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Chapter

An Intelligent Position-Tracking
Controller for Constrained Robotic
Manipulators Using Advanced
Neural Networks
Dang Xuan Ba

Abstract

Nowadays, robots have become a key labor force in industrial manufacturing,
exploring missions as well as high-tech service activities. Possessing intelligent robots
for such the work is an understandable reason. Adoptions of neural networks for
excellent control accuracies of robotic control systems that are restricted in physical
constraints are practical challenges. This chapter presents an intelligent control
method for position tracking control problems of robotic manipulators with output
constraints. The constrained control objectives are transformed to be free variables. A
simple yet effective driving control rule is then designed to force the new control
objective to a vicinity around zeros. To suppress unexpected systematic dynamics for
outstanding control performances, a new neural network is employed with a fast-
learning law. A nonlinear disturbance observer is then used to estimate the neural
estimation error to result in an asymptotic control outcome. Robustness of the closed
loop system is guaranteed by the Lyapunov theory. Effectiveness and feasibility of the
advanced control method are validated by comparative simulation.

Keywords: robotic manipulators, neural network, constrained control, motion
control, simulations

1. Introduction

The world is now passing the Industry Revolution 4.0 in which robots have
played a crucial role in industrial, manufacturing, discovering, rescuing and day-life
activities. Excellent position controllers are required in most of industrial robots [1, 2].
However, in reality, it is not easy to achieve outstanding control precision with simple
control structures due to unexpected influences of internal uncertain nonlinearities
and unpredictable external disturbances in systematic dynamics [3–6]. Nevertheless,
most real-life robot joints are restricted in certain physical ranges. Note that, few
danger issues could be activated if the joints went over such the boundaries [4, 5]. To
deal with the strict control problems, many research outcomes have been recently
reported for both fully actuated and underactuated robotic systems [7, 8]. To realize
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control objective in predefined constraints, backstepping-based controllers are
favorite approaches for developers [9, 10]. Barrier Lyapunov functions are employed
as core-stones to implement the nonlinear control procedures [11, 12]. Such the
advanced state-interfered techniques could cope with both static and dynamical prac-
tical constraints of robotic systems [11, 13]. As comparing to the backstepping-based
methods, sliding-mode-control (SMC) approaches are also potential control solutions
for output-constraint control problems thanks to the simpler design and implementa-
tion [14, 15]. Furthermore, the SMC ones could be upgraded with employment of soft
boundaries to result in Prescribed-Performance Control (PPC) remedies which could
maintain the control objectives within predefined control accuracies [16, 17].

To reach excellent control performances, the nonlinear behaviors of the robotic
systems need to be compensated during the control process [14–18]. The uncertain
functionalities could be modeled with classical approaches such as basic force/torque
transformation or optimal-energy solutions or decomposition analyses [18, 19]. Such
the classical methods seem to be effective with simple robotic systems since they
highly depend on the system structure [7, 20]. To enhance the modeling perfor-
mances, fast-estimation approaches were studied in the past few years based on time-
delay estimation (TDE) technologies [21, 22]. lumped dynamics of the system are
simply approximated from information of acceleration signals and input gain matrices
selected [23, 24]. Owing to the simplicity in deployment, a vast of real-time applica-
tions have been developed using such the TDE algorithm [24, 25]. Since the accelera-
tion signals are normally computed from the position signals using high-order time
derivatives, measurement noises could be amplified reducing the estimation effect
[26, 27]. In fact, to learn the systematic behaviors in a model-free manner, intelligent
methods are also great solutions [28, 29]. Thanks to the ability of universal approxi-
mation, the system dynamics could be learnt under black-box models using Radial-
basis function (RBF) networks [30–32] or Fuzzy-hybrid-networks [33–35]. Once the
neural networks are integrated in the control process, the control error could be
adopted as main excitation signals of the learning process.

Since the networks require abundant excitation signals to activate the learning
processes, the intelligent controllers would sacrifice unexpected transient time to
reach the excellent steady-state control outcomes [30, 36]. As a result, high learning
rates were normally adopted in the classical learning rules to speed up the estimation
processes. Note that, the conventional learn laws only ensure boundedness of the
control errors instead of the learning errors [5, 37]. To create certain bounds of neural
weighting coefficients, the networks were modified by integrating linear-leakage
functions in their adaptation mechanisms [4–37]. Since the adaptation rules of free
channels were not properly deactivated, the convergence processes of the overall
systems are slower than those of the conventional ones. Note that although the
nonlinear dynamics of the robotic systems could be efficiently compensated by the
advanced neural networks, to yield outstanding transient control precision, the neural
estimation errors need to be tackled [11, 13–38]. Integration of both neural networks
and disturbance observers in nonlinear controllers have been proven to be excellent
solutions for modern robotic systems [39–41]. Indeed, such the nonlinear integration
was shown promising control results in stiffness-control robots, and in an exoskele-
ton, or in cooperative robots [42–44]. However, intelligent controllers using linear
leakage functions in the neural adaptation rules require large robust signals to attain
asymptotic control errors. With the combination of the neural network and distur-
bance in the intelligent approaches, the transient performances were remarkably
improved, but the control errors were not still driven to zero in a smooth manner.
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This chapter presents a new intelligent high-performance motion controller for
robotic manipulators with output constraints. To deal with such the constraint
problem, the control objective is first converted to a free variable using a new
nonlinear transformation function. The indirect control objective is next driven to
a certain vicinity using a sliding-mode-like control signal. A nonlinear neural
network and disturbance observer are combined in a special fashion to construct a
new closed-loop system in which both the estimation and control errors are
pushed to zero in infinite time. The proposed controller possesses the following
contributions:

• A novel nonlinear controller is proposed to stabilize the control objective inside
arbitrary vicinity of zero without violation of the physical constraints.

• A nonlinear learning law of the neural network is developed to effectively
estimate uncertain nonlinearities in the system model.

• To result in the asymptotic control performance of the overall system the neural
estimation error is finally tackled by a nonlinear disturbance observer integrated.

• Working performances of the proposed control method is rigorously analyzed by
an integral Lyapunov approach and extensive simulation results.

Outline of the paper is structured as follows. Section 2 presents the modeling of the
studied systems and problem statements. Section 3 shows the design procedure of the
proposed control algorithm with new neural disturbance estimation techniques and
the stability analysis. Section 4 discusses the validation results obtained from compar-
ative simulations. The conclusions are finally drawn in Section 5.

2. System model and problem statements

Behaviors of a general nDOF robot can be expressed using the following dynamics
[19, 20]:

M⌊q⌋€qþ C⌊q, _q⌋ _qþ g⌊q⌋þ f⌊ _q⌋þ τd ¼ τ (1)

where τ∈ℜn is the vector of the control torques generated by joint actuators,
q∈ℜn is the vector of joint position or the system output, M⌊q⌋∈ℜn�n is the
positive-definite mass matrix, C⌊q, _q⌋ _q,g⌊q⌋,f⌊ _q⌋,τd ∈ℜ

n are the Centripetal/
Coriolis vector, the gravitational, frictional, and the external disturbance torques,
respectively.

Remark 1: The main control objective here is to derive a proper control signal τð Þ to
drive the system output qð Þ following a desired trajectory qd

� �

.

Before designing the expected control approach, the following assumptions are
consolidated.

Assumption 1 [45, 46]: The disturbance τdð Þ is bounded and Lipschitz continuous.

Assumption 2: the reference profile qd

� �

is known, bounded and twice continu-
ously differentiable.

Assumption 3: The system states q, _qð Þ are measurable.
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Remark 2: The robotic system Eq. (1) is a passivity model with bounded time-
derivative states [19, 22, 45]. For practical systems, the robot joints qð Þ are limited in
physical ranges:

q≤q≤q (2)

where q andq
� �

are respectively the lower and upper bounds of the system

output qð Þ.
In reality, unexpected impacts from physical collisions could make the system

danger.
Remark 3: To obtain an excellent controller for the stated problem, one needs a

proper control strategy that could deal with dynamical nonlinear behaviors of the
robotic system Eq. (1) in complying with the physical constraint and be able to drive
the control objective to zero as fast as possible. Furthermore, the controller is also
expected to be robust and model-free.

3. Intelligent nonlinear constrained controller

A robust adaptive controller is designed in this section based on a new constrained
sliding mode framework and new learning mechanism of a basic neural network and
nonlinear disturbance observer. Stability of the closed control system is then investi-
gated by Lyapunov theories.

3.1 Constrained sliding mode control with neural network

We first define the following control error as the main control objective:

e ¼ q� qd (3)

The error is in fact allowed to vary in the following range that is constructed by the
constraint (2).

e≤ e≤ e

e � q� qd >0

e � q� qd <0

8

>

<

>

:

(4)

where e andeð Þ are the lower and upper physical bounds of the control error eð Þ,
respectively.

The following transformation function is next proposed to map the constrained
error eð Þ to a new free space:

yi∣i¼1::n ¼
ei

ei � eið Þ ei � eið Þ
(5)

where y ¼ y1, y2, … , yn
� �T

is the transformed error, ei is a specific entry of the

control error vector e ¼ e1, e2, ::ei:, en½ �T .
A sliding manifold is defined as an indirect control objective of the studied system:
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s ¼ _eþ K0y (6)

where K0 ¼ diag⌊k0⌋ ¼ diag⌊ k01; … ; k0n½ �⌋ is a positive-definite diagonal gain
matrix.

The time derivative of the manifold Eq. (6) under the dynamics Eq. (1) is expressed

_s ¼ �vþM
�1
τ� €qd þK0 _y (7)

where, v ¼ �M�1 C _qþ g þ f þ τd
� �

þ M�1 �M
�1

� �

τ∈ℜn is defined as a

systematic-deviation term that is composited from both the internal dynamics and

external disturbances, and M ¼ diag⌊ m1, m2, … , mm½ �⌋ is a nominal positive-
definite mass matrix selected.

Based on the manifold system Eq. (7), the final control signal is structured from a
dynamical control term τDYNð Þ, error-driving term τDRIð Þ, and robust control term
τROBð Þ, as follows:

τ ¼ M τDYN þ τDRI þ τROBð Þ (8)

The dynamical signal τDYNð Þ is used to compensate for the internal dynamics vð Þ in
Eq. (7). With robotic manipulators, the lumped dynamics vð Þ are bounded [19, 42]but
very complicated and not easy to derive [20]. To study such the complex behaviors, a

neural network could be thought of a reasonable tool. The dynamics v ¼

v1, v2, … , vn½ �T can be modeled using the following universal linear combination:

vi∣i¼1::n ¼ wT
i ri⌊q, _q, τ⌋þ δi (9)

where wi,ri⌊q, _q, τ⌋,δi are optimal weight vectors, neural regression vectors, and
the modeling error, respectively.

Hence, the signal is structured as follows:

τMOD ¼ v̂þ €qd � K0 _y (10)

where, the approximation v̂i is estimate of the dynamics vi, and is designed as
[17, 42]

v̂i∣i¼1::n ¼ ŵT
i ri⌊q, _q, τ⌋ (11)

in which, ŵi is estimate of the weight vector wi.
By employing the dynamical control signal Eq. (10), the dynamics Eq. (7) become

_s ¼ ~vþ τDRI þ τROB (12)

where ~v ¼ ~v1, ~v2, … , ~vn½ �T ¼ v̂� v∈ℜn is an estimation-error vector.
Since the role of the control signal τDRIð Þ is to drive the sliding manifold to around

zero from an arbitrary initial position, it is selected as

τDRI ¼ �K1s (13)

where K1 ¼ diag⌊k1⌋ ¼ diag⌊ k11; … ; k1n½ �⌋ is a diagonal positive-definite gain
matrix.
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Since the robust control signal τROB is adopted to suppress the estimation error δð Þ,
it is designed as

τROB ¼ �K2 sgn ⌊s⌋ (14)

where K2 ¼ diag⌊k2⌋ ¼ diag⌊ k21; … ; k2n½ �⌋ is a diagonal positive-definite gain
matrix.

The manifold dynamics Eq. (12) is now expressed as

_s ¼ ~v�K1s�K2 sgn ⌊s⌋ (15)

Remark 3: The dynamics Eq. (15) indicate that the closed-loop system is bounded
stable if the estimate v̂ð Þ is bounded. In theoretical aspects, the asymptotic control
performance would be resulted in if the robust gain k2ð Þ is selected satisfying a
condition of k2 > δð Þ. However, with such a big robust control gain, it could activate
chattering phenomena. In contrast, a small robust gain could reduce the control
precision.

To approximate the nonlinear dynamics vð Þ, the network Eq. (11) is activated
using the control information of the sliding manifold under following rule:

_̂wi ¼ �diag⌊a1i⌋diag⌊r
2
i ⌋

s2i
1þ s2i

ŵi � bisiri (16)

where B ¼ diag⌊ b1, b2, … , bn½ �⌋and diag⌊a1i⌋i¼1::n are diagonal positive-definite
constant matrices.

The control performance of the neural-constrained sliding mode system is investi-
gated by the following statements.

Theorem 1: By employing the robust control rule Eqs. (3)–(14) and the neural
learning law Eqs. (11), Eq. (16) to control the robotic system Eq. (1) under the output
constraint Eq. (2), the closed-loop system is asymptotically stable if the control gains
comply with

k1i∣i¼1::n >
1

4εi
rTi diag⌊ri⌋diag⌊a1i⌋ w2

i

�

�

�

�

T

k2i > δij jmax

8

<

:

(17)

The proof of Theorem 1 is given in Appendix A.
Remark 4: As seen in Eq. (15), once the real dynamics vð Þ are well estimated with

an arbitrary small accuracy, small robust gains would yield good control perfor-
mances. Note that, approximation by the neural network is a multi-channel learning
work. The learning rule Eq. (16) is hence designed to increase the neural updating
effect.

4. Disturbance-observer integration

The neural-constrained nonlinear control structure provides the excellent control
performances with stationary trajectory signals. In high-speed working frequencies,
the estimation error δð Þ becomes large and could degrade the control accuracy. Adop-
tion of an additional control term based on the disturbance-observer technology could
be an understandable solution. The following assumption could be taken into account:
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Assumption 4: The error δð Þ and its time derivative are bounded. It could be thus
modeled as a first-order system:

_δ ¼ �diag⌊α⌋δþ ζ (18)

where diag⌊α⌋ ¼ diag⌊ αi, α2, … , αn½ �⌋ is a diagonal positive-definite constant

matrix.ζ ¼ ς1, ς2, … , ςn½ �T is a virtual bounded disturbance vector.
To effectively compensate for the estimation error δð Þ, the robust control signal

Eq. (14) is updated with a disturbance-estimation term, as follows:

τROB ¼ �K2 sgn ⌊s⌋þ δ̂ (19)

at which δ̂ ¼ δ̂1, δ̂2, … , δ̂n
� �T

is estimate vector of the neural modeling error δð Þ . It
is computed from the following learning rule:

_̂
δ ¼ �diag⌊α⌋δ̂� BP�1s� K3 sgn ⌊s⌋ (20)

Here, P ¼ diag⌊ p1, p2, … , pn
� �

⌋,K3 ¼ diag⌊ k31, k32, … , k3n½ �⌋ are diagonal

positive-definite constant matrices.
Validation results in previous work [46, 47] confirmed the learning efficiency of

the disturbance observer Eq. (20) for simple systems. To connect the disturbance
observer with the neural sliding mode control scheme, the adaptation rule of the
network is improved as

_̂wi∣i¼1::n ¼ �diag⌊a1i⌋diag⌊r
2
i ⌋

s2i
1þ s2i

ŵi � diag⌊a2i⌋diag⌊r
2
i ⌋ŵi

� bisi þ pik3i sgn ⌊si⌋
� �

ri

(21)

where diag⌊a2i⌋i¼1::n is a diagonal positive-definite constant matrix.
The stability of the closed-loop system is validated by the following statement.
Theorem 2: By employing the robust control rule Eqs. (3)–(14) combining with the

neural learning law Eqs. (11), Eq. (21) and disturbance observer Eqs. (19), (20) to
control the robotic system Eq. (1) under the output constraint Eq. (2), the closed-loop
system is asymptotically stable if the control gains comply with

k1i∣i¼1::n >
1

4bi
rTi diag⌊ri⌋diag⌊a1i⌋ w2

i

�

�

�

�

T

k2i >0

k3i > ςij jmax þ
1

4pik2i
rTi diag⌊ri⌋diag⌊a2i⌋ w2

i

�

�

�

�

T

8

>

>

>

>

<

>

>

>

>

:

(22)

The proof of Theorem 2 is discussed in Appendix B.
Remark 5: From Theorem 2, it can be seen that the robust control gain k2ð Þ could

be selected with a small value for a high control accuracy. Obviously, the robustness of
the closed-loop system is undertaken by a large value of the disturbance-observer
gain k3ð Þ .Remark 6: After the sliding manifold sð Þ converges to zero, the control error
eð Þ will approach to origin under the sliding phase [25, 27]. Adoption of the nonlinear
synthetization (9) could speed up the convergence time of the sliding process [17, 18].
The detailed block diagram of the proposed controller is presented in Figure 1.
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5. Verification results

Validation results of the developed controller in various testing conditions are
discussed are discussed in this section. To provide the competitive evaluation, a
classical Proportional-Integral-Derivative (PID) controller and linear neural-
disturbance-observer (LND) controller were also implemented to control the same
system in the same working conditions. The LND algorithm was referred from previ-
ous and is re-expressed in Appendix C.

The controllers were employed for motion control of a 3DOF robot, as
depicted in Figure 2. Detailed dynamics of the 3DOF robot were derived based
on the Lagrange method [4, 19, 47], as formulated in Appendix D. The neural
network had 9 inputs qi, _qi, τi

� �

∣i¼1,2,3
and 730 neurons with the logsig activation

Figure 1.
Structure of the proposed controller.

Figure 2.
Configuration of the simulation 3DOF robot.
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function in the hidden layer [42, 45]. All of the initial values of the weight
vectors ŵi∣i¼1,2,3

� �

were set to be zero. Other simulation parameters of the
dynamics and the controllers are shown in Tables 1 and 2, respectively. The
control results obtained by the controllers are intensively discussed in the following
subsections.

6. Simulation results

In the first simulation, the desired profiles were sinusoidal signals with different
frequencies (0.1 (Hz), 0.3 (Hz), and 0.5 (Hz)), as plotted in Figure 3. Physical ranges

Description Parameters Values Unit

Link length 1 l1, l2, l3 0.1, 0.2, 0.2 m

Gravitational Accel g 9.81 m/s2

Friction coefficient a1, a2, a3 20, 20, 20 N.s

Mass of links m1, m2, m3 5, 3, 2 kg

Table 1.
Detailed parameters of the simulation model.

Description Parameters Values

LND Controller [45]

Nominal mass matrix M I3

Control gains Kc0,Kc1 diag 10; 100; 10½ �ð Þ,

diag 200; 100; 10½ �ð Þ

Disturbance gain Kc3 30I3

Learning rate Γi∣i¼1::3 500I3

Learning rates μi∣i¼1::3 0:002I3

PID

Control gains KP, KI, KD diag 700; 900; 500½ �ð Þ,

diag 50; 10; 10½ �ð Þ,

diag 10; 10; 10½ �ð Þ,

Proposed Controller

Nominal mass matrix M I3

Control gains K0,K1,K2,and K3 diag 100; 100; 10½ �ð Þ,

diag 40; 100; 2½ �ð Þ,

0:1I3,200I3:

Leakage rates a1i∣i¼1::3,a2i 10I3,10I3

Excitation rates B,P 200I4,10I4

Disturbance gain αi∣i¼1::3 2

Table 2.
Selected parameters of the controllers.
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of the robot joints were set to be �0:5π; 0:5π½ � . The control results obtained are
compared in Figures 4–6.

As shown in Figure 5, stability of the closed-loop system could be maintained
by the PID controller and with good control errors: 1 (deg), 1.39 (deg) and 5.6 (deg)
for joints 1, 2, and 3, respectively. However, as carefully observed in the response of
joint 2 in Figure 4, the physical constraints were violated by the PID control in the
transient time. To void the unexpected collision and provide high control perfor-
mances both in the transient and steady-state phases, a combination of neural net-
work, disturbance-observer learning techniques and the constrained backstepping
control signal was adopted in the LND controller. Indeed, outstanding control

Figure 3.
The desired profiles of the robot joints in the first simulation.

Figure 4.
System responses of the controllers obtained in the first simulation.

Figure 5.
Comparative control errors of the controller in the first simulation.
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precision was resulted in by the LND one: the control precision at joints 1,2, and 3
were 0.094 (deg), 0.105 (deg), and 1.85 (deg), respectively. The output-constraint
control problem could be also dealt with by the constrained control algorithm
designed. Moreover, the nonlinear dynamics of the robotic system were eliminated
well by the proposed neural-disturbance learning method. As a result, higher control
performances were delivered by the studied controller: the control accuracies at joints
1 and 2 were 0.11 (deg) and 0.108 (deg), respectively. The control results in Figure 5
imply that although the control performances of the LND and proposed controllers
were almost same in low-speed work conditions, they were clearly different in the
high-frequency trajectory-tracking control. To this end, the proposed control algo-
rithm was employed the new nonlinear learning rule Eq. (21) to improve the estima-
tion effect, which are revealed from estimation data presented in Figure 6.

The controllers were continuously challenged with new various frequencies of the
sinusoidal trajectories in the second test. The new frequencies at joints 1, 2, and 3 were
selected to be 1 (Hz), 0.3 (Hz), and (0.7 Hz), respectively. Figure 7 presents pieces of
the new reference signals with respect to time. Applying the same controllers to the
robotic system, the results obtained are shown in Figure 8.

Control results in Figure 8 indicate that the PID control accuracies were seriously
degraded in arduous testing conditions: the control errors were increased to 9.32 (deg)
and 8.18 (deg) at joints 1 and 2, respectively. The LND control method could however
maintain acceptable control performances thanks to the merging linear learning algo-
rithm: control precision at joints 1 and 3 was slightly increased to be 0.7 (deg) and 4.1
(deg), respectively. Note that as discussed in previous work [45], it is difficult to

Figure 7.
The desired profiles of the robot joints in the second simulation.

Figure 6.
Learning performances of the proposed controller in the first simulation.
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result in asymptotic control outcomes by the LND approach. This drawback was well
overcome by the new learning rule proposed, in which the nonlinear network and
disturbance observer were properly combined with an arbitrary small robust gain to
ensure the asymptotic convergence of the closed-loop system. The convergences of
the control errors obtained by the proposed control algorithm, as demonstrated in
Figure 8, show that the uncertain nonlinearities and external disturbances in the
system dynamics were well estimated by the collaborative nonlinear adaptation laws.
The control and learning effectiveness of the new control approach was confirmed by
the validation results achieved.

7. Additional discussion

By comparing the control results obtained by the two intelligent controllers, as
presented in Figures 5 and 8, it can be seen that their control performances would be
same in the steady-state phases but really different in the transient phases. The
nonlinear learning integration led to the faster learning effect and higher control
precision.

Estimation data illustrated in Figures 7 and 9 imply that the neural network played
as a crucial role in approximating the system dynamics, and the estimation error was
then learnt by the nonlinear disturbance observer. Furthermore, with the merging
control technique proposed, one only needs an arbitrary small robust signal to result in
asymptotic control outcomes, that ensures the smooth control behaviors as presented
in Figure 10.

Figure 8.
Comparative control errors in the second simulation.

Figure 9.
Learning performances of the proposed controller in the second simulation.
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Table 3 summarizes the maximum absolute (MA) and root-mean-square (RMS)
values of the control errors for a specific working time (75 s to 85 s). As seen in the
table, the best RMS errors were always provided by the designed controller even
though its MA values were not the highest one in some cases. Here, we propose a ratio
of RMS/MA values to deeply evaluate the control performances of the controllers in
which those of the PID, LND and proposed controllers were in range of 0.64, 0.41,
and 0.31, respectively. The smaller factors imply that the internal deviation and
external disturbances were effectively eliminated by the corresponding controllers in
better manners. The superior control performances of the proposed controller over
the previous control methods are thus confirmed again by the intensive analyses based
on the obtained results.

8. Conclusions

This chapter presents a new intelligent control method for high-performance
motion control of robotic manipulators with output constraints. The controller is built
based on a new neural-disturbance constrained sliding mode structure. A nonlinear
sliding-mode control signal is first derived to strictly stabilize the control objective
within predefined output constraints. The control accuracies are next improved by
eliminating the nonlinear uncertainties and external disturbances in the system
dynamics using a new nonlinear neural network. The estimation error is then com-
pensated by proper integration of a nonlinear disturbance observer. By adoption of

Figure 10.
Control signals generated by the controllers in the second simulation.

Control Error Joint 1 Joint 2 Joint 3

MA RMS MA RMS MA RMS

The 1st case PID 1.02 0.69 3.9 2.5 5.8 4.1

LND 0.096 0.051 0.12 0.044 1.94 1.21

PRO 0.1. 0.008 0.11 0.025 0.41 0.041

The 2nd case PID 9.3 6.3 3.9 2.3 8.2 5.5

LND 0.7 0.44 0.13 0.02 4.1 2.6

PRO 0.16 0.04 0.12 0.02 0.83 0.22

Table 3.
Statistical control errors of the comparative controllers.
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this neural-disturbance mechanism and a minor robust signal, an asymptotic control
outcome is resulted in. The effectiveness of the overall control system is investigated
by the rigorous theoretical proofs and comparative simulation results in various
working conditions.

Appendix A: proof of theorem 1

The following Lyapunov function is first considered:

L1 ¼ 0:5
X

n

i¼1

bis
2
i þ ~wT

i ~wi

� �

(23)

By substituting the dynamics Eqs. (15) and (16) into the time derivative of the
function (A1), we next have

_L1 ¼ �
X

n

i¼1

bik1s
2
i þ sij j k2 þ δið Þ

� �

�
X

n

i¼1

s2i
1þ s2i

~wT
i diag⌊a1i⌋diag⌊r

2
i ⌋ŵi

	 


≤ �
X

n

i¼1

bik1s
2
i þ sij j k2 þ δið Þ

� �

�
X

n

i¼1

s2i
1þ s2i

~wT
i diag⌊a1i⌋diag⌊r

2
i ⌋ ~wi

	 


þ
X

n

i¼1

s2i
1þ s2i

~wij jTdiag⌊a1i⌋diag⌊r
2
i ⌋ wij j

	 


(24)

From the condition Eq. (17), there always exist two positive constants λi1∣i¼1::n,λi2
for the following constraint:

_L1 ≤ �
X

n

i¼1

λi1bik1s
2
i þ λi2

s2i
1þ s2i

~wT
i diag⌊a1i⌋diag⌊r

2
i ⌋ ~wi

	 


(25)

It means that the proof of Theorem 1 has been completed.

Appendix B: proof of theorem 2

Dynamics of the subsystems Eqs. (15), (19), (20) in element-wise forms are
presented as follows:

i¼1::n

_si ¼ ~wT
i ri � k1si � k2i sgn ⌊si⌋þ ~δi

_~δi ¼ �αi~δi �
bi
pi
si � k3i sgn ⌊si⌋� ςi

8

>

<

>

:

(26)

A new integral-type Lyapunov function is investigated:

L2 ¼ L1 þ
X

n

i¼1

0:5pi
~δ
2

i þ

ð

si

si⌊0⌋

k3i sgn ⌊si⌋þ ςið Þdsi þ L20i

0

B

@

1

C

A
(27)

14

Recent Advances in Robot Manipulators



where L20i∣i¼1::n is a positive constant selected as [46]:

L20i ¼
k3i þ ςij jmax

� �2

2bi
þ k3i þ ςij jmax

� �

si⌊0⌋ (28)

The time derivative of the function (B2) under the dynamical behaviors Eqs. (B1)
and (21) is constrained in the following inequality:

_L2 ≤ �
X

n

i¼1

bisi k1si þ k2i sgn ⌊si⌋ð Þ þ αipi
~δ
2

i

� �

�
X

n

i¼1

~wT
i diag⌊a1i⌋

s2i
1þ s2i

þ diag⌊a2i⌋

	 


diag⌊r2i ⌋ ~wi

	 


�
X

n

i¼1

pi k1si þ k2i sgn ⌊si⌋ð Þ k3i sgn ⌊si⌋þ ςið Þ
� �

þ
X

n

i¼1

~wij jT diag⌊a1i⌋
s2i

1þ s2i
þ diag⌊a2i⌋

	 


diag⌊r2i ⌋ wij j

	 


(29)

If the gains selected satisfying Eq. (22), there always exist another constant λi3∣i¼1::n

for the following inequality:

_L1 ≤ �
X

n

i¼1

λi1bik1s
2
i þ αipi

~δ
2

i

� �

�
X

n

i¼1

~wT
i λi2

s2i
1þ s2i

diag⌊a1i⌋þ λi3diag⌊a2i⌋

	 


diag⌊r2i ⌋ ~wi

	 

(30)

It leads to the proof of Theorem 2.

Appendix C: re-deign of a comparative linear neural-disturbance-
observer backstepping controller

From a previous work [45], A linear neural-disturbance-observer backstepping
(LND) controller is re-designed here for validation. Note that, the previous controller
is developed in the single system space. From the control error Eq. (3), a virtual
control signal ui∣i¼1::n and virtual control error zi∣i¼1::n are chosen as

i¼1::n

ui ¼ �kc0ieþ _qdi
zi ¼ _qi � ui

�

(31)

where kc0i∣i¼1::n are positive control gains.
The final control signal of the system is then selected as

τi∣i¼1::n ¼ �ei � kc1izi � φ̂i þ ui þ ŵT
i ψi⌊q, _q, _z, _u⌋ (32)

where kc1i are positive control gains, ψi∣i¼1::n are the regression vectors of the neural

network. ŵi∣i¼1::n are estimates of the weight vector ψi∣i¼1::n, and are updated by:
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_̂wi ¼ �Γi ψizi þ μiŵið Þ (33)

where μi are positive leakage rates, and Γi are diagonal positive-definite matrices.
φ̂i∣i¼1::n are estimates of systematic disturbances, and are computed throughout an

auxiliary variable ϕ̂i∣i¼1::n, that is estimated by the following learning mechanism:

φ̂i ¼ ϕ̂i þ kc2iz

_̂
ϕi ¼ �kc2im

�1
i τi � _qi þ φ̂i

� �

(

(34)

where, kc2i is a positive disturbance gain selected.

Appendix D: Dynamics of the simulation 3DOF robot

The dynamics (1) of the robot whose configuration is presented in Figure 2, can be
derived in detail using the Euler–Lagrange method as follows:

M⌊q⌋ ¼

m11 0 0

0 m22 m23

0 m32 m33

2

6

6

4

3

7

7

5

m11 ¼ m1l
2
1 þm2 l1 þ l2 cos q2

� �� �2

þm3 l1 þ l2c2 þ l3 cos q2 þ q3
� �� �2

m22 ¼ m2l
2
2 þm3 l22 þ l23 þ 2l2l3 cos q3

� �� �

m23 ¼ m32 ¼ m3 l2l3 cos q3
� �

þ l23
� �

m33 ¼ m3l
2
3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(35)

C⌊q, _q⌋ _q ¼ c1; c2; c3½ �T

c1 ¼ �2m2 l1 þ l2 cos q2
� �� �

l2 sin q2
� �

_q2 _q1
�2m3 l1 þ l2 cos q2

� �

þ l3 cos q2 þ q3
� �� �

l2 _q2 sin q2
� �

þ _q2 þ _q3
� �

l3 sin q2 þ q3
� �� �

_q1

c2 ¼ �2m3l2l3s3 _q2 _q3 �m3l2l3s3 _q
2
3 þ l2s2 l1 þ l2c2ð Þm3 _q

2
1

�m3 �l2s2 � l3s23ð Þ l1 þ l2c2 þ l3c23ð Þ _q21
c3 ¼ m3 l2l3 sin q3

� �

_q3
� �

_q2 þm3 l1 þ l2 cos q2
� �

þ l3 cos q2 þ q3
� �� �

l3 sin q2 þ q3
� �

_q21

þm3l2l3 sin q3
� �

_q22 þm3l2l3 sin q3
� �

_q2 _q3

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(36)

g⌊q⌋ ¼ �g0 0; 2l2 cos q2
� �

þ l3 cos q2 þ q3
� �� �

; l3 cos q2 þ q3
� �� �T

(37)

f⌊ _q⌋ ¼ a1 _q1; a2 _q2; a3 _q3
� �T

(38)

where qi,li,mi andai∣i¼1,2,3 are joint positions, link lengths, link masses and frictional
coefficients, respectively; g0 is the absolute gravitational-acceleration value.
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