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Chapter

Approximate Dynamic
Programming: An Efficient
Machine Learning Algorithm
Zhou Shaorui, Cai Ming and Zhuo Xiaopo

Abstract

We propose an efficient machine learning algorithm for two-stage stochastic
programs. This machine learning algorithm is termed as projected stochastic hybrid
learning algorithm, and consists of stochastic sub-gradient and piecewise linear
approximation methods. We use the stochastic sub-gradient and sample information
to update the piecewise linear approximation on the objective function. Then we
introduce a projection step, which implemented the sub-gradient methods, to jump
out from a local optimum, so that we can achieve a global optimum. By the innovative
projection step, we show the convergent property of the algorithm for general two-
stage stochastic programs. Furthermore, for the network recourse problem, our algo-
rithm can drop the projection steps, but still maintains the convergence property.
Thus, if we properly construct the initial piecewise linear functions, the pure piece-
wise linear approximation method is convergent for general two-stage stochastic pro-
grams. The proposed approximate dynamic programming algorithm overcomes the
high dimensional state variables using methods from machine learning, and its logic
capture the critical ability of the network structure to anticipate the impact of deci-
sions now on the future. The optimization framework, which is carefully calibrated
against historical performance, make it possible to introduce changes in the decisions
and capture the collective intelligence of the experienced decisions. Computational
results indicate that the algorithm exhibits rapid convergence.

Keywords: stochastic programming, piecewise linear approximation, machine
learning, network, approximate dynamic programming

1. Introduction

Optimal learning addresses the challenge of how to collect information, as effi-
ciently as possible, to make a decision in the present such that it minimizes the
expectation of costs in the future with uncertainty. Collecting information is usually
time consuming and expensive. For example, several large shippers, such as Amazon,
Walmart, and IKEA, need to decide the quantity of products to ship from plants to
warehouses to satisfy the retailers’ demand. The retailer usually makes their decisions
before knowing the real demand. Then, after they know the retail demand, they
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optimize the shipping plans between retailers and warehouses. The aforementioned
problems generally can be treated as the two-stage stochastic programs. The decisions
that the retailer made now (Stage 1) will determines the state while solving the
problem in future (Stage 2). Therefore, an optimal decision can be made now if we
can compute the expected cost function (the recourse function) of Stage 2. In this
chapter, we propose an efficient machine learning algorithm that can collect informa-
tion very efficiently based on the knowledge gradient and solve the problem opti-
mally. The main gap between MAT and proposed algorithm is that our proposed can
collect the information based on knowledge gradient and overcomes the “curse of
dimensionality”. Besides, it can transfer the problem into a polynomial solvable prob-
lem and has been proven convergent theoretically.

1.1 Motivation

Optimal learning is a rich filed that includes contributions from different commu-
nities. At the moment, this chapter focus on optimal learning in two-stage stochastic
program, which is a practically important problem. Problems of this type arise in
several areas in dynamic programming, in which the decision maker need to make
temporal and spatial decisions before realizing events that will influence the decisions.
For example, in empty container repositioning problems [1], shipping companies
need to reposition empty containers before realizing the demand. In locomotive plan-
ning problems [2], railroads have to decide the schedule of trains in which locomo-
tives are assigned before disruptions occur across the railway network. For relief
distribution problems [3], humanitarian decision makers need to distribute emer-
gency aid to disaster locations when the emergency aid materials are very scarce
amidst great uncertainties. For job scheduling problems [4], the managers need to
decide initial staffing levels and their working plans before the demand are realized.
Most of the aforementioned applications are fully sequential problems, and they can
be modeled as two-stage stochastic programming problems. Hence, the research of
two-stage stochastic optimization in this chapter is very important. However, the
main obstacle in most practical problem is that the expected cost function in Stage 2 is
quite complex due to uncertainty. In this chapter, we propose a hybrid learning
algorithm called projected stochastic hybrid learning algorithm (ProSHLA) to approxi-
mate the expected recourse function for two-stage stochastic programs. In order to
demonstrate the efficiency of the algorithm, we also theoretically prove the conver-
gence of the proposed algorithm mathematically.

In essence, ProSHLA is a hybrid of stochastic sub-gradient and piecewise linear
approximation methods. The core of ProSHLA consists of a series of learning steps
those provide information for updating the recourse function through a sequence of
piecewise linear separable approximations, and a series of the projection steps those
can guarantee convergence by implementing the stochastic sub-gradient method. The
mathematical analysis and the computational results all demonstrates that when the
initial piecewise linear approximation function is properly constructed for two-stage
stochastic programs with network recourse, the learning algorithm can drop the
projection steps without sacrificing convergence. Moreover, without the projection
step, the learning algorithm only consists of a series of learning steps through a
sequence of piecewise linear separable approximations, and can solve the practical
complex problems very efficiently. Our innovative finding can help the practitioner
and the scholar to understand the open problem that has puzzled them for decades:
why does the piecewise linear approximation method can be efficient and convergent
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for stochastic programs with network recourse in practice. In this chapter, we provide
the first theoretical support by our analytical results for the use of the piecewise linear
approximation method in solving practical problems.

1.2 Literature review

In this chapter, we consider the two-stage stochastic programming problem as
follows:

min cT0xþ Eω Q x, ωð Þ½ � (1)

s.t.,

Ax ¼ b,

x≥0,

where X ⊂Rn denotes a convex compact set and the recourse function Q x, ωð Þ
denotes the optimal value of the second stage problem:

Q x, ωð Þ ¼ min cT1 y ωð Þ (2)

s.t.,

W ωð Þy ¼ h ωð Þ � T ωð Þx,

y ωð Þ≥0 ωð Þ:

In the above model, variables x and y denote the decision variables of stage 1 and 2
problems, respectively. A, W ωð Þ are constraint matrices, and parameters c0 and c1
denote the first and second stage vectors of cost coefficients, respectively.

Stochastic programming models and solution methods has been examined by
many researchers. Comprehensive reviews and discussions were performed by
Wallace and Ziemba [5]. The expected recourse function is extremely complex
to evaluate except for a few special cases. There are various approximation

methods those can be categorized into four groups. Let bQ xð Þ denote the approximate
function. The first group includes scenario methods which use the sample average of
Q x, ωið Þ for several samples, ω1, ω2,…ωN, to approximate the expected recourse
function [6]. The approximation function is usually successively updated by the
following function:

bQ xð Þ ¼

PN
i¼1Q x, ωið Þ

N

Generally, the scenario method is very efficient, but it cannot guarantee to obtain
the convergent solution.

The second group consists stochastic gradient techniques [7, 8], which updates
solutions by using stochastic sub-gradients as directions. Usually, the approximate
function can be successively updated by the following function:

bQ xð Þ ¼ gk
� �T

x (3)
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where gk denotes a smoothed estimate of the gradient of the expected recourse
function at x for iteration k. This method can be proven convergent by projection [9]
or recursive linearization [10], although the drawback of this method is that it is time-
consuming.

The third group mainly consists of primal and dual decomposition methods. The
use of primal and dual decomposition methods dates back to Benders decomposition
[11]. Van Slyke and Wets [12] first adopted the L-shaped algorithm into the applica-
tion of Benders decomposition to two-stage stochastic programs. Pereira and Pinto
[13] proposed the stochastic dual dynamic programming (SDDP) method, which has
been widely applied in many areas. SDDP uses Benders cuts to compute an outer
approximation of a (convex) recourse function, and constructs feasible dynamic
programming policies. SDDP has led to numerous related approximation methods
those are based on the same logic but seek to improve the approximation procedures
by exploiting the underlying structure of the particular applications. These methods
consist of use of inexact cuts [14], risk-averse variants [15], embedding SDDP in the
scenario tree framework [16]. The convergence of SDDP and related methods has
been proven by [17], for linear programs by Girardeau et al. [18].

The fourth group includes separable approximation methods [19, 20]. This type of
methods usually replaces the expected recourse function in Eq. (1) with separable
approximation functions as follows:

bQ xð Þ ¼
XI

i¼1

bQ i xð Þ (4)

If the separable functions bQ i xð Þ are piecewise linear or linear, we can replace the

expected recourse function in Eq. (1) with bQ xð Þ. Then we can solve the problem as a
pure network flow problem for network recourse problems, which is polynomial
solvable. Thus, it is very efficient. For example, Godfrey and Powell [21] proposed an
adaptive piecewise concave approximation (CAVE) algorithm, and the experimental
performance of the algorithm shows exceptionally good. However, there was none
provable convergent results in their study. In order to provide convergent solutions,
Cheung and Powell [19] proposed an approximation algorithm (SHAPE), which uses
sequences of strongly convex approximation functions. However, the strongly convex
functions require to construct a nonlinear term, and the strongly convex term might
damage the pure network structure and need additional computational effort. This
chapter intends to introduce an accurate and efficient approximations with the con-
vergence property.

1.3 Contributions of the algorithms

In this chapter, we aim to develop a convergent method that can efficiently
approximate the expected recourse function for two-stage stochastic programs. The
main contributions are listed as following:

1.We propose a new convergent hybrid learning algorithm to approximate the
expected recourse function for two-stage stochastic programs.

2.Through rigorous mathematical analysis, we prove the convergence of the
proposed algorithm for general two-stage stochastic programs. The
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computational results and mathematical analysis both reveals that the
algorithm can drop the projection step without sacrificing the convergence for
two-stage stochastic programs with network recourse if we can properly
construct the initial piecewise linear approximation functions. That means that
a pure piecewise linear approximation can be indeed convergent, which is
highly consistent with industry practices. This interesting finding answers the
open question which has puzzled scholars for more than a decade: why does
the piecewise linear approximation work well for two-stage stochastic
programs in industry? Our mathematical analysis can provide the first theoretical
support.

3.A series of performance analysis has been conducted. The computational results
reveal the efficiency of the proposed algorithms and the proposed algorithms are
distribution-free. Furthermore, the convergence rate can be affected by the
granularity of the initial function (δ). Small granularity usually leads to a high
convergence rate. Finally, the computational results also show that the proposed
algorithm is very competitive for high dimensional problems.

4.Compared with MAT, the proposed algorithm can collect the information based
on knowledge gradients and use it to update the recourse function by learning
steps. It can overcome the “curse of dimensionality”. Moreover, it can transfer
the problem into a polynomial solvable problem.

The remainder of this chapter is organized as follows. Section 2 presents the
description and convergence analysis of the algorithm for general two-stage stochastic
programs. The algorithm (without projection steps) for two-stage stochastic
programs with network recourse are shown in Section 3. Section 4 demonstrates
computational experiments based on an application of the empty container
repositioning problem. Section 5 presents the conclusions and outline directions for
future research.

2. Description and convergence analysis of ProSHLA for general
two-stage stochastic programs

In this section, ProSHLA is first introduced. Subsequently, we analyze the
convergence of ProSHLA for general two-stage stochastic programs.

2.1 Description of ProSHLA

To present ProSHLA mathematically, we let, at each iteration k,
αk ¼(possibly random) positive step size;

Q xð Þ ¼expected recourse function, that is, Eω Q x, ωð Þ½ �;

bQ
k
xð Þ ¼a convex differentiable approximation of Q xð Þ;

bqk xð Þ ¼a subgradient of bQ
k
xð Þ at x, that is bqk xð Þ ∈ ∂bQ

k
xð Þ;

gk ¼a smoothed estimate of the gradient of Q xð Þ at iteration k;

gk ¼a stochastic subgradient of Q xð Þ at xk, that is, gk ∈ ∂Q(xk,ωk + 1);
Hk ¼ ω1f , ω2,…ωNg ¼ the history up to and includingð Þ iteration k:
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For a general non-smooth convex function bQ xð Þ, its sub-differential can be defined
as follows:

∂bQ xð Þ ¼ bq xð Þ∈Rn
:
bQ yð Þ � bQ xð Þ≥bq xð ÞT y� xð Þ

n o
:

We combine Eqs. (1), (3), and (4) to form an approximation at iteration k as
follows:

min cT0xþ bQ
0
xð Þ þ gk

� �T
x (5)

In this study, we approximate the expected recourse function at iteration k via a

convex, differentiable approximation bQ
0
xð Þ with a linear correction term gk

� �T
x. At

each iteration, the linear correction term gk
� �T

x are introduced to improve the initial

approximation bQ
0
xð Þ. Note that here we use a convex initial approximation function

bQ
0
xð Þ, whereas SHAPE uses strongly convex approximation functions. SHAPE will

introduce a nonlinear term in the approximation function to maintain the strong
convexity property, and it might destroy the pure network flow problem structure

and demands additional computational effort. Moreover, we do not calculate gk in the
usual manner to obtain stochastic sub-gradients in this study. We use the following
form in our model instead:

min cT0xþ bQ
k
xð Þ þ αk gk � bqk xð Þ

� �T
x, (6)

where bQ
k
xð Þ is updated as follows:

bQ
kþ1

xð Þ ¼ bQ
k
xð Þ þ αk gk � bqk xð Þ

� �T
x (7)

The greatest merit of updating bQ
kþ1

xð Þ in the above way is that it can retain the

stochastic sub-gradients bqk xk
� �

,bqk�1
�

(xk � 1),… ,bq0 (x0)) used in the previous itera-

tions. Thus, in iteration k, the objective function involves a weighted average of

stochastic sub-gradients in the past (k� 1) iterations. As shown later in Lemma 2, gk

in Eq. (5) is a linear combination of g1, g2,… gk�1.
Let PX : Rn ! X be the orthogonal projection onto X [9]. Then, we can obtain a

sequence of solutions {xk} using the following procedure (Figure 1).
Generally, ProSHLA consists of two-level loops. In the first-level loop, there exists

a series of passes, and in the second-level loop, the exists a series of projection steps,
which include the step 5 and 6. We first construct an initial bounded and piecewise

linear convex approximation function bQ
0
(x) at the beginning of the first pass, then

the initial solution x0 can be obtained by solving problem (1). A realization of the
random quantity ω ∈ Ω can be drawn, and then we can obtain a stochastic sub-

gradient of Q
0
xð Þby solving the resulting deterministic problem. Compared with the

slope of bQ
0
(x) and the stochastic sub-gradient at x = x0, the difference of these two

slopes can be used as a linear term to update bQ
0
(x). Subsequently, we can obtain a
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new solution xk + 1 using the updated approximation function. If the sub-gradient

vectors bqm xkþ1
� �

of the newly obtained solution xk + 1 are equal to sub-gradient of

solution xm, that is bqm xm
� �

, the piecewise linear approximation might have jumped
into a local optimum. Subsequently, ProSHLA need to jump out from local optimum
by implementing projection steps in the second-level loop. If we obtain a new solution

xk + 1 in the second-level loop and the sub-gradient bqm xkþ1
� �

is different from sub-

gradient bqm xm
� �

, then ProSHLA can jump out the second-level loop, and comes to the
end of second pass. Thus then, we can repeat the entire process. Finally, ProSHLA will

be terminated when the total absolute change in bQ
l
xð Þ over a certain number of

iterations is low (e.g.
Pk

l¼k�Mþ1k
bQ
l
xð Þ � bQ

l�1
xð Þ∣< δ).

Here we point out the main difference between SHAPE and ProSHLA. The most
remarkable difference is that ProSHLA uses convex approximation functions while
SHAPE uses strongly convex approximation functions. The strongly convexity always
maintains a nonlinear term in the approximation function. And this term might
destroy the pure network flow structure and causes additional computational effort.
To overcome the drawback of the SHAPE, we introduce the projection step in the
second-level loop and construct approximation functions. Particularly, the approxi-
mation functions in the ProSHLA is NOT strictly convex, while it needs to be strictly
convex in SHAPE. Without the projection step in the second-level loop, the ProSHLA
might stuck in the corner local –optimum for stochastic linear programs. Thus,
ProSHLA can work well for most practical stochastic linear programs, because most of
practical stochastic programs are piecewise convex problems.

2.2 Convergence analysis of ProSHLA

Firstly, we demonstrate the convergence theorem of ProSHLA in this subsection.
Then, several properties of approximation are presented. Finally, we use these prop-
erties to prove the convergence of ProSHLA.

Figure 1.
The procedure of ProSHLA.
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Without loss of generality, the following assumptions are listed.
(A.1) X ⊂Rn is compact and convex.
(A.2) EωQ x1, ωð Þ is convex, finite and continuous on X.

(A.3) gk is bounded such that gk
�� ��≤ c1 for eachω∈Ω;bqk is bounded such that

bqk
���
���≤ c2 for each ω∈Ω.

(A.4) Piecewise linear function bQ
k
xð Þ are convex, implying that

bQ
k
x1ð Þ � bQ

k
y1
� �

≤bqk x1ð ÞT x1 � y1
� �

:

(A.5) The stepsizeαk are Hk measurable and satisfy

0< αk < 1,
X∞

k¼0

E α
2
k

� �
≤∞

Except for the assumption from (A.1) to (A.5), we also introduce the
following assumption to characterize the piecewise linear convex approximation
functions.

(A.6) There exists a positiveb and a constant δ, such that for any two points

x1,y1 ∈X, if x1 � y1
		 		> δ, then bq x1ð Þ � bq y1

� �		 		≥ b x1 � y1
		 		. If there exists bq x1ð Þ and bq y1

� �

such that bqk x1ð Þ � bqk y1
� �

¼ 0, then x1 � y1
		 		≤ δ. Ifδ ! 0, then the function corre-

sponds to a strongly convex function, if δ ! ∞, then the function becomes purely
linear.

Given assumption (A.1)–(A.6), we obtain the following theorem of ProSHLA.

Theorem 1. If assumptions (A.1)–(A.6) are satisfied, then the sequence of xk1
� �

generated by algorithm ProSHLA converges almost surely to the optimal solution
x ∗
1 ∈X ∗ of problem (1).
In order to prove the Theorem 1, we need to use the following Martingale conver-

gence theorem and three lemmas.

Martingale Convergence Theorem. A sequence of random variables Wk
� �

,
which are Hk measurable, is said to be a super-martingale if there exists the

sequence of conditional expectations E Wkþ1jHk

� ��
and satisfies

E Wkþ1jHk

� �
≤Wk

�
.

Theorem 2. (From reference [22]) Let Wk be a positive super-martingale. Then,

Wk converges to a finite random variables a.s.

From the above theorem, we can conclude thatWk is a stochastic decreasing
analogue essentially.

Based on the convexity property, the optimal solution for problem (8) at iteration
m can be characterized by the following inequality:

bqm xm1
� �� �T

x1 � xm1
� �

≥0, ∀x1 ∈X (8)

To obtain Theorem 1, the following three lemmas are required. The first lemma
shows that the difference between the solutions of two consecutive update processes
will be bounded by the step-size and the stochastic gradient. The second lemma

indicates that the approximation bQ
k
x1ð Þ is finite. The third lemma shows that Tk

(which will be denoted in Lemma 3) is bounded.
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Lemma 1. For any two iterationsj∈ mþ 1, mþ 2

 �

, i∈ m, mþ 1

 �

, solutionsx
j
1 and

xi1 obtained by ProSHLA can be characterized by the following inequality:

αmg
m xi1 � x

j
1

� �
≤ αmc1ð Þ2=b (9)

Proof. Consider a special case, where i and j corresponds to two consecutive

iterations. Let i ¼ mþ 1� 1 and j ¼ mþ 1. Based on (10), we can obtain that,

bqmþ1 xmþ1
1

� �� �T
x1 � xmþ1

1

� �
≥0,∀x1 ∈X (10)

According to the approximation function’s updating rule, we can conclude that,

bqmþ1�1 xmþ1
1

� �
þ αmþ1�1 gmþ1�1 � bqmþ1�1 xmþ1�1

1

� �� �� �T
x1 � xmþ1

1

� �
≥0,∀x1 ∈X

(11)

Substituting x1 with xmþ1�1
1 in Eq. (13), we can obtain

αmþ1�1 gmþ1�1 � bqmþ1�1 xmþ1�1
1

� �� �T
xmþ1�1
1 � xmþ1

1

� �

≥bqmþ1�1 xmþ1
1

� �T
xmþ1
1 � xmþ1�1

1

� � (12)

If we arrange the above terms, then we can obtain the inequality below:

αmþ1�1 gmþ1�1
� �T

xmþ1�1
1 � xmþ1

1

� �

≥bqmþ1�1 xmþ1
1

� �T
xmþ1
1 � xmþ1�1

1

� �
� αmþ1�1 bq

mþ1�1 xmþ1�1
1

� �� �T
xmþ1
1 � xmþ1�1

1

� �

¼ bqmþ1�1 xmþ1
1

� �
� bqmþ1�1 xmþ1�1

1

� �� �T
xmþ1
1 � xmþ1�1

1

� �

þ 1� αmþ1�1

� �
bqmþ1�1 xmþ1�1

1

� �� �T
xmþ1
1 � xmþ1�1

1

� �

(13)

When iteration mþ 1� 1 and mþ 1 are not in the same update process, then it

means that bqmþ1�1 xmþ1�1
1

� �
6¼ bqmþ1�1 xmþ1

1

� �
: According to assumption (A.6), we can

conclude that bqmþ1�1 xmþ1�1
1

� �
� bqmþ1�1 xmþ1

1

� �			
			≥ b xmþ1�1

1 � xmþ1
1

			
			.

According to Eqs. (10) and (13), and 0< αmþ1�1 < 1, we can obtain

αmþ1�1 gmþ1�1
� �T

xmþ1�1
1 � xmþ1

1

� �

≥ b xmþ1�1
1 � xmþ1

1

���
���
2
þ 1� αmþ1�1

� �
bqmþ1�1 xmþ1�1

1

� �� �T
xmþ1
1 � xmþ1�1

1

� �

≥ b xmþ1�1
1 � xmþ1

1

���
���
2
:
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Applying Schwartz’ inequality, we can get the inequality below:

αmþ1�1 gmþ1�1
���

���∙ xmþ1�1
1 � xmþ1

1

���
���≥ αmþ1�1 gmþ1�1

� �T
xmþ1�1
1 � xmþ1

1

� �

≥ b xmþ1�1
1 � xmþ1

1

���
���
2

Therefore, xmþ1�1
1 � xmþ1

1

���
���≤ αmþ1�1∙c1=b. We can obtain the inequality below:

αmþ1�1 gmþ1�1
� �T

xmþ1�1
1 � xmþ1

1

� �
≤ αmþ1�1c1
� �2

=b (14)

For any i∈ m, mþ 1� 1�



, gi ¼ gm ¼ gmþ1�1 and bqi x1ð Þ ¼ bqm x1ð Þ ¼ bqmþ1�1 x1ð Þ.
Thus,

αm gm
� �T

xi1 � xmþ1
1

� �
≤ αmc1ð Þ2=b (15)

For anyi∈ m, mþ 1� 1�



and j∈ mþ 1, mþ 2� 1�



,gj ¼ gmþ1 ¼ gmþ2�1 for
any x1 ∈X. Thus,

αm gm
� �T

xi1 � x
j
1

� �
≤ αmc1ð Þ2=b (16)

□

Lemma 2. In iteration k, the approximation function bQ
k
x1ð Þ can be written as

bQ
k
x1ð Þ ¼ bQ

0
x1ð Þ þ gk

� �T
x1, where gk is a finite vector.

Proof. According to Eq. (5) in Proposition 1, we can conclude that gkþ1 is a linear

combination of g1,g2,… ,gk. Since gk and bq0 x1ð Þ are finite, there will exists a finite and

positive vector bd such that

bd≥ max
k

gk � bq0 xk1
� �			

			 (17)

According to Lemma 2 in [19], we can conclude that gkþ1 ≥bd. □
Let Tk ¼ bQ

k
x ∗
1

� �
� bQ

k
xk1
� �

, where x ∗
1 represents the optimal solution. The follow-

ing Lemma characterizes the difference between Tkþ1 and Tk.

Lemma 3. For any two iterations i∈ m� 1, m� 1�



and j∈ m, mþ 1� 1�



, Ti

and Tj satisfy

Tj � Ti ≤ αm gm
� �T

xi1 � x
j
1

� �
þ αm gm

� �T
x ∗
1 � xi1

� �
: (18)

Proof. The special case is first considered. Let i ¼ m andj ¼ mþ 1. By re-writing

x ∗
1 � xmþ1 asx ∗

1 � xm þ xm � xmþ1, we can obtain the following equation:

bQ
mþ1

x1ð Þ ¼ bQ
mþ1�1

x1ð Þ þ αmþ1�1 gmþ1�1 � bqmþ1�1 xmþ1�1
1

� �� �T
x1

¼ bQ
m
x1ð Þ þ αm gm � bqm xm1

� �� �T
x1

10
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Then,

Tmþ1 � Tm ¼ bQ
m

x ∗
1

� �
þ αm gm � bqm xm1

� �� �T
x ∗
1 � bQ

m
xmþ1
1

� � 

þ αm gm � bqm xm1
� �� �T

xmþ1
1

!

� bQ
m

x ∗
1

� �
� bQ

m
xm1
� �� �

¼ αm gm � bqm
� �T

x ∗
1 � xm1 þ xm1 � xmþ1

1

� �
þ bQ

m
xm1
� �

� bQ
m

xmþ1
1

� �

¼ bQ
m

xm1
� �

� bQ
m

xmþ1
1

� �
� αm bqm

� �T
xm1 � xmþ1

1

� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ι

� αm bqm
� �T

x ∗
1 � xm1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΙΙ

þ αm gm
� �T

xm1 � xmþ1
1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΙΙΙ

þ αm gm
� �T

x ∗
1 � xm1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΙV

Considering each part individually, given that bqm ∈ ∂bQ
m

xm1
� �

, by convexity

ofbQ
m

xm1
� �

, we can obtain

bQ
m

xm1
� �

� bQ
m

xmþ1
1

� �
≤ bqm
� �T

xm1 � xmþ1
1

� �
(19)

Thus, the following expression is applicable.

bQ
m

xm1
� �

� bQ
m

xmþ1
1

� �
≤ bqm
� �T

xm1 � xmþ1
1

� �

¼ 1� αmð Þ bqm
� �T

xm1 � xmþ1
1

� �
þ αm bqm

� �T
xm1 � xmþ1

1

� � (20)

Given Eq. (10) and 0< αm < 1, we know that Ιð Þ≤0. Additionally, from Eq. (10)
and 0< αm < 1, we know that ΙΙð Þ≥0.

Thus, Tmþ1 � Tm ≤ αm gm
� �T

xm1 � xmþ1
1

� �
þ αm gm

� �T
x ∗
1 � xm1

� �
.

For anyi∈ m, mþ 1� 1�



, gi ¼ gm ¼ gmþ1�1 and bqi x1ð Þ ¼ bqm x1ð Þ ¼ bqmþ1�1 x1ð Þ for
any x1 ∈X. Therefore,

Tmþ1 � Ti ≤ αm gm
� �T

xi1 � xmþ1
1

� �
þ αm gm

� �T
x ∗
1 � xi1

� �
(21)

For anyi∈ m, mþ 1� 1�



and j∈ mþ 1, mþ 2� 1�



,bQ
j
¼ bQ

mþ1
¼ bQ

mþ2�1
for

any x1 ∈X. Therefore,

Tj � Ti ≤ αm gm
� �T

xi1 � x
j
1

� �
þ αm gm

� �T
x ∗
1 � xi1

� �
(22)

□

To the proof of Theorem 1, we here consider two scenarios. For the first scenario,
ProSHLA does not stop in a given update process. Thus, any update process exhibits
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finite iterations before the algorithm stops, which means mþ 1�m<M for any m (M
represents a large number). For the second scenario, ProSHLA might terminate in a
given update process. In the following text, Theorem 1 is proven for each scenario.

Scenario 1: ProSHLA does not stop in a given update process.

In the first scenario, a subsequence of xk1
� �

, xm1
� �

are considered. We will prove

that the subsequence xm1
� �

converges to the true optimal x ∗
1 : According to the

definition ofgk ∈ ∂Q xk1 , ω
kþ1

� �
, we can obtain the following inequality

gk
� �T

x ∗
1 � xk1

� �
≤Q x ∗

1 , ω
kþ1

� �
� Q xk1 , ω

kþ1
� �

(23)

whereQ x1, ωkþ1
� �

represents the operational cost function given the outcome ωkþ1.
According to Lemma 1, we can obtain the following inquality:

αm gm
� �T

xi1 � x
j
1

� �
≤ αmc1ð Þ2=b (24)

On the basis of Lemma 3, the difference Tmþ1 � Tm can be described as follows:

Tmþ1 � Tm ≤ αm gm
� �T

xm1 � xmþ1
1

� �
þ αm gm

� �T
x ∗
1 � xm1

� �

≤ �αm Q xm1 , ω
mþ1

� �
�Q x ∗

1 , ω
mþ1

� �� �
þ αm gm

� �T
x ∗
1 � xm1

� �

≤ �αm Q xm1 , ω
mþ1

� �
�Q x ∗

1 , ω
mþ1

� �� �
þ αmc1ð Þ2=b

(25)

Conditional expectation of Eq. (27) with respect to Hk can be taken on both side
and then we can obtain

E Tmþ1jHm

� �
≤Tm � αm Q xm1

� �
� Q x ∗

1

� �� �
þ αmc1ð Þ2=b

where Q x1ð Þ represents the expected recourse function, that is EωQ x1, ωð Þ: Given

the conditioning on Hk,T
m,αm and xm1 on the right-hand side are deterministic. The

conditioning Hk cannot provide any information on ω
mþ1. Hence, we replace

Q x1, ωmþ1
� �

(for x1 ¼ xk1 and x1 ¼ x ∗
1 ) with its expectation Q x1ð Þ. Given that

αm Q xm1
� �

� Q x ∗
1

� �� �
≥0, the sequence

Wm ¼ Tm þ αmc1ð Þ2=b (26)

is a positive supermartingale. Theorem 2 implies the almost sure convergence

of Wm. Hence,

Tm ! T ∗ a:s: (27)

We perform the summation of Eq. (27) from 0 to M and obtain the following
inequality:

TM � T0 ≤ �
XM

m¼0

αm Q xm1 , ω
mþ1

� �
� Q x ∗

1 , ω
mþ1

� �� �
þ
XM

m¼0

αmc1ð Þ2=b (28)

12

Multi-Agent Technologies and Machine Learning



We take the expectation of both sides. We take the conditional expectation with
respect to Hm and then over all Hm for the first term on the right-hand side.

E TMþ1 � T0
� �

≤ �
XM

m¼0

E E αm Q xm1 , ω
mþ1

� �� �n on o
�Q x ∗

1 , ω
mþ1

� �o
Hm

oo
þ E

XM

m¼0

αmc1ð Þ2

b

( )

≤ �
XM

m¼0

E αm Q xm1 , ω
mþ1

� �
� Q x ∗

1 , ω
mþ1

� �� �
Hmj gþ c1ð Þ2=b

XM

m¼0

E α
2
m

� �
(

We take the limit as M ! ∞ and use the finiteness of TM and
PM

m¼0

E α
2
m

� �
to

obtain

XM

m¼0

E αm Q xm1 , ω
mþ1

� �
�Q x ∗

1 , ω
mþ1

� �� �
jHm

n o
<∞ (29)

Given that Q xm1 , ω
mþ1

� �
�Q x ∗

1 , ω
mþ1

� �
≥0 and

PM

m¼0

E α
2
m

� �
¼ ∞ a:s:ð Þ, there exists

a subsequence mf g such that

Q xm1
� �

! Q x ∗
1

� �
a:s:

By continuity ofQ, the sequence converges. Hence,

xm1 ! x ∗
1 a:s:

Subsequently, we construct another subsequence xm�1
1

� �
. Based on Eq. (27),

E TMþ2�1 � TMþ1�1
� �

≤ �
PM

m¼0

αm Q xmþ1�1
1 , ω

mþ2�1
� �

� Q x ∗
1 , ω

mþ2�1
� �� �

þ αmc1ð Þ2=b

Like-wise, the following approximation can be proved:

xm�1
1 ! x ∗

1 a:s:

By analogic condition, a very general subsequence xi1
� �

,i∈ m, mþ 1� 1

 �

will
almost surely converge to x ∗

1 . Here, we term this type of subsequence Xs.
In the procedure of ProSHLA, the number of all update iterations is finite. Thus,

for any subsequence of xk1
� �

, we can obtain a subsequence that always belongs to Xs.
Then, the following conclusion can be obtained:

xk1 ! x ∗
1 a:s:
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Scenario 2: ProSHLA halts in a given update process.
For the second scenario, ProSHLA halts in a projection procedure which generates

a convergent sequence.
Hence, the conclusion of Theorem 1 can be finally obtained. □.
The above analytical processes demonstrate the convergence property of

ProSHLA. According to the above results, we require the function bQ xð Þ to be piece-
wise linear convex. However, for practitioners are interested in a practically scenarios,
in which they usually use separable functions to approximate the expected recourse
function for stochastic programs with network recourse. Based on Eq. (4), if the
separable functions are piecewise linear or purely linear, then practitioners can easily
solve this network recourse problem, because a pure network flow problem is poly-
nomial solvable. In the following section, we will discuss this special practice scenario.

3. Application for two-stage stochastic programs with network recourse
using separable piecewise linear functions

In this section, we will discuss the scenario where bQ xð Þ is separable for two-stage
stochastic programs with network recourse. For this scenario, we can simplify
implement ProSHLA without projection step. We denote this simplified version as
the Stochastic Hybrid Learning Algorithm (SHLA), which is described as follows
(Figure 2).

Essentially, SHLA is not convergent. However, if it is applied to two-stage sto-
chastic programs with network recourse, SHLA will enjoys several merits as follows:
(1) the solution of Q(x,ω) is naturally integer; (2) at each iteration, problem Q(x,ω) is
simple network flow problem that can be solved by polynomial algorithm.

Here, if we use separable functions, then assumption (A.6) can be satisfied by the
following artificially expression:

bq0 xið Þ<bq0 xi þ δð Þ

Note that for both ProSHLA and SHLA, it allows to choose initial approximation
function with different value of δ flexibly. Thus, if δ is set to be 1 for any i, then we can
guarantee the following expression:

bq0i xið Þ<bq0i xi þ δð Þ: (A.7)

Figure 2.
Description of SHLA.
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Then, we can reach Theorem 3 below.
Theorem 3. If (A.7) is satisfied, SHLA is always convergent for two-stage stochas-

tic programs problem with network recourse.
Proof. For anyx,y∈X,if there are unequal, we can obtain the following expression

according to (A.7).

bqk xð Þ 6¼ bqk yð Þ

Thus,

∣bqk xð Þ � bqk yð Þ∣>0

Hence, if we set δ ¼ 1 and apply ProSHLA for two-stage stochastic programs with

network recourse, then ProSHLA can drop the projection step because bqk xð Þ and bqk yð Þ
are always unequal. In this situation, ProSHLA is equivalent to SHLA, so SHLA is
convergent.

According to the above analysis, we have provided first theoretical convergence
support for SHLA-type algorithms which are widely used in numerous applications as
mentioned in introduction part. Compared with SHAPE, SHLA does not contain any
nonlinear terms so that it can be very efficient. Besides, SHLA can automatically
maintain the convexity of the approximation function if the initial piecewise linear
functions are properly constructed.

4. Experimental results for performance analysis

In this section, we use two experimental designs to evaluate the performance of the
algorithms: (1) An empty container repositioning problem which arises in the context
of two-stage stochastic programs with network recourse; and (2) a high dimensional
resource allocation problem as an extension experiment. In this section, the empty
container repositioning problem is first introduced and then we present the efficiency
of ProSHLA and SHLA. Sub-sequentially, we present the convergence of ProSHLA
and SHLA, and examine how δ affects convergence performance, and compare the
performance under different distributions of random demands. Finally, an extension
experiment on a high dimensional resource allocation problem is conduncted to eval-
uate the efficiency our algorithms.

4.1 Problem generator for the empty container repositioning problem

In this subsection, we test our algorithms in an empty container repositioning
problem faced by a major Chinese freight forwarder, who need to manage their
numerous empty container in a port network which is located in Pearl River Delta in a
fixed route from [23]. The port network contains several hubs (large ports) and
spokes (small ports). And the demand of empty container is usually uncertain. When
the forwarder need to decide the quantity of empty container to ship from one port to
another, they did not know the exact demand of container in the future [24, 25].
Thus, we can formulate the problem as a two-stage stochastic programs with
network recourse. Before we formally introduce the problem, we present the
following notations.
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L = set of ports;

dij = demand from port i to portj in stage 1;

Dij = demand from port i to portj in stage 2;

si = initial number of empty containers at port i;

Si = number of empty containers at port i in stage 2;

cij = cost for moving an empty container from port i to portj;

rij = profit for moving a laden container from port i to portj;

xij = number of laden containers shipped from port i to portj in stage 1;

yij = number of empty containers shipped from port i to portj in stage 1;

Then, the problem can be formulated as follows:

min
X

i∈L

X

j∈L

�rijxij þ cijyij

n o
þ Eω Q x, ωð Þ½ �, (30)

s.t.,

X

j∈L

xij þ yij

n o
¼ si, ∀i∈L (31)

X

i∈L

xij þ yij

n o
¼ sj, ∀j∈L (32)

yij ≥0, ∀i,j∈L (33)

where the recourse function Q x, ωð Þ is given as follows:

Q x, ωð Þ ¼ min
X

i∈L

X

j∈L

�rijxij ωð Þ þ cijyij ωð Þ
n o

(34)

s.t.,

X

j∈L

xij ωð Þ þ yij ωð Þ
n o

¼ si, ∀i∈L (35)

X

i∈L

xij ωð Þ þ yij ωð Þ
n o

¼ sj, ∀j∈L (36)

yij ωð Þ≥0, ∀i,j∈L (37)

In order to evaluate the algorithm, a set of problem instances are created. In this
study, the problem generator creates ports in L in a 100-mile by 100-mile rectangle.
We simply use the Euclidean distance between each pair of ports as the corresponding
travel distance. We set the holding cost for a demand to 15 cents per time instance. We
set the net profit for a demand to 500 cents per mile. The empty cost is set to 40 cents.
The demand Dij between locations i and j is set as follows:

Dij ¼ outj � ini � v,
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where
outj = outbound potential for port j;
ini = inbound potential for port i;
v = random variable.
The outbound and inbound potentials for each port represent the capability of the

location to generate outbound demand or attract inbound containers. In the generator,
We draw the inbound potential,ini, for port i between 0.2 and 1.8 uniformly, while the
corresponding outj is set as outj ¼ 2� ini . The reason for this setting is that in real-
world regions, large inbound flows port usually exhibits small outbound flows. We
also include a random number v with mean 30, that is, the typical daily demand
between each pair of locations to capture the randomness in demand. In order to test
the performance of the algorithms under different distributions, we also evaluate the
performance under exponential, normal and uniform distribution. We set the
stepsize αk to 1/k.

We solve a deterministic network flow problem to construct an initial piecewise
linear functions as described in [1], and we replace the random demand by their mean

values in the deterministic problem. Then, we can obtain S ¼ S1, S2, … , Sn
� �

. For

each i∈L, we generate the initial approximation function bQ
0

i xð Þ ¼ c x� Si
� �2

,x ¼

0,δ,… ,kδ,… :Kδ, where c is a positive parameter and x ∈ [0, Kδ]. In the projection
step, a least-squares problem is solved as following:

xkþ1 ¼ argmin xkþ1 � xk þ αk g
k xk
� �� �� �2

,xkþ1 ∈X:

4.2 Effectiveness and efficiency performance

To test the efficiency of the algorithm, we use a myopic algorithm, a posterior
bound (PB), the L-shaped algorithm [12] and the inexact cut algorithm [15] as
benchmarks. The myopic algorithm simply solves a static deterministic assignment
problem at the current stage while ignoring uncertainties in the second stage. It is
necessary to solve a deterministic network flow problem with all realized demands to
obtain PB. Note that such a posterior optimization involves no uncertainty since
decisions are allowed to anticipate future demand. Thus, the cost of PB is the lowest
and normally unreachable. As for the L-shaped algorithm and the inexact cut algo-
rithm, a group of linear programming problems with valid cuts should be solved.

We use 8 instances, in which the number of empty containers is ranged from 400
to 3200, and the corresponding number of ports is ranged from 5 to 40. For each
instance, 2000 samples are implemented and we obtain the solutions of the myopic
algorithm and the sample means of PB, the inexact cut algorithm, the L-shaped
algorithm, SHLA and ProSHLA. For SHLA, two classes of initial functions with δ = 1
and δ = 2 are selected, whereas we select δ = 2 for ProSHLA.

We show the experiment results on total cost in Table 1. In Table 1, column 1
presents the number of ports, and column 2 shows the number of the empty con-
tainers. The PB bounds are contained in column 3. Columns 4–9 contain the solutions
achieved by the myopic algorithm, the L-shaped algorithm, the inexact cut algorithm,
SHLA-1, SHLA-2 and ProSHLA, respectively. From the table, it clearly demonstrates
that the inexact cut algorithm, the L-shaped algorithm, SHLA, and ProSHLA can
achieve optimal or very-near-optimal solutions, which are closer to the PB (lowest)
bounds than those of the myopic method. Moreover, the solutions of the L-shaped
algorithm are the best solutions known, which are slightly better than the inexact cut
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NL NR Total cost (dollars)

PB Myopic L-shaped Inexact cut SHLA-1 SHLA-2 ProSHLA

5 400 �28,551,302 �27,761,331 �28,551,274 �28,551,227 �28,464,248 �28,463,941 �28,464,002

10 800 �59,397,423 �58,432,159 �59,396,702 �59,396,319 �59,338,653 �59,338,190 �59,338,341

15 1200 �98,451,193 �93,188,576 �98,449,868 �98,449,427 �98,257,484 �98,257,244 �98,257,395

20 1600 �147,390,005 �141,062,187 �147,388,360 �147,387,532 �147,269,239 �147,269,212 �147,269,213

25 2000 �185,223,883 �180,875,614 �185,220,423 �185,219,663 �185,092,289 �185,092,113 �185,092,143

30 2400 �234,005,740 �226,978,090 �234,004,427 �234,003,513 �233,401,849 �233,401,516 �233,401,658

35 2800 �266,375,728 �260,966,356 �266,375,468 �266,374,497 �266,337,862 �266,337,649 �266,337,660

40 3200 �304,910,355 �293,882,881 �304,908,597 �304,906,829 �304,907,153 �304,906,829 �304,906,962

Table 1.
Total cost for SHLA and ProSHLA.
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algorithm because the latter produces valid cuts that are inexact in the sense that they
are not as constraining as optimality cuts in the Lshaped algorithm. In addition, the
performance of SHLA (δ = 1) outperforms that of SHLA (δ = 2) and ProSHLA (δ = 2),
the reason is that small δ can lead to good performance. A specific discussion with
impact ofδ will be demonstrated later. The performance of ProSHLA (δ = 2) is slight
better than SHLA (δ = 2). Because the projection steps in ProSHLA help improve the
solution. Considering the speed of convergence is quite important in practical prob-
lems, we will focus on the computational time for different algorithms, which is
shown in the Table 2 below.

As shown in Table 2, ProSHLA and SHLA are more efficient than the inexact cut
algorithm and the L-shaped algorithm because ProSHLA and SHLA can utilize the
network structure while using the stochastic sub-gradient to approximate the recourse
function. From the table, we find that the inexact cut algorithm and L-shaped algo-
rithm are time-consuming, the reason is that here are 2000 samples, and it corre-
sponds to a very large number of cuts for the inexact cut algorithm and L-shaped
algorithm. It can also be observed that the computational time of the inexact cut
algorithm is smaller than that of the L-shaped algorithm, and the reason is that the
optimality cut in L-shaped is more than the valid cuts in the inexact cut algorithm.
Moreover, the computational time of SHLA (δ = 1) is almost equal to that of (δ = 2),
which reveals that the computational time canot be affect by the choice of δ: In
contrary, ProSHLA(δ = 2) requires more computational time than SHLA (δ = 2), and
the reason is that the projection step in ProSHLA are time-consuming. In the following
text, we focus on the convergence performance of SHLA and ProSHLA. Thus, only the
results of the myopic algorithm, PB, ProSHLA and SHLA are demonstrated, and we
use the solutions of the myopic algorithm and PB as the upper and lower bounds,
respectively.

4.3 Analysis of convergence performance

In this subsection, a set of experiments are conducted to evaluate the convergence
performance of SHLA and ProSHLA, and we choose the second instance (NR = 800
and NL = 10) as the experimental illustration. The range of the sample number is set

NR NL Computation time (s)

Inexact cut L-shaped ProSHLA SHLA-1 SHLA-2

400 5 76 153 43 28 28

800 10 382 535 148 90 95

1200 15 598 1140 332 224 217

1600 20 1084 2277 628 417 420

2000 25 1843 4190 1107 676 790

2400 30 2338 5491 1559 1112 1066

2800 35 4249 8075 2341 1539 1531

3200 40 8154 18,636 5307 3010 3428

Table 2.
Computational time of ProSHLA and SHLA.
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from 20 to 640, and we record the result of each combination of NR and NL at each
iteration. We can seem from Figure 3 that the convergence rate of SHLA-1 and
ProSHLA is remarkably high.

Figure 3.
Convergence rate of ProSHLA and SHLA.

Figure 4.
Gaps to PB for various δ:
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To further evaluate how δ affects the algorithm’s convergence performance, a set
of computational experiments are conducted. We increase δ from 1 to 16 and the
number of samples from 20 to 640. Here are many combination of δ and the number
of samples. We record the sample means of the solutions of SHLA and ProSHLA, PB
and the myopic method for each combination. We demonstrate the 3D plots of the
solution in Figures 4 and 5. As in Figure 4, the layers of ProSHLA and SHLA are
extremely close to the PB layer, and this implies the ProSHLA and SHLA are conver-
gent rapidly for various δ: Furthermore, it can been seem that the performance of
ProSHLA can slightly exceeds that of SHLA. In order to further investigate the differ-
ence between SHLA and ProSHLA, we demonstrate the performance of ProSHLA and
SHLA separately in Figure 5 (without the myopic algorithm and PB). As described in
Figure 5, the choice of δ can affect the performance of ProSHLA and SHLA, and a
small δ usually leads to a good solution.

We provides more details on the convergence performance of ProSHLA and SHLA
for various δ in Table 3 below, which clearly demonstrates that in conjunction with
the small δ, the performance of SHLA and ProSHLA is close to that of PB.

4.4 An extension experiment on a high dimensional resource allocation problem

Due to the limitation of the container setting, an extension experiment on a higher
dimensional problem is considered in this subsection. In this problem, there exists
several retailers R and many production facilities (with warehouse) L. In stage 1, an

Figure 5.
Comparison of ProSHLA and SHLA for various δ.
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amount xij is moved to a warehouse or retailer or location j from production facility i

before the retail demand is realized. When we know the consumer’s demand, then yij
products are moved to retailer location j from production facility i. Besides, the type of
the consumer’s demand at each location j is different, we denote the type as t∈cr,
we set the consumer’s demand of type t at location j as Dt

j, and provide pti unit of type t

at production location i: We denote the production capacity of location i by capi: This
problem is a non-separable problem.

Subsequently, we formulate the problem as follows:

min
X

i∈L

X

j∈L∪R

c1ijyij þ Eω Q x, ωð Þ½ � (38)

subject to

X

j∈L∪R

xij ≤ capi, ∀i∈L (39)

X

i∈L

xij ¼ sj, ∀j∈L∪R (40)

xij,sj ≥0, ∀i∈L,∀j∈L∪R (41)

where the recourse function Q x, ωð Þ is given as follows:

Q x, ωð Þ ¼ min
X

i∈L∪R

X

j∈R

c2ijyij �
X

i∈R

X

t∈T

rtip
t
i (42)

subject to

X

j∈R

yij ¼ si, ∀i∈L∪R (43)

X

i∈L∪R

yij ¼
X

t∈T

ptj, ∀i∈R (44)

ptj ≤Dt
j ωð Þ, ∀t∈L∪R,∀j∈R,t∈T (45)

Total cost—% gap to PB (computational time in seconds)

δ PB Myopic SHLA ProSHLA

1 �59,397,423 1.6251% 0.0989%(909.5) 0.0989% (1441.5)

2 �59,397,423 1.6251% 0.0997%(907.9) 0.0995% (1506.5)

4 �59,397,423 1.6251% 0.1001%(901.8) 0.0997% (1503.6)

6 �59,397,423 1.6251% 0.1005%(911.5) 0.1004% (1553.5)

8 �59,397,423 1.6251% 0.1028%(901.7) 0.1024% (1535.6)

16 �59,397,423 1.6251% 0.1189%(920.3) 0.1150% (1565.4)

Table 3.
Performance under various δ (no. of samples is 2000).
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In the first stage, we setc1ij ¼ c10 þ c11dij, where dij is the Euclidean distance between

locations i and j, andc10 is the production cost for each product and c11 is the transpor-
tation cost per mile. For the second stage costs, we set

c2ij ¼
c21dij if i∈L or i ¼ j

c20 þ c21dij if i∈R and i 6¼ j

(

c21 is the transportation cost per mile in the second stage, and c20represents the fixed
charge for moving each product from one retailer location to another retailer location.
For one unit of the demand type t occurring in retailer location i, a revenue rti will be
obtained. Our problem instances differ in the number of products and ∣L∪R∣, and it
determines the dimensionality of the recourse function.

Similarly, we use the inexact cut algorithm [15] and the L-shaped algorithm [12] as
benchmarks, and these two algorithms are Benders decomposition based methods.
Considering the convergence rate is quite important practically, in this part, our main
focus is on the speed of convergence. In order to evaluate the speed of convergence of
different methods, each algorithm is implemented for 40, 160, 640, 1200, and 4000
iterations, and a side by side comparison of the algorithms has been made when the
number of iteration increases. For the L-shaped and inexact cut algorithms, the num-
ber of iterations refer to the number of cuts used to approximate the expected
recourse function. For ProSHLA (δ = 2), the number of iterations refer to the number
of demand samples used.

Table 4 below shows the experiment results. In the experiment, the L-shaped
algorithm has been used to help find the optimal solution. In the table, the numbers
denote the percent deviation between the optimal value and the objective value.

For all problem instances, we use the L-shaped algorithm to find the optimal
solution. The numbers in the table represent the percent deviation between the objec-
tive value and the optimal value obtained after a certain number of iterations. The
computational time per iteration are also listed in Table 4. The computational results
on 5 scale of dimensionality instances.

In Table 4 above, column 1 presents the number of the locations, and column 2
shows the number of the products. Column 3 presnets the method that we used in the
experiment. The percent deviation from the optimal value are contained in columns 4
to 8. Column 9 lists the computational time per iteration. According to results in
Table 4, ProSHLA is able to obtain high quality solutions very efficient for different
problem instance, and it can maintain the consistent performance in problem of
different sizes, especially for large problems. This performance characteristic makes
ProSHLA promising for large-scale application. In comparison with these two Benders
decomposition-based methods, ProSHLA is competitive for high dimensional prob-
lems. The reason is that separable approximations usually scale much more easily to
very high dimensional problems. Note that in the first problem instance, when the
number of location is 6 and the number of resource is 10 (the inventory in a location
might be 0, 1, 2), the result of ProSHLA seems to be breakdown, because the problem
instance in this subsection is non-separable, which may introduce errors when we use
the separable approximations to approximate the expected recourse function. How-
ever, it will not happen on large problems. As for large problems, the separable
approximations are nearly continuous, rather than being just piecewise continuous.

According to the above computational results, ProSHLA is a promising method for
two-stage stochastic programs, but more comprehensive numerical work is needed
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before using it in a particular problem. Owing to its efficient performance and sim-
plicity, ProSHLA is a very promising candidate for high-dimensional problems.
Moreover, we can use it as an initialization routine method for high-dimensional
stochastic programming problems, and it can exploit high-quality initial feasible solu-
tion.

5. Conclusion

In this study, we propose an efficient machine learning algorithm for two-stage
stochastic programs. This machine learning algorithm is termed as projected stochas-
tic hybrid learning algorithm, and consists of stochastic sub-gradient and piecewise
linear approximation methods. We use the stochastic sub-gradient and sample infor-
mation to update the piecewise linear approximation on the objective function. Then
we introduce a projection step, which implemented the sub-gradient methods, to
jump out from a local optimum, so that we can achieve a global optimum. By the
innovative projection step, we show the convergent property of the algorithm for
general two-stage stochastic programs. Furthermore, for the network recourse prob-
lem, our algorithm can drop the projection steps, but still maintains the convergence
property. The computational results reveal the efficiency of the proposed algorithms
and the proposed algorithms are distribution-free. Furthermore, the convergence rate
can be affected by the granularity of the initial function (δ). Small granularity usually
leads to a high convergence rate. Finally, the computational results also show that the
proposed algorithm is very competitive for high dimensional problems. Compared

Number of iterations

N|L∪R| NP Algorithm 40 160 640 1200 4000 Sec./iter.

|L ∪ R| = 6 10 ProSHLA

L-shaped

13.26

1.17

8.61

0

2.93

0

2.92

0

2.73

0

0.01

0.07

Inexact cut 0.96 0 0 0 0 0.05

|L ∪ R| = 10 200 ProSHLA

L-shaped

10.58

1.85

3.01

0

0.61

0

0.29

0

0.12

0

0.07

0.26

Inexact cut 1.31 0 0 0 0 0.21

|L ∪ R| = 20 400 ProSHLA

L-shaped

7.22

10.46

1.22

1.16

0.42

0

0.23

0

0.05

0

0.30

1.13

Inexact cut 6.63 0.98 0 0 0 1.04

|L ∪ R| = 40 800 ProSHLA

L-shaped

6.03

23.57

0.82

3.23

0.34

0.31

0.17

0.02

0.02

0

0.83

9.53

Inexact cut 17.16 2.24 0.13 0.01 0 8.72

|L ∪ R| = 100∗ 2000 ProSHLA

L-shaped

5.68

44.84

0.78

14.51

0.15

1.38

0.04

0.5

0 0.03 2.68

36.53

Inexact cut 29.56 8.14 0.91 0.25 0.03 30.98

Note. Figures represent the deviation from the best objective value known.
*Optimal solution not found.

Table 4.
Percent error over optimal solution with different algorithms costs.
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with MAT, the proposed algorithm can collect the information based on knowledge
gradients and use it to update the recourse function by learning steps. It can overcome
the “curse of dimensionality”. Moreover, it can transfer the problem into a polynomial
solvable problem.
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