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Chapter

Correlations in Scattered Phase
Singular Beams
Patnala Vanitha, Gangi Reddy Salla and

Ravindra Pratap Singh

Abstract

We discuss about the correlations present in the scattered phase singular beams and
utilize them for obtaining the corresponding mode information. We experimentally
generate the coherence vortices using the cross-correlation functions between the
speckle patterns and validate them with the exact analytical expressions. We also
explore their propagation characteristics by considering their geometry along with their
divergence. We utilize the autocorrelation measurements of speckle patterns for
obtaining the mode information. Further, we study the correlations present in scattered
perfect optical vortices which lead to a new class of coherence functions, Bessel-Gauss
coherence functions, and utilized for generating the non-diffracting random fields, i.e.
propagation invariant fields. We utilized these correlation functions, which are order-
dependent although the speckle patterns are order-independent, for encrypting the
information which has higher advantage than normal random optical fields.

Keywords: phase singular beams, scattering, speckles, correlation function, optical
encryption

1. Introduction

Phase singular beams or optical vortices are well known due to their applications in
guiding the particles, for coding larger information per photon, for transferring spatial
structure to the materials, and for enhanced accuracy in metrological measurements
[1–10]. These beams have ring-shaped intensity distribution along with helical
wavefronts and have phase singularity at the center [11–16]. These beams carry an
orbital angular momentum (OAM) of mℏ per photon due to its azimuthal phase,
where m is the order or topological charge defined as number of helices completed in
one wavelength. The propagation of these light beams through various media such as
turbid media [17, 18], turbulence atmosphere [19, 20], and under water [21, 22] have
attracted lot of interest in recent days for utilizing them for communication applica-
tions [23–30]. The vortices can be generated using computer generated holography
[31, 32] along with the help of spatial light modulator [33, 34], spiral phase plate
[35, 36], and using an astigmatic mode converter [37]. Some advanced techniques
have been introduced for generating vortex beams through laser cavity and using
materials [38, 39]. After including the polarization to the spatial mode of light beam,
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we get the vector vortices which have been studied extensively for sensing and
communication applications [40, 41]. For sensing the magnetic field, these beams will
pass through the materials that have magnetic field-dependent properties [42].

The field distribution of an optical vortex beam in polar coordinates can be
expressed mathematically as [43]:

E r, zð Þ ¼ E0r
m exp imϕð Þ exp �

r2

ω zð Þ2

 !

∴r2 ¼ x2 þ y2 (1)

where E0 is the field amplitude, ω(z) is the beam width at propagation distance z,
and m is topological charge. The wavefront, phase profile, and the intensity distribu-
tion of vortices have been shown in Figure 1.

The vortices can be observed in all the random optical fields, known as speckles,
which have random temporal and spatial coherence properties [44, 45]. These pat-
terns can be obtained upon the propagation of coherent random waves through an
inhomogeneous media such as ground glass plate (GGP) [46, 47]. This speckle is due
to the superposition of many scattered waves originating from the inhomogeneities of
the medium [48]. The size of the speckles can be carried by changing the width and
wavelength of the beam, and the distribution of speckles can be changed by varying

Figure 1.
The intensity distribution (left), wavefronts (middle), and the phase profiles (right) of optical vortex (OV) beams
with m = 0 (top), m = +1 (middle), and �1 (bottom).
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the field distribution incidenting on the rough surface [49–52]. The speckle patterns
obtained by the scattering of optical vortices of orders m = 1–3 have been shown in
Figure 2.

The phase singularities have also been observed in correlation functions and
named as coherence vortices [47, 53–55]. The singularities have been verified both
theoretically and experimentally using the interferometric techniques. The intensity
correlation between the speckle patterns has attained a lot of interest due to their
applications in speckle imaging and encryption applications [56–60]. These correla-
tions have been used for finding the roughness of the surface and the effect of
turbulence on the spatial modes [61, 62]. The roughness of the surface can be charac-
terized by assuming the delta-correlated random phase screen and well described
using a Gaussian correlation function.

In this chapter, we consider the correlations present in the scattered phase singular
beams, normal optical vortices, and perfect optical vortices (POVs) for obtaining the
information about the spatial mode. We discuss about the coherence vortices which
can be obtained through the cross-correlation present in the speckle patterns
corresponding to two optical vortices of different orders. We present the intensity
distribution and propagation characteristics of coherence vortices by considering the
cross-correlations and utilize the autocorrelation measurements for obtaining the
mode information. Then we study the correlations present in scattered perfect optical
vortices which lead to a new class of coherence functions, Bessel-Gauss functions, and
utilized for generating the non-diffracting random fields. We utilized these correla-
tion functions, which are order-dependent although the speckle patterns are order-
independent, for encrypting the information which has higher advantage than normal
random optical fields.

2. Cross-correlations present in scattered optical vortices: realization of
coherence vortices

The phase singularities have been studied extensively in coherent light beams, and
in recent days, partially coherent phase singularities have gained a considerable inter-
est due to their robustness against atmospheric propagation [63–65]. The vortices
present in partially coherent fields are known as coherence vortices as they can be
realized in correlation functions [66–70]. These coherence vortices have been utilized
for many applications such as free-space optical communication, remote sensing, and
optical imaging [71–75]. The correlation between the two optical random fields plays

Figure 2.
The speckle patterns generated by the scattering of an optical vortex of order +1 (left), order +2 (middle), and
order +3 (right) through the ground glass plate.
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an important role in obtaining the various types of coherence functions and their
usage in applications, such as optical communication and for producing the physical
unclonable functions (PUFs) for cryptography [60, 76–78]. The coherence vortices
can be observed in the intensity correlation between two speckle patterns obtained by
scattering the coherent vortices of different orders [55, 79]. The coherence vortices
can be formulated with mutual coherence function between two speckle patterns
corresponding to the vortices of orders m1 and m2 and is given by [55, 80]:

~Γm1,m2 ¼ A

ð

r1
m1j jþ m2j je i m1�m2ð Þϕ1½ �e �2r21=ω

2
0½ �e �2ik

!
� r
!

1

� �

d r
!
1 (2)

One can clearly observe the phase singularity with order m =m1–m2 where m is the
order of the coherence vortex.

For realizing the singularities in coherence functions, we need to scatter the
coherent vortex beams through a rough surface such as GGP. The coherent optical
vortices can be generated using a computer-generated hologram displayed on a spatial
light modulator. After selecting the required vortex beam by an aperture, we scatter
these beams through the GGP, and the corresponding speckle patterns are recorded
using a CCD camera. We now find the cross-correlation function between two speckle
patterns corresponding to optical vortices of different orders using MATLAB soft-
ware. Figure 3 shows the speckle patterns along with the determined coherence
functions for different values of m1 and m2. It is clear from the figure that the
autocorrelation between the speckle patterns provides the coherence function of order

Figure 3.
The recorded speckle patterns and the corresponding cross-correlation functions, coherence vortices
(here m ¼ m2 �m1).
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0. The cross-correlation between the speckle patterns corresponding to two different
orders provides the higher-order coherence functions.

The coherence vortices have been characterized through their geometry by con-
sidering similarly as that of coherent vortex beams. Figure 4 shows the intensity
distribution of an optical vortex and its line profile along the center for order m = 1.
We characterized the optical vortices by considering them as thin annular rings and
using the parameters inner and outer radii r1, r2 as shown in figure. These are the
nearest (inner) and farthest (outer) radial distances from center at which the intensity
falls to 1∕e2 (13.6%) of the maximum intensity observed at r= r0 [46].

Figure 5 shows the variation of inner and outer radii of the coherence vortex
m ¼ m2 �m1ð Þ of order 2 obtained by considering the cross-correlation between two
speckle patterns of different values ofm1 and m2 (with constant m) at the propagation
distance of z = 20 cm. We considered the combinations of (m1, m2) = (0,2), (1,3),
(2,4), (3,5), (4,6), (5,7), (6,8) where the difference (m1-m2) is constant.

From the figure, we observe that the inner and outer radii for all the combinations
mentioned earlier are constant and independent of the input vortex beams considered
for scattering. From this, we confirm that the intensity distribution of coherence

Figure 4.
(a) Intensity distribution and (b) line profile through its center for an optical vortex of order 1.

Figure 5.
Variation of inner and outer radii of the coherence vortex of order 2 with different combinations of input vortex
beams.
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vortices depends only on the order difference but not on the individual orders of the
optical vortices considered for scattering.

Now, we study the propagation characteristics of these coherence vortices.
Figure 6a and 6b show the variation of inner and outer radii for different orders m =
1–8 with respect to the propagation distance from z = 10–30 cm. The speckles have
been recorded from z = 10–30 cm at an interval of 5 cm. It is observed that the inner
and outer radii from figure vary linearly with the propagation distance for all orders
and increase with order as shown in Figure 6.

We consider the rate of change of inner and outer radii with propagation distance
as divergence and can be obtained by finding the slope of the line drawn between
inner or outer radius and the propagation distance [79, 81, 82]. The slope has been
determined using the linear fit to the experimental data. The variation of divergence
with the order by considering inner and outer radii has been shown in Figure 7. It is
clear from the figure that the divergence increases linearly with order (m). One can
utilize the inner and outer radii at the source plane and their divergence for

Figure 6.
Variation of inner (a) and outer (b) radii for coherence vortices of orderm = 1–8 with the propagation distance z.

Figure 7.
Variation of inner and outer radii along with their divergence as a function of order of the coherence functions.
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characterizing the order of a coherence vortex. One can also find the information
about the incident spatial modes using these coherence vortices.

3. Autocorrelation studies for scattered optical vortices

For the applications in free-space optical communication using spatial modes, one
needs to propagate these modes for longer distances. After propagating through the
channel, the mode information gets disturbed, and one needs to find the mode infor-
mation of these perturbed beams. Although there are many techniques to find the
order of a higher-order coherent optical vortex [46], they are not suitable for partially
coherent or incoherent vortices. A limited number of techniques are available for
finding the order of a partially coherent vortex beam. In this section, we study the
autocorrelation properties of scattered optical vortices for diagnosing the spatial mode
information [83–85]. The number of zero points or dark rings present in 2D spatial
correlation function provides the information about the spatial mode. The spatial
autocorrelation function of a perturbed optical vortex is equivalent to the Fourier
transform (FT) of its intensity in the source plane [86]. The number of dark rings
presented in the spatial correlation function is equal to the topological charge of
vortex beam which has also been verified by verifying the number of zero points
present in Fourier transform of a coherent vortex beam which further will be
discussed. Here, we show that the existence of the ring dislocations in the spatial
correlation function corresponds to the scattering of the optical vortex field [87].

The theoretical background for the 2D autocorrelation function starts by assuming
the field distribution of Laguerre-Gaussian beam with azimuthal index m and zero
radial index in the source plane (z = 0) in cylindrical coordinates as:

E ρ, θ, 0ð Þ∝ρ mj j exp
�ρ2

ω0
2

� �

exp imθð Þ (3)

where ω0 is beam waist of the input beam and ρ, θð Þ are the cylindrical coordinates
in incident plane. The scattering of optical vortex (OV) beams through a ground glass
plate (GGP) that can be well described by a random phase function exp iΦð Þ where Φ
varies randomly from 0 to 2π. A particular way of obtaining this type of phase
distribution Φ is by taking a 2D convolution between a random spatial function and a
Gaussian correlation function [44]. The field U ρ, θð Þ after the GGP can be obtained
from the incident field E ρ, θð Þ and can be written as:

U ρ, θð Þ∝ exp iΦð ÞE ρ, θð Þ (4)

where the autocorrelation of the phase exponential factor is a Dirac-delta function
at plane ρ, θð Þ, which can be written mathematically as:

exp i Φ ρ1, θ1ð Þ �Φ ρ2, θ2ð Þð Þ½ �h i ¼ δ ρ1 � ρ2ð Þδ θ1 � θ2ð Þ (5)

where ah i denotes the ensemble average operation in a. The autocorrelation func-
tion between two speckle patterns of same order obtained by scattering of OV beams
through GGP is given by:

Γ r1, φ1; r2, φ2ð Þ ¼ U1 r1, φ1ð ÞU ∗
2 r2, φ2ð Þ

� �

(6)
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where (r, φ) are the coordinates at the detection plane. The filed at the detection
plane in terms field at the incident plane can be evaluated using Fresnel’s diffraction
integral in cylindrical coordinates as [88, 89]:

U r, φ, zð Þ ¼
eikz

iλz

ð

ρdρ

ð

dθU ρ, θð Þe
ik
2z ρ2þr2�2ρr cos θ�φð Þð Þf g (7)

Using Eq. (7) and Eq. (6), we have that

Γ r1, φ1; r2, φ2ð Þ ¼ U1 r1, φ1ð ÞU ∗
2 r2, φ2ð Þ

� �

¼ h
eikz

iλz

ð

ρ1dρ1

ð

dθ1U1 ρ1, θ1ð Þe
ik
2z ρ1

2þr1
2�2ρ1r1 cos θ1�φ1ð Þð Þf g

�
e�ikz

�iλz

ð

ρ2dρ2

ð

dθ2U2
∗ ρ2, θ2ð Þe

�ik
2z ρ2

2þr2
2�2ρ2r2 cos θ2�φ2ð Þð Þf gi

¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ð

ρ1dρ1

ð

dθ1

ð

ρ2dρ2

ð

dθ2 U1 ρ1, θ1ð ÞU2
∗ ρ2, θ2ð Þh i

�e
ik
2z ρ1

2�ρ2
2�2ρ1r1 cos θ1�φ1ð Þþ2ρ2r2 cos θ2�φ2ð Þð Þf g

(8)

which is a fourfold integral and includes cross-correlation of filed at the incident
plane ρ, θð Þ namely, U1 ρ1, θ1ð ÞU ∗

2 ρ2, θ2ð Þ
� �

: Using Eq. (4) and Eq. (5), we get the
cross-correlation function as

U1 ρ1, θ1ð ÞU2
∗ ρ2, θ2ð Þh i ¼ E1 ρ1, θ1ð ÞeiΦ ρ1, θ1ð ÞE ∗

2 ρ2, θ2ð ÞeiΦ ρ2, θ2ð Þ
D E

¼ E1 ρ1, θ1ð ÞE ∗
2 ρ2, θ2ð Þ ei Φ ρ1, θ1ð Þ�Φ ρ2, θ2ð Þð Þ

D E

¼ E1 ρ1, θ1ð ÞE ∗
2 ρ2, θ2ð Þ � δ ρ1 � ρ2ð Þδ θ1 � θ2ð Þ

(9)

The ground glass plate (random phase screen) is modeled as a δ-correlated phase
function. The autocorrelation function after using the same is

U1 ρ1, θ1ð ÞU2
∗ ρ2, θ2ð Þh i ¼ E ρ1, θ1ð ÞE ∗ ρ2, θ2ð Þ (10)

Using Eq. (10) in Eq. (9) and the properties of the Dirac-delta function, the
fourfold integral of the autocorrelation is reduced to the two-fold integral as:

Γ r1, φ1; r2, φ2ð Þ ¼ U1 r1, φ1ð ÞU ∗
2 r2, φ2ð Þ

� �

¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ð

ρdρ

ð

dθE ρ, θð ÞE ∗ ρ, θð Þ

�e
�ik
z ρ r1 cos θ�φ1ð Þ�r2 cos θ�φ2ð Þð Þf g

(11)

Γ12 Δrð Þ ¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ðð

E ρ, θð Þj j2 exp �
ik

z
ρΔr cos φs � θð Þð Þ

� 	

ρdρdθ (12)
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where Δr cos φs � θð Þ ¼ r1 cos φ1ð Þ � r2 cos φ2ð Þð Þ cos θ½ � þ

r1 sin φ1ð Þ � r2 sin φ2ð Þð Þ sin θ½ � and Δr2 ¼ r21 þ r22 � 2r1r2 cos φ2 � φ1ð Þ:
Using Eq. (3), the absolute value of the field distribution is

E ρ, ϕ, 0ð Þj j2 ¼ ρ2 mj j exp
�2ρ2

ω2
0

� �

(13)

Let us calculate the integral part of the correlation as

Γ12 Δrð Þ ¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ðð

ρ2 mj j exp
�2ρ2

ω2
0

� �

exp �
ik

z
ρΔr cos φs � θð Þð Þ

� 	

ρdρdθ

¼

ð

ρ2 mj jþ1 exp
�2ρ2

ω2
0

� �

dρ

ð

exp �
ik

z
ρΔr cos φs � θð Þð Þ

� 	

dθ

(14)

and I0 ¼
Ð

exp �ik
z ρΔr cos φs � θð Þð Þ

� �

dθ can be calculated by using Anger-Jacobi

identity e�iz cos θ ¼
P

∞

n¼�∞ �1ð ÞninJn zð Þein θ, we get [90]

I0 ¼

ð

exp
�ik

z
ρΔr cos φs � θð Þð Þ

� 	

dθ ¼ 2πJ0
kρ

z
Δr

� �

(15)

Substitute the aforementioned equation in Eq. (14), then the far-field autocorrela-
tion function or the Fourier transform of the incident intensity in the source plane
becomes

Γ12 Δrð Þ ¼
2πe

ik
2z r

2
1�r22½ �f g

λ2z2

ð

∞

0

ρ2 mj jþ1 exp
�2ρ2

ω2
0

� �

J0
kρ

z
Δr

� �

dρ (16)

where J0
kρ
z Δr


 �

represents the zeroth-order Bessel function. Using the following

integral,

ð

∞

0

xμ exp �αx2
� 


Jν xyð Þdx ¼
yνΓ 1

2 μ� νþ 1ð Þ
� 


2νþ1α
1
2 μþνþ1ð Þ

exp
�y2

4α

� �

Lν
1
2 μ�νþ1ð Þ

y2

4α

� �

(17)

From Eqs. (16) and (17), the mutual coherence function will become

Γ12 Δrð Þ ¼
πω

2 mj jþ2
0 e

ik
2z r

2
1�r22½ �f g

2 mj jþ1λ2z2
exp

�k2ω2
0Δr

2

8z2

 !

L mj j
k2ω2

0Δr
2

8z2

 !

(18)

where μ ¼ 2 mj j þ 1,α ¼ 2
ω2
0
,y ¼ k

zΔr,ν ¼ 0 and L mj j
k2ω2

0Δr
2

8z2


 �

represents the Laguerre

polynomial of orderm. The aforementioned equation represents the autocorrelation of
scattered Laguerre-Gaussian (LG) beam, and it depends on the azimuthal index and
propagation distance. In the spatial correlation filed, the number of dark rings or
number of zero points in the Laguerre polynomial gives the information about the
order or azimuthal index of the vortex beam. We verify these theoretical findings
experimentally, and the details are given as follows.
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We have generated the optical vortices of orders m = 0–8 by displaying a
computer-generated hologram on a spatial light modulator and scatter them through a
GGP. We have shown the intensity distributions of optical vortices at the plane of
GGP and the corresponding speckle patterns in Figure 8 which have been recorded
using a CCD camera. It is clear from the figure that the size of the speckles decreases
with the increase in order, and we observe the structures in speckle distributions
corresponding to higher orders.

Further, we have processed the speckle patterns for finding the autocorrelation
function using MATLAB software. We found that the order or topological charge of
a given spatial mode is given by the number of dark rings present in the autocorre-
lation function. This method is suitable for vortices with low topological charges.
However, as we increase the order, we must identify the number of dark rings
carefully because the adjacent two dark rings are very close to each other, and it is
very difficult to distinguish them. This technique is alignment free as the autocorre-
lation function does not depend on the alignment. Figure 9 shows the experimen-
tally obtained spatial autocorrelation functions (top) for the speckle patterns
corresponding to the vortices of ordersm = 0–3 from left and right. The results are in
good agreement with the theoretically obtained correlation function as shown in
bottom row of the figure. It is clear from the figure that the order of vortex is equal
to the number of dark rings present in the spatial autocorrelation field. One can also
utilize the propagation characteristics for the better diagnosis of the information of a
given spatial mode.

The generalized theory for autocorrelation functions of LG beams with nonzero
radial index is provided and experimentally verified as well. The number of dark rings
is equal to the sum of twice the radial index and azimuthal index [86]. The autocor-
relation function of a scattered LG beam with nonzero radial and azimuthal indices is
given by [91]:

χ ξð Þ ¼
πω

2 mj jþ2
0

2 mj jþ1

pþ mj jð Þ!

p!
exp �

π2ω2
0ξ

2

2

� �

Lp �
π2ω2

0ξ
2

2

� �

Lpþ mj j �
π2ω2

0ξ
2

2

� �

(19)

Figure 8.
Intensity distributions of optical vortices and their corresponding speckle patterns.
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where p is the radial index and m is the azimuthal index of a LG beam. We need to
study the following subcases from the aforementioned expression for the better
understanding of correlation function:

i. If p = 0, then the correlation function corresponds to the optical vortices that
carry OAM and is given by:

χ ξð Þ ¼
πω

2 mj jþ2
0

2 mj jþ1
mj j! exp �

π2ω2
0ξ

2

2

� �

L mj j �
π2ω2

0ξ
2

2

� �

(20)

The aforementioned expression is exactly matching with our equation obtained for
LG beams with zero radial index.

ii. If m =0 (non-vortex beams), then the autocorrelation function is given by:

χ ξð Þ ¼
πω2

0

2
exp �

π2ω2
0ξ

2

2

� �

Lp �
π2ω2

0ξ
2

2

� �� �2

(21)

From Eqs. (19), (20), and (21), one can obtain the relation between number of
dark rings and radial and azimuthal indices as:

N ¼ 2pþ mj j when m 6¼ 0

¼ p when m ¼ 0:
(22)

where N is the number of dark rings present in the autocorrelation function.
The numerical results for the LG beams of nonzero radial index have been shown

in Figure 10. We can observe the number of dark rings in the far-field autocorrelation
function which depends on both radial and azimuthal indices. The radial and azi-
muthal indices for the contour plots are (a) m = 1, p = 1; (b) m = 2, p = 1; (c) m = 3,
p = 1; (d) m = 1, p = 2; (e) m = 2, p = 2; and (f) m = 3, p = 2.

Figure 9.
Experimental (top) and theoretical (bottom) 2D spatial autocorrelation function for a speckle pattern generated
by scattering a vortex beams of orders m = 0-3 from left to right.
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Now, we verify Van Cittert-Zernike theorem states that the autocorrelation func-
tion of a scattered light beam is same as the Fourier transform (FT) of intensity
distribution incident on the rough surface, i.e. source plane. Here, we present the
results obtained for the FT of intensity distribution of a LG beam in which the number
of dark rings is equal to the order of the vortex [92] as shown in Figure 11.

Figure 10.
Theoretical far-field auto-correlation function with different combinations of radial and azimuthal indices:
(a) m = 1, p = 1; (b) m = 2, p = 1; (c) m = 3, p = 1; (d) m = 1, p = 2; (e) m = 2, p = 2; (f) m = 3, p = 2.

Figure 11.
The theoretical and experimental Fourier transform contour plots for the intensity distribution of LG beams with
azimuthal index m = 1–4 from left to right.
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3.1 Correlations in scattered perfect optical vortices

From the aforementioned discussions, it is known that the field and intensity
distributions of an optical vortex are strongly influenced by its topological charge
which may be a drawback for controlling them while they propagate through optical
channels [93]. To overcome this, another class of vortices has been introduced, known
as perfect optical vortices (POVs) with order-independent intensity distribution [94].
The POV beams are known for very thin annular rings whose width and radius are
independent of topological charge [95–98]. The POV beams can be generated experi-
mentally by Fourier transforming Bessel-Gauss beams which will be generated by
passing optical vortex beams through an axicon [99–101]. The radius and width of the
ring of a POV beam can easily be controlled by changing the apex angle or axicon
parameter [100, 102]. We study the correlations present in scattered POV beams and
utilize for generating the non-diffracting optical random fields [103]. The theoretical
analysis for the cross-correlation between two speckle patterns obtained by scattering
POV beams of different orders is as follows:

The field distribution of a perfect optical vortex (POV) beam, described by a thin
annular ring of order m, which can be represented mathematically as:

E ρ, θð Þ ¼ δ ρ� ρ0ð Þeim θ (23)

where ρ0 is the radius of the POV beam and δ represents the Dirac-delta function.
In practical, the POV beams can be realized with finite ring width which can be
represented mathematically as:

E ρ, θð Þ ¼ g ρ� ρ0; εð Þeim θ (24)

where g ρ� ρ0; εð Þ is a narrow function in the radial direction with a finite “width”
ε, such as Gaussian and height proportional to 1/ε. The scattered field U ρ, θð Þ after the
GGP can be obtained from the incident field E ρ, θð Þ on the GGP as

U ρ, θð Þ ¼ eiΦ ρ, θð ÞE ρ, θð Þ (25)

where the cross-correlation of the phase exponential factor is a Dirac-delta func-
tion at plane ρ, θð Þ, which implies the mutually independent inhomogeneities that can
be expressed mathematically as:

ei Φ ρ1, θ1ð Þ�Φ ρ2, θ2ð Þ½ �
D E

¼ δ ρ1 � ρ2ð Þδ θ1 � θ2ð Þ (26)

where ⟨ a ⟩ denotes the ensemble average operation in a [9]. The mutual coherence
function between the two scattered POV fields at a distance of z from the GGP is
given by:

Γ r1, φ1; r2, φ2ð Þ ¼ U1 r1, φ1ð ÞU ∗
2 r2, φ2ð Þ

� �

(27)

where ρ and θ are source plane coordinates, and r and φ are detection plane
coordinates. The field at detection plane can be obtained using Fresnel diffraction
integral in cylindrical coordinates as: [88, 89]

U r, φ, zð Þ ¼
eikz

iλz

ð

ρdρ

ð

dθU ρ, θð Þe
ik
2z ρ2þr2�2ρr cos θ�φð Þð Þf g (28)
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From Eq. (27) and Eq. (28), we have

Γ r1, φ1; r2, φ2ð Þ ¼ U1 r1, φ1ð ÞU ∗
2 r2, φ2ð Þ

� �

¼ h
eikz

iλz

ð

ρ1dρ1

ð

dθ1U1 ρ1, θ1ð Þe
ik
2z ρ1

2þr1
2�2ρ1r1 cos θ1�φ1ð Þð Þf g

�
e�ikz

�iλz

ð

ρ2dρ2

ð

dθ2U2
∗ ρ2, θ2ð Þe

�ik
2z ρ2

2þr2
2�2ρ2r2 cos θ2�φ2ð Þð Þf gi

¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ð

ρ1dρ1

ð

dθ1

ð

ρ2dρ2

ð

dθ2 U1 ρ1, θ1ð ÞU2
∗ ρ2, θ2ð Þh i

�e
ik
2z ρ1

2�ρ2
2�2ρ1r1 cos θ1�φ1ð Þþ2ρ2r2 cos θ2�φ2ð Þð Þf g

(29)

which is a fourfold integral, and this integral includes the cross-correlation of the
field at the incident plane ρ, θð Þ, namely, U1 ρ1, θ1ð ÞU ∗

2 ρ2, θ2ð Þ
� �

. Using Eqs. (24) and
(25), we can get the cross-correlation function at plane ρ, θð Þ as:

U1 ρ1, θ1ð ÞU2
∗ ρ2, θ2ð Þh i ¼ E1 ρ1, θ1ð ÞeiΦ ρ1, θ1ð ÞE ∗

2 ρ2, θ2ð ÞeiΦ ρ2, θ2ð Þ
D E

¼ E1 ρ1, θ1ð ÞE ∗
2 ρ2, θ2ð Þ ei Φ ρ1, θ1ð Þ�Φ ρ2, θ2ð Þð Þ

D E

¼ E1 ρ1, θ1ð ÞE ∗
2 ρ2, θ2ð Þ � δ ρ1 � ρ2ð Þδ θ1 � θ2ð Þ

(30)

Using Eq. (30) in Eq. (29) and the properties of the Dirac-delta function, the
fourfold integral of the cross-correlation is reduced to the twofold integral as:

Γ r1, φ1; r2, φ2ð Þ ¼ U1 r1, φ1ð ÞU ∗
2 r2, φ2ð Þ

� �

¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ð

ρ1dρ1

ð

dθ1E1 ρ1, θ1ð ÞE ∗
2 ρ1, θ1ð Þ

�e
�ik
z ρ r1 cos θ1�φ1ð Þ�r2 cos θ1�φ2ð Þð Þf g

(31)

In the special case of incident POV beams, we can use Eq. (24) to write

E1 ρ1, θ1ð ÞE ∗
2 ρ1, θ1ð Þ ¼ g ρ1 � ρ01; εð Þg ρ1 � ρ02; εð Þei m1θ1�m2θ1ð Þ (32)

As we know that the radius of POV beams is independent of order, i.e. ρ01 ¼
ρ02 ¼ ρ0, therefore

E1 ρ1, θ1ð ÞE ∗
2 ρ1, θ1ð Þ ¼ g2 ρ1 � ρ0; εð Þei m1�m2ð Þθ1 (33)

Under the condition ε ! 0, one can replace g2 ρ� ρ0; εð Þ with a single Dirac-delta
function δ ρ� ρ0ð Þ and the aforementioned expression becomes

E1 ρ1, θ1ð ÞE ∗
2 ρ1, θ1ð Þ ¼ δ ρ1 � ρ0ð Þei m1�m2ð Þθ1 (34)

After substituting Eq. (34) in Eq. (31), we get
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Γ r1, φ1; r2, φ2ð Þ ¼
e

ik
2z r

2
1�r22½ �f g

λ2z2

ð

ρ1dρ1

ð

dθ1δ ρ1 � ρ0ð Þei m1�m2ð Þθ1e
�ik
z ρ r1 cos θ1�φ1ð Þ�r2 cos θ1�φ2ð Þð Þf g

(35)

The integral in the aforementioned equation can be evaluated as:

I ¼

ð

δ ρ1 � ρ0ð Þρ1dρ1

ð

ei m1�m2ð Þθ1e
�ik
z ρ r1 cos θ1�φ1ð Þ�r2 cos θ2�φ2ð Þð Þdθ1

¼

ð

δ ρ1 � ρ0ð Þρ1dρ1

ð

ei m1�m2ð Þθ1e
�ik
z ρΔr cos φs�θ1ð Þð Þdθ1

(36)

For solving the integral of θ1, we assume that θ0 ¼ ϕs � θ1 then we get the
integral as:

I ¼ ei m1�m2ð Þφs

ð

δ ρ1 � ρ0ð Þρ1dρ1

ð

ei m1�m2ð Þθ0e
�ik
z ρΔr cos θ0ð Þdθ0 (37)

where θ0 varies from �ϕs to 2π � ϕsand using Anger-Jacobi identity
e�iz cos θ ¼

P

∞

n¼�∞ �1ð ÞninJn zð Þein θ, we get [90]

I ¼ ei m1�m2ð Þφs

ð

δ ρ1 � ρ0ð Þρ1dρ1
X

∞

n¼�∞

�1ð ÞninJn
kρ

z
Δr

� �
ð

ein θ
0

ei m1�m2ð Þθ0dθ0 (38)

The aforementioned integral has nonzero value only when n ¼ m2 �m1 and the
integral becomes

I ¼ 2πei m1�m2ð Þφs

ð

δ ρ1 � ρ0ð Þρ1dρ1 �1ð Þm2�m1 im2�m1Jm2�m1

kρ

z
Δr

� �

(39)

By using the integral properties of Dirac-delta function [90], we get that

I ¼ 2πρ0 �ið Þm2�m1ei m1�m2ð Þφs Jm2�m1

kρ0
z

Δr

� �

(40)

Now, the cross-correlation function as defined in Eq. (35) becomes

Γ12 Δrð Þ ¼
2πρ0 �ið Þm2�m1e

ik
2z r21�r22ð Þ

λ2z2
ei m1�m2ð Þφs Jm2�m1

kρ0
z

Δr

� �

(41)

The aforementioned equation representing the mutual coherence function of two
speckle patterns is described well by the Bessel function of order m ¼ m2 �m1: The
corresponding cross-correlation function of two speckle patterns is given by:

C Δrð Þ ¼ �ið Þm2�m1ei m1�m2ð Þφs Jm2�m1

kρ0
z

Δr

� �

(42)

Normalized intensity distribution of the coherence function can be evaluated in
terms of time-averaged intensity I0 as:

I Δrð Þ ¼ I20 1þ C Δrð Þj j2

 �

¼ I20 1þ J2m2�m1

kρ0
z

Δr

� �� �

(43)
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If two speckle patterns correspond to the same order, the cross-correlation func-
tion is converted into an autocorrelation function, which can be obtained by keeping
m1 ¼ m2 in the aforementioned equation. We obtain the autocorrelation function as:

I Δrð Þ ¼ I20 1þ J20
kρ0
z

Δr

� �� �

(44)

It is clear from the aforementioned analysis that the autocorrelation functions can
be described with Bessel functions of order zero and cross-correlation functions can
be described with Bessel functions of nonzero orders m ¼ m2 �m1ð Þ:

The experimental validation of aforementioned theoretical findings has been done
and the details are as follows: Figure 12 shows the speckle patterns generated by the
scattering of POV beams and the corresponding cross-correlation functions. From the
figure, we confirm the Bessel-Gauss nature of coherence functions with order m ¼
m2 �m1:

Figure 12.
The recorded speckle patterns and the corresponding cross-correlation functions, Bessel coherence functions (here
m ¼ m2 �m1).
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From Eq. (43), we analyze the size of the speckles under the condition m1=m2, i.e.
by considering the width of the autocorrelation function. The speckle size is defined as
the spatial length up to which the correlations exist in the field [103, 104]. From
Eq. (44), the first zero of zeroth-order Bessel function J0 xð Þ ¼ 0 can happen at x = 2.4,
and the correlation length or speckle size can be obtained as:

Δr ¼
xz

kρ0
¼

2:4z

kρ0
(45)

It is clear from the aforementioned equation is that the size of near-field speckles
varies linearly with propagation distance z, independent of order m and inversely
proportional to the ring radius ρ0. We have observed that the speckle size and distri-
bution are independent of the order, and they vary with propagation distance. The
recorded speckles have been shown in Figure 13, and the linear variation of speckle
size with propagation distance has been verified in Figure 14.

Figure 13.
The speckle patterns obtained by the scattering of POV beam of order m = 0 at different propagation distances
z = 20 cm, z = 45 cm, and z = 70 cm in the near field.

Figure 14.
Experimental (blue) and theoretical (red) results for the variation of near-field or diverging speckle size with
propagation distance.
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Further, we consider the Fourier transform of near-field speckles that produce the
spatially invariant optical random fields. The Fourier transform can be realized with
the help of a simple convex lens (here, we consider its focal length as f2). The far-field
autocorrelation function Γ12

0 Δr0ð Þ of scattered POV beams is given by [89]:

Γ12
0 Δr0ð Þ ¼

1

λ2f 2

ðð

U1 ρ, θð Þj j2e
�ik
f2

ρΔr0 cos φs1�θð Þð Þ
ρdρdθ (46)

Substituting Eq. (25) in Eq. (46) and following the same procedure, we get

Γ12
0 Δr0ð Þ ¼

2πρ0
λ2f 2

2 J0
kρ0
f 2

Δr0
� �

(47)

From the aforementioned equation, one can easily observe that the correlation
function is independent of order m as well as propagation distance z. As compared to
the near-field diffraction, the spatial coherence function does not increase anymore
with the propagation which can be utilized for communication and encryption appli-
cations.

From Eq. (47), we get the size of non-diffracting random fields as:

Δr0 ¼
xf 2
kρ0

¼
2:4f 2
kρ0

(48)

The speckle size is independent of propagation distance z and directly proportional
to focal length f2 and inversely proportional to ring radius ρ0 . We can control the size
by just varying the focal length and ring radius that can be controlled by axicon
parameter [103].

Figure 15 shows the speckle patterns recorded for different propagation distances
and clear that are independent of propagation distances. Figure 16 shows the varia-
tion of speckle for order 2 with propagation distance for different axicon parameters
as mentioned. The size of the speckles decreases with the increase in axicon parameter
which we attribute to the increase in area of illumination on the GGP. It is also shown
that the speckle size is independent of the order.

Figure 15.
The speckle patterns obtained by the scattering of POV beam of order m = 0 at different propagation distances in
the far field.
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4. Physical unclonable functions using the correlations of scattered POV
beams

Nowadays, securing private data, i.e. authenticating the authorized users to access
the sensitive (personal) information, becomes mandatory. In the cryptographic algo-
rithms, information that needs to be sent from a sender end is encrypted (i.e. input
data are converted into an unreadable format) using secret keys. At the receiver end,
by appropriately using the keys, encoded information can be retrieved (without loss),
and this process is known as decryption. It is known that, depends on the crypto-
graphic algorithm used, the keys for both the encryption and decryption process can
be same or different [58, 105, 106]. Due to this reason, cryptographic algorithms are
widely used in various fields, such as banking, healthcare, social medias, emails, and
military communication, to name a few. However, recent developments in high-
performance computers increased the vulnerability of cryptographic techniques for a
number of different reasons [106]. To prevent from these attacks, a physical one-way
function has been introduced in cryptographic systems which can be (physically)
realized using the scattering of light beams [107]. These functions are, in general,
known as physical unclonable functions (PUFs) and can be embedded into any optical
systems for data authentication as this involves a scattering of light beams which
results a random output, i.e. speckles [108]. Some of the advantages of PUF include (i)
low cost (ii) high output complexity (iii) difficult to replicate, and (iv) high security
against attacks [76, 109, 110]. Therefore, in this work, for the first time, we demon-
strate an encryption system (i.e. linear canonical transform-based double random
phase encoding (LCT-DRPE)) using PUFs that are generated by taking a correlation
function between two speckle patterns obtained after scattering the POV beams
through a ground glass plate. We wish to take the extra advantage of order-dependent
correlation functions generated by the scattering of POV beams for producing the
keys for encryption. Here, one should note that the speckle size and their distribution
are order-independent, but the correlation between them is order-dependent [94].
We briefly describe the usage of the correlation functions as keys for encryption along
with the decryption process as follows:

The LCT is a three-parameter class of linear integral transform and defined as
[111]:

Figure 16.
The variation of speckle size with the propagation distance (left) and order (right) for different axicon parameters.
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Ψα,β,γ f x, yð Þf g ¼ C1

ð ð

∞

�∞

f x, yð Þ exp iπ α x2 þ y2
� 


� 2β uxþ vyð Þ þ γ u2 þ v2
� 
� �� �

dxdy

(49)

where α,β,γ are the real-valued parameters that are independent of the coordinates
that are applied symmetrically in both horizontally xð Þ and yð Þ, i.e. 2D separable LCT.
The encrypted (output) image E ω, φð Þ can be expressed as [112, 113]:

E ω, φð Þ ¼ LCT LCT f x, yð Þ �O1 x, yð Þf g �O2 x, yð Þf g (50)

where f x, yð Þ is the 2D input image, O1 x, yð Þ and O2 x, yð Þ are two random phase
masks (RPMs) considered as secret keys which are generated using a correlation
function obtained from two scattered POV light beams, i.e. speckles. The schematic
for LCT-DRPE is shown in Figure 17.

The resultant encrypted image resembles a white noise, i.e. speckle image. There-
fore, it does not reveal any of the input information. It is therefore possible to reverse
this process called decryption and get the original image back without loss. This
process is given mathematically as:

f x, yð Þ ¼ ILCT ILCT E ω, φð Þf g �O ∗
2 x, yð Þ

� �

� O ∗
1 x, yð Þ (51)

where ILCT refers to inverse linear canonical transform and * denotes the complex
conjugate operation. The LCT parameters alpha, beta, and gamma are set as 10,100,1,
respectively.

Figure 18a shows the input image (i.e. reconstructed hologram of a 3D object)
[113, 114], and Figure 18b is the amplitude of the complex encrypted image, and
information contained in it is very difficult to be observed. Figure 18c shows the
decrypted image using appropriate secret keys. The decrypted image quality is the
classical mean squared error (MSE) which is calculated between the input image and
decrypted image.

In Figure 19, changes in the LCT parameter yield the fruitful results, i.e. not able
to get proper decrypted images for the corresponding input data.

Encryption using Fourier domain: This is the one of the methods that allows to
encode a primary image into a stationary white noise. We demonstrate how

Figure 17.
The schematic for LCT-based DRPE system.
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straightforward and reliable it is to rebuild the original image using the encoded image
[115]. In fact, it is critical to have the ability to encrypt data in a way that makes it
challenging to decode without a key yet simple to do so with a key but easy if one
knows that key [116]. Let us consider the input signal to be encoded is a face Images,
that is, since the image is a positive function and is two-dimensional, it is well known
that it is possible to reconstruct an image from its Fourier magnitude [91, 117, 118].
The encoded image can be expressed as:

ψ xð Þ ¼ f xð Þ exp i2πn xð Þð Þf g ∗ h xð Þ (52)

where f(x) is the input function and exp i2πn xð Þð Þ is the random phase mask.
Then, we convolve this image by the impulse response h(x) is the Fourier transform
of the exp i2πb νð Þð Þ: (Figure 20)

The encrypted image ψ(x) is optically Fourier-transformed and multiplied by the
phase mask exp �i2πb νð Þð Þ and then inverse Fourier-transformed to produce
decrypted image. The decrypted image is expected for the input image with the
addition of some noise u(x).

5. Conclusion

In conclusion, we have briefly explained about the correlations present in scattered
phase singular beams and their applications toward communication and encryption.

Figure 18.
Simulation results: (a) input grayscale image, (b) encrypted image, and (c) decrypted image (MSE =
1.3685e–27).

Figure 19.
Decryption with wrong LCT parameters: (a) alpha is wrong, (b) beta is wrong, and (c) gamma is wrong.
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We have shown that the number of dark rings present in the autocorrelation function
of speckles provides the information about the incident spatial mode, and one can
utilize these results in free-space optical communication. Further we have utilized, the
cross-correlations present in speckle patterns corresponding to vortices of different
orders for generating the coherence vortices. We have discussed the geometry of
coherence vortices along with their propagation characteristics. We further discussed
about the correlations present in the scattered POV beams which produce the order-
independent speckle patterns. Finally, we utilized these cross-correlation functions
for encryption applications and discussed in detail.
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Figure 20.
Simulation results: (a) input grayscale image, (b) encrypted image, and (c) decrypted image.
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