt and 
methyl viologen induced stresses

[122]

Mung bean Expression of AtNHX1 Increased salt tolerance [123]

Expressing AtICE1 Cold stress tolerance [124]

Sugarcane EaDREB2 from 
Erianthusarundinaceus

Drought and salinity stress tolerance [125]
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need for high-quality food through genetic engineering by doing more than merely 
boosting nutritional quality.

6.1 Golden rice

The carotenoid biosynthesis pathway in plants is a multistep process and is 
accomplished via four desaturation reactions to produce all-trans-lycopene from 
15-cis-phytoene by phytoene desaturase (PDS), ζ-carotene isomerase (Z-ISO), 
ζ-carotene desaturase (ZDS), and carotenoid isomerase (CRTISO) whereas, a single 
enzyme encoded by the crtI gene accomplishes all the four reaction steps to produce 
lycopene in bacteria [128, 129]. In the carotenoid pathway, lycopene is an important 
branch point because it functions as the substrate for two competing enzymes, 
lycopene β-cyclase (LYCB), and lycopene ε-cyclase (LYCE). Lycopene is converted 
into γ-carotene, which is rapidly converted into β-carotene (has pro-vitamin A activ-
ity) by LYCB in a single pathway. The bacterial gene crtY encodes LYCB to produce 
β-carotene. Alternatively, with LYCE lycopene generates δ-carotene (which has no 
pro-vitamin A activity) [130–132].

About 60–80% by weight of total seed protein in rice is glutelin, and about 
20–30% are prolamins which are the prime choice of promoter sequences responsible 
for expression of carotenoids in rice endosperm [133]. Six promoters of rice glute-
lin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated and 
examined in rice and listed in tables with their site of expression (Table 6) [134]. 
Newly reported promoters like PROLAM26 RAL2 (LOC_Os07g11330), RAL4 (LOC_
Os07g11380), and CAPIP (LOC_Os06g33640) could be useful in the future [135].

A combination of Daffodils phytoene synthase (psy) gene, lycopene-cyclase (lcy) gene 
and crtI gene from bacteria (Erwinia uredovora) PDS (phytoene desaturase) are used to 
generate japonica rice with ß-carotene expression (mentioned here as GR1) [136, 137]. 
Gtu-1 promoter was used for psy, lcy and a constitutive CaMV35S promoter with a plastid-
specific transit peptide (TP) used for the expression of CrtI gene [138, 139] in GR1, Under 
Gtu-1 promoter, an alliance of maize phytoene synthase (Zmpsy) gene with bacterial crtI 
has been expressed in rice to develop an improved golden rice variety (mentioned here as 
GR2) [140]. The synthetic gene constructions of two carotenoid biosynthetic genes, psy 
from Capsicum (Capsicum annuum) and crtI from Pantoea, were also reported for golden 
rice development. To create the PIC (Psy-IRES-CrtI) and PAC (Psy-2A-CrtI) construc-
tions, coupling of two genes using either the synthetic codon-optimised 2A sequence 
(from foot-and-mouth disease virus) or the IRES sequence (the internal ribosome entry 
site) were utilised (Figure 1) [141, 142].

ZFN and TALENs mediated gene mutation of IPK1 gene of the rice OsBADH2 gene 
respectively encoded inositol1,3,4,5,6-penta-kisphosphate 2-kinase, resulted in both 
herbicide tolerance and reduction of phytate in developing seeds and production 

Crop Gene Stress Reference

Tobacco SbpAPX from Salicornia brachiata Resistance against salt, cold, drought, 
abscisic acid and salicylic acid stress

[126]

GmERF7 transcription factor from 
Glycine max

Increased tolerance to salinity [127]

Table 5. 
Genes responsible for abiotic stress tolerance in various crops.
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of fragrant rice by increased synthesis of fragrance compound 2-acetyl-1-pyrroline 
(2AP) [143]. In monocot plants, the k1C gene in sorghum plant was targeted using 
CRISPR for gene disruption at the N-terminal ER signal peptide region, resulting in 
greater Lysine content and improved protein digestibility [144]. Naim et al. deployed 
CRISPR-Cas to target the PDS, Phytoene desaturase expressing gene in Cavendish 
banana (Musa acuminata) for gene knockout to target the Albinism phenotype. 
CRISPR-Cas9 was used to disrupt rice genes critical for defining amylose concentra-
tion, fine structure of amylopectin, and physiochemical characteristics of starch, 
resulting in a larger proportion of long chains in amylopectin. The GBSS gene, which 
encodes Granule-bound starch synthase and is responsible for amylose production in 
the Potato plant, was targeted using CRISPR-Cas for Gene knockouts, resulting in a 
product with elevated amylopectin content [145].

In Camelina sativa the FAD2 gene, which is important for fatty acid production, 
was targeted using CRISPR-Cas9 for gene deletion to enhance seed Oleic acid content. 
In tomato, CRISPR-Cas9 was used to target SlAGL6, a transcription factor that plays 
important roles in flower meristem and floral organ development, for gene deletion, 
resulting in a parthenocarpic phenotype [146]. The CAO1 and LAZY1 genes, which 
are responsible for synthesis of chlorophyll b from chlorophyll a and regulating shoot 
gravitropism, were disrupted using CRISPR-Cas to target the faulty synthesis of 
chlorophyll b and tiller spreading phenotypes, respectively (Table 7) [147].

Figure 1. 
A simplified version of ß-carotene expression in golden rice.

S. No Promoter Expressing region

1. GluA1, GluA2 &GluA3 Peripheral region of the endosperm

2. GluB5 and GluC The whole endosperm

3. GluB3 Aleurone and subaleurone layers of rice grain

Table 6. 
List of promoters and expressing region involved in Golden rice.
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7. Male sterility

The use of genetically engineered male sterility has a variety of applications, 
ranging from hybrid seed production to transgenic bioconfinement in genetically 
modified crops. The influence of this technique has aided in dealing with global 
food security concerns. The production of transgenic male sterile plants through the 
expression of a ribonuclease gene under the direction of an anther- or pollen-specific 
promoter has shown to be an efficient method of producing pollen-free elite cultivars.

7.1 Male sterility due to mutation on nuclear genes

Mariani et al. [162] achieved the first success in developing genetically engineered 
male sterility in crop plants by transforming tobacco and rapeseed plants with a 
chimeric dominant gene barnase (bacterial RNase from Bacillus amyloliquefaciense) 
driven by a tapetum-specific promoter (TA29) from tobacco. The coding sequences 
of RNase T1 from Aspergillus oryzae and barnase from B. amyloliquefaciens used to 
manipulate the trait were fused with the tapetum-specific TA29 promoter which is 
responsible for the expression of the barnase gene specifically to anther tapetal cells, 
causing selective destruction of the tapetal cell layer that surrounds the pollen sac by 
hydrolysing the tapetal cells, causing abnormal pollen formation (Figure 2). Male 
sterile anther carries empty exine [162]. Mariani et al. [163] demonstrated fertility 

Crop Gene transformed Quality character Reference

Rice Soybean ferritin gene Increased iron content [148]

Phaseolus vulgaris ferritin gene Enhancement in Fe content, 
cysteine and phytase level

[149]

Lactoferrin gene from human Increased iron content [150]

Ubi1-P-int (maize) & GmFAD3 
cDNA(soyabean)

Enhanced α-linolenic acid content [151]

amino-deoxychorismate synthase 
(ADCS 1) & GTP cyclohydrolase I 
(GTPCHI) genes

100 times enhanced accumulation 
of vitamin B9

[152]

BiP, lysine-rich binding protein Increased lysine content [153]

Maize SacB gene (Bacillus amyloliquefaciens) Stable accumulation of fructan [154]

Lysine feedback-insensitive DHDPS Increased lysine content [155]

HGGT gene from barley Tocotrienol content increase [156]

Wheat DHAR gene Increased ascorbic acid [157]

Ferritin gene & phytase gene Increased iron content [158]

Red gram Dihydrodipicolinate synthase 
overexpression

improve lysine content in seeds [159]

soyabean DHDPS and aspartokinase from E. Coli Increased lysine content [155]

15-kDa Maize zein protein Increased accumulation of C &M [160]

Chick pea Raffinose synthase 2 Silencing Nutritional quality improvement [161]

Table 7. 
List of different genes transformed for quality character in different crops.
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restoration in TA29-barnase male sterile plants by gene encoding the barnase-specific 
RNase inhibitor called barstar which was isolated from same bacteria B amyloliquefa-
ciense. When genetically engineered, male sterile plant is crossed with plant carrying 
TA29- barstar gene the F1 progeny shows co-expression of both genes in the anther 
of male fertile plants. In this system fertility restoration is due to the formation of 
tapetal cell-specific barnase/barstar protein complexes which completely inactivate 
the barnase enzyme [163]. This dominant nuclear genetic male sterility system faces 
same drawback as GMS system. During hybrid seed production the plants in female 
rows segregate in the ratio of 1:1 for male sterility and male fertility [164]. To counter 
the drawback of nuclear genetic male sterility system problem the barnase gene was 
linked to a dominant herbicide resistant gene (bar) under control of the constitutive 
promoter CaMV 35S which conferred resistance to broad-spectrum herbicide Basta 
(active ingredient is phosphinothricin or PPT). When seedlings are sprayed with 
Basta only the male sterile plants survive and the male fertile plants are killed as they 
lack bar gene.The use of bar gene allows elimination of male fertile segregants from 
female rows in the hybrid seed production plot thus assuring 100 per cent pure hybrid 
seed production [165].

7.2 Male sterility due to mutation on chloroplast genes

The genetic transformation of the plastid genome has various advantages, 
including high level transgenic expression, expression of multigene operons, 
transgene maternal inheritance, and expression of bacterial genes without codon 
optimization [166]. Ruiz and Daniell [167] elucidated that, with chloroplast 
transformation, hyper-expression of β-ketothiolase encoded by the phaA gene of 
Acinetobacter sp. in the leaves, flower, and anther of transgenic lines gets in the way 
of pollen development and results in male sterility. This was restored by exposing 
transgenic male sterile plants to continuous illumination, which allows acetyl CoA 
carboxylase (ACCase) to access acetyl CoA, restoring normal fatty acid synthesis 
and minimising PHB production through β-ketothiola.

Figure 2. 
Simplified version of expression of transgenic male sterile system.
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7.3 Male sterility due to altering metabolic process

Callose is a plant polysaccharide comprised of β-1-3 glucan that is deposited 
around microspore tetrads during meiosis. Tight developmental regulation and 
the timing of callase activity are required for optimal microspore development. The 
expression of modified PR-b-1-3 glucanase in transgenic tobacco plants led in the 
premature disintegration of the microsporocyte callose wall, resulting in mild to total 
male sterility [168]. Chang et al. [169] created a rice hybrid breeding method employ-
ing the rice nuclear gene Oryza sativa No Pollen 1 (OsNP1), which encodes a putative 
glucose–methanol–choline–oxidoreductase with involvement in tapetum degenera-
tion and pollen exine production. The ethyl methane sulfonate-induced rice mutant, 
osnp1-1, was completely male sterile.

7.4 Conditional male sterility

Conditional male sterility is a situation in which plants are typically fertile, but 
when a specific circumstance is applied, male sterility occurs. Hawkes et al. [170] 
revealed the use of inactive D-glufosinate as a male sterility inducer in transgenic 
plants expressing a modified (F58 K, M213S) version of Rhodosporidium toruloides 
Damino acid oxidase (DAAO) that converts oxidised D-glufosinate to its 2-oxo-
derivative (2-oxo-4-methyl phosphiny to create transgenic plants, the modified 
DAAO encoding gene was coupled with the TAP1 promoter from Antirrhinum 
majus and transformed into tobacco plants. When D-glufosinate was sprayed on 
these transgenic plants, it caused full male sterility that lasted two or more weeks 
while having no effect on female fertility [170]. Guerineau et al. [171] expressed the 
temperature-sensitive diphtheria toxin A-chain polypeptide gene sequence under the 
tapetum-specific A9 promoter and generated transgenic Arabidopsis plants that were 
fully fertile at 26 C, but when the temperature was decreased to 18°C, male sterility 
was induced [171].

7.5 Male sterility through post transcriptional gene silencing

Jasmonic acid (JA), a plant hormone, is involved in several developmental signalling 
events in plants, including senescence, fruit ripening, anther dehiscence, and pollen 
maturation [172, 173]. Bae et al. [174] reported inducing male sterility by inhibiting 
OsAOS1 and OsAOS2 activity with the promoters of the anther-specific genes Osc4 
and Osg6b, respectively. RNAi (pSK124) constructs were designed and converted into 
rice calli independently, concluding that the OsAOS2-RNAi vector driven by Osg6b 
promoter is potent enough for generating male sterility in rice.

7.6 Male sterility through modification of flavonoids

Any disruption in flavonoid production changes pigmentation and causes male 
sterility in plants. Fischer et al. [175] discovered the expression of a stilbene synthase 
(STS) gene from grape vine (VstI) driven by a 35S RNA promoter with duplicated 
enhancer region and a tapetum-specific promoter (Tap1) of A. majus produced 
male sterility strives for the substrates,4-coumaroyl CoA and malonyl CoA, which 
are required for sporopollenin and fatty acid biosynthesis, and hypothesised that 
there was a decrease in p-coumaroyl availability, resulting in impaired sporopollenin 
production and pollen wall formation, causing male sterility(Figure 3).
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7.7 Male sterility through RNA editing

Nucleotide alterations or insertion of a nucleotide, leading to a change in the 
sequence of amino acid in polypeptide denotes RNA editing. Male sterility in CMS 
plants is connected to mitochondrial DNA rearrangement, causing the formation of 
novel chimeric open reading frames (ORFs), resulting in mitochondrial malfunction, 
such as the chimeric gene pcf-S of petunia, ORFB and ORF224 of polima in rapeseed 
[176]. The overexpression of unedited mitochondrial orfB gene in a transgenic strain 
of indica rice led to a decrease in activity of ATPase in F1F0-ATP synthase resulting in 
dose-dependent male sterility [177].

7.8 Heterologous male sterility

The association of CMS and new chimeric ORFs in mitochondrial DNA sequences, 
as well as mitochondrial dysfunction, is documented. Nizampatnam et al. [178] engi-
neered transgenic tobacco plants to produce orfH522, a pet1-CMS-associated mito-
chondrial gene from sunflower that is driven by the TA29 promoter. Approximately 
35% of the modified tobacco plants were completely sterile. Subsequently, by decreas-
ing orfH522 transcripts using the RNAi approach, male fertility was restored [179].

8. GE for yield contributing characters

To address growing food demand as well as the challenges posed by climate 
change, major increases in yields of vital food crops employing transgenic technology 
are required. Using CRISPR-Cas9, researchers were able to increase grain number, 
dense erect panicles, and grain size in rice by disrupting the DEP1, Gn1a, IPA1, and 
GS3 genes, which are regulators of grain number, panicle architecture, grain size, 
and plant architecture [180]. CRISPR-Cas9 gene deletion targets the wheat genes 
TaGW2-B1, TaGW2-D1, and TaGW2-A1 that govern grain weight and protein con-
tent, leading to an increase in grain weight and protein content [181]. In maize, the 
gene ARGOS8 responded to water stress by increasing grain output [182].

Figure 3. 
Simplified version of male sterility through modification of flavonoids.
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9. Gene drive

Gene drive is a genetic phenomenon of naturally occuring skewed inheritance 
mechanism that implies sexual reproduction and is essentially concerned with 
population suppression and population modification. Synthetic gene drives deploy 
genome editing technologies such as CRISPR to maximise the likelihood of a certain 
gene being inherited from 50% to almost 100% (Figure 4).

9.1 Working model of gene drive

When a gene drive is inserted into the genome of an animal, the progeny inherits 
the drive on one chromosome and a normal gene from the other parent. During early 
development, the CRISPR component of the drive shears the other copy. The cut is 
subsequently repaired using the drive as a template, resulting in two copies of the 
change being passed down to the progeny [183]. By suppressing the fertility gene 
termed doublesex on the usage of drive and thereby crashing a population of caged 
Anopheles gambiae mosquitos, Crisanti and his colleagues were able to prevent female 
mosquitos from biting or laying eggs while the drive was in place [184].

In C. capitata [185] and Aedes aegypti, a bisex RIDL system containing a tetracy-
cline-repressible positive feedback transactivator (tTA) was successfully constructed, 
which does not require a specific promoter derived from the target species, but 
rather a minimal promoter used in conjunction with oligomerised tetO, the binding 
sequence. Under tight conditions, particularly in the absence of tetracycline, tTA 
(transactivator and lethal effector) accumulates to deadly levels in both sexes of the 

Figure 4. 
Simplified version of comparison between normal mosquito population and genetic drive mosquitos’ population. 
There is a huge discrepancy among the rapid adoption of GM crops for production, global markets, and consumer 
approval. However, the following is a list of transgenic crops that have been worldwide authorised and released 
for various characteristics (adopted from ISAAA database).
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transgenic insect. Females must be removed from a ‘male-only’ release programme 
using an independent approach based on an underlying molecular mechanism that is 
female-specific. Functional Tra protein is only produced by females as it is encoded by 
a splice variant exclusively produced in females leading to functional tTA protein only 
produced in females rendering the system female-specific. Fu et al. [185] integrated 
the first intron of the sex determining gene Cctra into the DNA sequence coding 
for tTA to provide a sex selective component to the positive feedback system. If this 
Cctra fragment is spliced in the same as it is in its native context, tTA production is 
only allowed when the intron is spliced in the female-specific form, as the continuous 
coding frame of tTA is only restored in this variant. As this intron’s full splicing in 
its native gene is exclusive to females, tTA expression was only expected in trans-
genic females. The analysis of tTA transcription in transgenic C. capitata revealed 
a sex-specific pattern similar to the natural Cctra gene. The inserted intron spliced 
to produce three distinct tTA transcripts: one female-specific (F1) and two nonsex-
specific (M1 and M2). The female-specific transcript was the only one that encoded a 
complete tTA. As a result, when grown under harsh conditions, all of the transgenic 
female progeny died as larvae or pupae [186]. Thus, the utilisation of gene drivers in 
agriculture may be primarily harnessed by implementing sterile insect techniques for 
successful insect pest management (Table 8).

10. Discussion and conclusion

The advent of advanced targeted, ‘customizable,’ and precise new technologies for 
insect resistant plants, in their various embodiments and combinations, symbolises a 
sustainable option countering the emergence of resistant weeds, lessening agrochemi-
cal use, and curtailing adverse effects on nontarget organisms. The direct application 
of chimeric ODNs or siRNAs to plant cells enables for the generation of technically 
non-GM organisms. Inevitably, the refinement of promising techniques that are 
not currently destined to assign insect resistance, such as RNA manipulation with 
pentatricopeptide repeat proteins, the use of polygalacturonase-inhibiting proteins 
(PGIPs), ribozymes, and riboswitches, will likely expand the defence mechanism 
against pests available to researchers and farmers. However, thanks to recent advance-
ments like RenSeq and directed molecular evolution, which enable the rapid identi-
fication of novel immune receptor genes, the pool of deployable genes for enhanced 
resistance to other microorganisms has grown significantly. In the near future, 
developments in molecular stacking and targeted gene insertion by genome editing 
are projected to predominate in establishing broad-spectrum resistance against both 
viral and nonviral diseases. Moreover, increasingly diverse, accurate, and economical 
genome-editing techniques like CRISPR-Cas allow for precise change of endogenous 
genes for disease resistance, such as susceptibility and decoy genes. On the flip side, 
the persistent cultivation of herbicide crops is estimated to have resulted in the 
resurgence of herbicide resistance in numerous weeds. Nevertheless, by benefiting 
from the shortcomings of the issue, the adverse consequences of herbicide-based 
technologies might be substantially minimised by introducing variety in weed control 
using alternative approaches, with an emphasis on crop rotation, herbicide rotation, 
and herbicide formulations. Stress-resistant plants may be generated with or without 
tissue culture by using simple knock-in, knock-out, replacement, fine-tuning of gene 
regulation, and point mutations at any gene locus. Although genome editing technol-
ogy is in in its beginning phases, disruptions in specific genes can have unintended 
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negative consequences for plant growth and development. More research is needed 
to fully exploit the ability of the CRISPR-Cas System in regulating abiotic stress. One 
rationale could be that the genes governing beneficial qualities in crops are largely 

Crops IR HR DR Abiotic 

stress

Quality Pollination 

control

Altered 

growth / 

yield

Maize 119 128 — 6 8 6 2

Cotton 49 44 — — 1 — —

Cowpea 1 — — — — — —

Bean — — 1 — — — —

Brinjal 1 — — — — — —

Popular 2 — — — — — —

Potato 30 4 19 — 18 — —

Rice 3 3 — — 1 — —

rose — — — — 2 — —

Soyabean 6 32 — 2 9 — 1

Sugar cane 3 — — 3 — — —

Tomato 1 — 1 — 9 — —

Papaya — — 4 — — — —

Plum — — 1 — — — —

Petunia — — — — 2 — —

Squash — — 2 — — —

Cucumis melo — — — — 2 — —

Sweet pepper — — 1 — — — —

Alfalfa — 4 — — 2 — —

apple — — — — 3 — —

Canola — 33 — — 10 20 —

Carnation — 4 — — 19 — —

Chicory — 3 — — — 3 —

Creeping Bentgrass — 1 — — — — —

Flax — 1 — — — — —

Brassica — 4 — — — — —

Sugar Beet — 3 — — — — —

Pine apple — — — — 1 — —

Tobacco — 1 — — 1 — —

Wheat — 1 — — — — —

Safflower — — — — 2 — —

Eucalyptus — — — — — — 1

Table 8. 
List of globally approved and released transgenic crops for various characters.
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quantitative trait genes, which necessitates a deeper knowledge of gene regulatory 
networks. As a result, expanding our knowledge of gene regulatory networks is the 
foundation for greater crop development. Furthermore, the approach of knocking out 
target genes via NHEJ has attracted a strong interest for boosting agricultural output 
and quality. Gene targeted insertion or substitution enable the genes to integrate 
more easily. The HR repair pathway is ineffectual, constraining the use of site-specific 
insertion and substitution. It is also expected that eliminating the HR approach to 
editing would lead to more precise and effective crop improvement. If the seed is 
the most valuable portion of the plant and the crop is mostly self-fertilised, a good 
fertility restoration mechanism is necessary. It is likely that by coupling inducible 
male sterility with apomixis, fertile plants may be obtained once the trait was fixed. 
It is also necessary to guarantee that apomixis is inducible, encouraging apomixis to 
restore to sexual reproduction and enabling the breeder the opportunity of further 
enhancing the hybrids by establishing appropriate combiner lines.

The world has already experienced two technical revolutions and is currently 
undergoing a third revolution based on biotechnology and genomics, which is 
predicted to yield a plethora of transgenic crops for the benefit of humanity. Genetic 
engineering is a radical departure from traditional breeding since it allows scientists 
to transfer genetic material across organisms that could not be bred earlier. The degree 
of public knowledge regarding the benefits and drawbacks of transgenic plants should 
be strengthened, laying the groundwork for the effective dissemination of research 
findings to real time application. The central emphasis should be on the advance-
ment of technologies competent of bridging the gaps in modern day technology. 
Nonetheless, developing countries are now required to assess genetically modified 
(GM) crops, and they will subsequently be expected to investigate the potential use 
of GM trees, cattle, and fish. These advancements may provide prospects for greater 
output, productivity, product quality, and adaptive fitness, but they will almost likely 
pose challenges to developing countries’ research and regulatory capability.
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