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Chapter

Computationally Efficient Kalman
Filter Approaches for Fitting
Smoothing Splines
Joel Parker, Yifan Zhang, Bonnie J. Lafleur and Xiaoxiao Sun

Abstract

Smoothing spline models have shown to be effective in various fields (e.g.,
engineering and biomedical sciences) for understanding complex signals from noisy
data. As nonparametric models, smoothing spline ANOVA (Analysis Of variance)
models do not fix the structure of the regression function, leading to more flexible
model estimates (e.g., linear or nonlinear estimates). The functional ANOVA decom-
position of the regression function estimates offers interpretable results that describe
the relationship between the outcome variable, and the main and interaction effects of
different covariates/predictors. However, smoothing spline ANOVA (SS-ANOVA)
models suffer from high computational costs, with a computational complexity of

O N3
� �

for N observations. Various numerical approaches can address this problem. In
this chapter, we focus on the introduction to a state space representation of SS-
ANOVA models. The estimation algorithms based on the Kalman filter are
implemented within the SS-ANOVA framework using the state space representation,
reducing the computational costs significantly.

Keywords: Kalman filter, smoothing spline, functional ANOVA, state space
representation, Markov structure

1. Introduction

Smoothing spline ANOVA (SS-ANOVA) has been widely used in various applica-
tions [1–3]. The representer theorem enables an exact solution of regression function
in SS-ANOVA models by minimizing a regularized function in a finite-dimensional
space, even though the problem resides in a infinite-dimensional space. While SS-
ANOVA models have strong theoretical properties, the estimation algorithms used to
fit these models are computational intensive, with a computational complexity of

O N3
� �

for datasets with N observations. Numerous approaches have been developed

to reduce the heavy computational costs of SS-ANOVA [4–7]. For example, Kim and
Gu (2004) proposed to select a q≪N basis functions from N ones and reduced the

computational complexity to O Nq2
� �

. Sun et al. (2021) synergistically combined
asymptotic results with the smoothing parameter estimates based on randomly
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selected samples with sizes of ~N≪N to reduce the computational complexity of

selecting smoothing parameters to O ~N
3

� �

.

In this book chapter, we focus on the estimation approaches based on the Kalman
filter. The Kalman filter was originally created to solve linear filtering and prediction
problems used to generate simulations for the Apollo 11 project [8]. More recently, it
has been implemented in a variety of engineering and biomedical fields [9, 10]. The
Kalman filter is naturally used to fit state space models, methods that use recursive
calculations on each observation entered one at a time and resulting in calculations on
more accurate unknown variables after each iteration. The Kalman filter updates the
state of the dynamic system given a new observation based on the state after the
previous observation and the information gained from the new observation. This
memory-less property and its simple recursive formulas make Kalman filter
approaches computationally efficient, making them a useful tool for big data analytics.
SS-ANOVA models can be reformulated to a state space representation, allowing
computationally efficient Kalman filter-based model fitting and reducing computa-
tional costs to O Nð Þ for estimating univariate smoothing spline models [11]. An
extension to the bivariate setting also significantly reduces the computational costs of
SS-ANOVA models [12, 13].

Section 2 of this chapter will provide the theoretical background of SS-ANOVA
models. Section 3 provides a brief background on state space models. The state space
representation of SS-ANOVA models can be found in Section 4, along with a simula-
tion study under the univariate setting in Section 5. Section 6 concludes this chapter.

2. Smoothing spline ANOVA models

We assume the data yi, xi

� �

and i ¼ 1,2,…N are independent and identically

distributed where yi ∈Y ∈ is the outcome/response variable and xi ∈X ∈
d repre-

sents the covariates/predictors. A nonparametric model can then be written by

yi ¼ f xið Þ þ ei, (1)

where f is a function of covariates and ei � N 0, σ2ð Þ represents the random errors.
For this nonparametric model, the structure of f is not fixed and can be estimated by
minimizing a penalized least squares score,

1

N

X

N

i¼1

yi � f xið Þ
� �2 þ λJ fð Þ, (2)

where the first term measures the goodness of fit of f , and the smoothing param-
eter λ controls the trade-off between the goodness of fit and the roughness of f
measured by J fð Þ [2, 3, 14]. SS-ANOVA models can also handle responses from
exponential families and/or correlated responses. For readers who are interested in
these topics, more examples of the model estimation and implementation exist (e.g.,
[2, 14]). The nonparametric estimation allows f to vary in a high-dimensional (possi-
bly infinite) space leading to more flexible results that can balance the bias-variance
trade-off [2, 15]. The functional analysis of variance (ANOVA) is applied to the
regression function f to improve the interpretability of model estimates by
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decomposing the function into main and interaction effects of covariates. These main
and interaction effects can be estimated in the corresponding subspaces of the
reproducing kernel Hilbert space (RKHS), which is introduced in the next section.

2.1 ANOVA

2.1.1 Classical ANOVA

Classical ANOVA can be used to help to understand the decomposition of regres-
sion function in (1). We use a one-way classical ANOVA model as an example. The
outcome yi can be modeled by yij ¼ μi þ eij, where μi is the mean treatment levels with

i ¼ 1,2,⋯,K1 and j ¼ 1,2,⋯,K2. The terms in this model can be rewritten as

yij ¼ μþ δi þ eij, (3)

where μ is the overall mean effect and δi is the treatment effect. Side conditions are
added to ensure the uniqueness of this decomposition. Now consider the univariate
nonparametric function in (1). The regression function can be written as

f xð Þ ¼ Af þ I � Að Þf ¼ f 0 þ f 1 (4)

where A is an averaging operator that averages the effect of x and I is the identity
operator. We also need to add some side conditions for this decomposition to ensure
the uniqueness of the decomposition of the regression function.

2.1.2 Functional ANOVA

The multivariate function f x 1h i, x 2h i, … , x dh i
� �

on a d-dimensional product domain

X ¼
Qd

j¼1X j ∈Rd can be decomposed similarly to the classical ANOVA in the RKHS.

The construction of the RKHS on Π
d
j¼1X j is by taking the tensor product over the

marginal domains X j. We need the following theorem to construct the tensor-product
space.

Theorem 1.1 If R1 x 1h i, ~x 1h i
� �

is nonnegative definite on X 1 and R2 x 2h i, ~x 2h i
� �

is

nonnegative definite on X 2, then R x 1h i, x 2h i
� �

¼ R1 x 1h i, ~x 1h i
� �

R2 x 2h i, ~x 2h i
� �

is nonnega-

tive definite on X ¼ X 1 � X 2.

Theorem 1.1 implies that the RKHS H on Π
d
j¼1X j has the reproducing kernel R ¼

Π
d
j¼1R jh i, where R jh i is the reproducing kernel forH γh i on X γh i. Additionally, the Hilbert

spaceH jh i can be decomposed into H jh i ¼ H jh i 0ð Þ⊕H jh i 1ð Þ, where H jh i 0ð Þ is the null space

and H jh i 1ð Þ is the orthogonal complement to H jh i 0ð Þ. Then H ¼ ⊗ d
j¼1H jh i can be

decomposed as

H ¼ ⊗ d
j¼1 H jh i 0ð Þ⊕H jh i 1ð Þ

� �

¼ ⊕S ⊗ j∈SH jh i 1ð Þ
� �

⊗ ⊗ j �∈SH jh i 0ð Þ
� �� �

¼ ⊕SHS

(5)

where S denotes all of the subsets of 1, … , df g. The term HS has the reproducing
kernel RS∝Πj∈SR jh i 1ð Þ.

3

Computationally Efficient Kalman Filter Approaches for Fitting Smoothing Splines
DOI: http://dx.doi.org/10.5772/intechopen.106713



In general, the inner product in H can be specified as

J f , gð Þ ¼
X

B

j¼1

θ�1
j f j, gj

D E

j
(6)

where θj ≥0 are tuning parameters and B is the number of smoothing parameters.
The roughness penalty in (2) can be written in the form of (6). Then the reproducing
kernel associated with (6) can be written as

R ¼
X

B

j¼1

θjRj, (7)

where Rj is the reproducing kernel for the corresponding tensor product RKHS
in (5).

2.2 An example of RKHS on 0, 1½ �2

We will use one example of an RKHS on 0, 1½ �2 to demonstrate the decomposition
of RKHS. More examples of discrete and/or continuous domains can be found in Gu
(2013) [2]. We consider the following tensor sum decomposition on 0, 1½ �,

H 1h i ¼ f :

ð1

0
f 2ð Þ xð Þ

� �2
dx<∞

� 	

¼ f : f∝1f g⊕ f : f∝k1 xð Þf g

⊕ f :

ð1

0
fdx ¼

ð1

0
f 1ð Þdx ¼

ð1

0
f 2ð Þdx ¼ 0, f 2ð Þ

∈ℒ2 0, 1½ �
� 	

¼ H 1h i 00ð Þ⊕H 1h i 01ð Þ⊕H 1h i 1ð Þ,

(8)

whereH 1h i01⊕H 1h i1 forms the contrast in the one-way ANOVA decomposition, and

the function kr is a scaled Bernoulli polynomial function with kr xð Þ ¼ Br xð Þ=r! [2, 16].
The RKHS has three reproducing kernels R 1h i00 x, ~xð Þ ¼ 1, R 1h i01 x, ~xð Þ ¼ k1 xð Þk1 ~xð Þ,
and R 1h i1 x, ~xð Þ ¼ k2 xð Þk2 ~xð Þ � k4 jx� ~xjð Þ.

Now consider the RKHS H on 0, 1½ � � 0, 1½ �. Here H can be the tensor product
spaces of H 1h i on 0, 1½ � and H 2h i on 0, 1½ �. Based on the tensor sum decomposition in

(8), we have

H ¼ H 1h i ⊗H 2h i

¼ H 1h i 00ð Þ⊕H 1h i 01ð Þ⊕H 1h i 1ð Þ
� �

⊗ H 2h i 00ð Þ⊕H 2h i 01ð Þ⊕H 2h i 1ð Þ
� �

¼ H 1h i 00ð Þ ⊗H 2h i 00ð Þ
� �

⊕ H 1h i 00ð Þ ⊗H 2h i 01ð Þ
� �

⊕ H 1h i 01ð Þ ⊗H 2h i 00ð Þ
� �

⊕ H 1h i 01ð Þ ⊗H 2h i 01ð Þ
� �

⊕ H 1h i 00ð Þ ⊗H 2h i 1ð Þ
� �

⊕ H 1h i 1ð Þ ⊗H 2h i 00ð Þ
� �

⊕ H 1h i 01ð Þ ⊗H 2h i 1ð Þ
� �

⊕ H 1h i 1ð Þ ⊗H 2h i 01ð Þ
� �

⊕ H 1h i 1ð Þ ⊗H 2h i 1ð Þ
� �

,

(9)

where the first four terms in (9) are in the null space H 0ð Þ and the remaining five

terms are in the orthogonal complement (i.e., H 1ð Þ). The reproducing kernel for the

cubic spline (m=2) for each subspace can be found in Table 1.
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2.3 Estimation

The estimation algorithm of SS-ANOVA models relies on the following representer
theorem.

Theorem 1.2 (Representer Theorem) There exist coefficient vectors ξ ¼
ξ1, … , ξMð Þ0 ∈RM and c ¼ c1, … , cNð Þ0 ∈RN such that the minimizer of (2) in H ¼
H0⊕H1 has the following representation:

f xð Þ ¼
X

M

m¼1

ξmϕm xð Þ þ
X

N

i¼1

ciR xi, xð Þ, (10)

where ϕm, m ¼ 1, … , Mf g are the basis functions of the null spaceH0 and R �, �ð Þ is
the reproducing kernel of H1.

Taking into consideration model (1), the function f can be estimated by minimiz-
ing (2). Using the representer theorem, the function f can be written as

f ¼ Sξ þQc (11)

where f ¼ f x1ð Þ, … , f xNð Þð Þ0, S is a N �M matrix (e.g., M ¼ 2 for cubic spline)

where the i, jð Þth entry is ϕj xið Þ and Q is a N �N matrix where the i, jð Þth entry is

R xi, xj

� �

of the form (7). Plugging (11) into (2), the penalized least squares can be

written as

1

N
y� Sξ �Qc
� �0

y� Sξ �Qc
� �

þ λc0Qc : (12)

We differentiate (12) with respect to ξ and c to obtain the linear system

Q þNλIð Þcþ Sξ ¼ y,

S0c ¼ 0:
(13)

For given smoothing parameters, solving for c and ξ provides the estimation
for f . The selection of smoothing parameters for SS-ANOVA models is introduced
below.

Subspace Reproducing Kernel

ℋ 1h i 00ð Þ ⊗ℋ 2h i 00ð Þ 1

ℋ 1h i 01ð Þ ⊗ℋ 2h i 00ð Þ k1 x 1h i
� �

k1 ~x 1h i
� �

ℋ 1h i 01ð Þ ⊗ℋ 2h i 01ð Þ k1 x 1h i
� �

k1 ~x 1h i
� �

k1 x 2h i
� �

k1 ~x 2h i
� �

ℋ 1h i 1ð Þ ⊗ℋ 2h i 00ð Þ k2 x 1h i
� �

k2 ~x 1h i
� �

� k4 jx 1h i � ~x 1h ij
� �

ℋ 1h i 1ð Þ ⊗ℋ 2h i 01ð Þ k2 x 1h i
� �

k2 ~x 1h i
� �

� k4 jx 1h i � ~x 1h ij
� �
 �

k1 x 2h i
� �

k1 ~x 2h i
� �

ℋ 1h i 1ð Þ ⊗ℋ 2h i 1ð Þ k2 x 1h i
� �

k2 ~x 1h i
� �

� k4 jx 1h i � ~x 1h i
� �
 �

k2 x 2h i
� �

k2 ~x 2h i
� �

� k4 jx 2h i � ~x 2h ij
� �
 �

Table 1.
Subspaces and their corresponding reproducing kernels for the RKHS, ℋ, on 0, 1½ � � 0, 1½ �.
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2.4 Selection of smoothing parameters

The smoothing parameters λ=θ balance the trade-off between the goodness of fit
for f and the roughness of f in (2). Choosing the optimal smoothing parameters is data
specific and should be performed prior to nonparametric regression analysis. Several
smoothing parameter selection methods have been developed for the SS-ANOVA
models [17]. Generalized cross-validation (GCV) is one of the most popular methods
for selecting the optimal smoothing parameters λ=θ [18, 19].

To avoid overparameterization, let λ ¼ λ=θ1, … λ=θBð Þ0. The GCV score is
defined as

V λð Þ ¼ N�1y0 I � A λð Þð Þ2y
N�1tr I � αA λð Þð Þ

 �2 (14)

where A λð Þ is symmetric matrix similar to the hat matrix in linear regression, and
tr �ð Þ represents trace. The parameter α≥ 1 is a fudge factor [4]. When α ¼ 1 it is the
original GCV score. Larger α’s yield smoother estimates. By default, we set α ¼ 1:4.
Then optimal smoothing parameters λ can be chosen by minimizing the GCV score
(14) using Newton-Raphson methods.

2.5 Computational complexity

In this section, we will discuss the computation complexity for calculating c and ξ

from (12). One requires N3=3þO N2
� �

operations to obtain estimates of c and ξ for
the fixed smoothing parameters. In practice, the optimization of the smoothing

parameter is also needed, which requires operations of 4BN3=3þO N2
� �

, where B is
the number of smoothing parameters. Therefore, to minimize (12), the estimation

algorithms have a computational complexity of O N3
� �

. The following sections will
discuss how the Kalman filter can be used to fit SS-ANOVAmodels, which reduces the
computation complexity to O Nð Þ.

3. State space models

State space methodology was traditionally used to study dynamic problems (e.g.,
space tracking settings) because the procedure allows for “real-time” updating as data
are collected [20]. In this chapter, we use the linear Gaussian state space model as an
example to introduce concepts of state space models using the Kalman filter approach.
More applications of state space models can be found in a study by Douc, Moulines
and Stoffer (2014) and Durbin and Koopman (2001) [21, 22]. A state space model
consists of two equations: state equation and measurement equation. The state equa-
tion describes the dynamics of the state variables:

ztþ1 ¼ Gtzt þΨtηt, ηt �
iid

N 0, Δtð Þ, (15)

where zt is the h� 1 state vector, ηt is the g � 1 disturbance vector with zero mean
and a covariance matrix Δt, and Gt and Ψt are fixed design matrices of dimensions

6
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h� h and h� g, respectively. The measurement equation shows the relationship
between the observed variable and the unobserved state variable:

ot ¼ Φtzt þ εt, εt �iid N 0, Vtð Þ, (16)

where ot is a n� 1 vector with n observations, εt is a n� 1 disturbance vector with
zero mean and a covariance matrix Vt, and Φt is a fixed design matrix of dimension
n� h. The initial state vector z0 is assumed to be normally distributed with mean μ0
and covariance matrix P. The two vectors ηt and εt are assumed to be mutually
uncorrelated, that is,

ηt

εt

� 


�iid N 0,
Δt 0

0 Vt

� 
� �

: (17)

These two vectors are also uncorrelated to the initial state vector z0.
The Kalman filter utilizes a set of recursive equations to estimate zt, given

the observations Ot ¼ o1, … , otf g at time t and its error variance matrix Pt [13].
Define

ẑt ¼  zt Otj �,½
Pt ¼  zt � ẑtð Þ zt � ẑtð Þ0∣Ot

� �

,

 (18)

where ẑt is the Kalman filter estimation of zt, with z0 ¼  z0½ � ¼ μ0, and P0 ¼ P.
From the state and measurement Eqs. (15) and (16), the estimated zt∣t�1 and the
covariance matrix given zt�1, and Pt�1 become

ẑt∣t�1 ¼  zt Ot�1j � ¼ Gtzt�1,½

Pt∣t�1 ¼  zt � ẑt∣t�1

� �

zt � ẑt∣t�1

� �0
∣Ot�1

� i

¼ GtPt�1G
0
t þΨtΔtΨ

0
t,

h (19)

and

ot∣t�1 ¼ Φt ẑt∣t�1: (20)

Then the prediction error vector vt is

vt ¼ ot � ot∣t�1 ¼ ot �Φt ẑt∣t�1 ¼ Φt zt � ẑt∣t�1

� �

þ εt, (21)

with the covariance matrix

 vtv
0
t


 �

¼ Λt ¼ ΦtPt∣t�1Φ
0
t þVt: (22)

Using the facts of the joint distribution of zt and vt, the Kalman filter estimator
ẑt ¼  ztjOtð Þ at time t and its covariance matrix can be updated using

ẑt ¼ ẑt∣t�1 þ Pt∣t�1Φ
0
tΛ

�1
t ot �Φtẑt∣t�1

� �

¼ Gtzt�1 þ Pt∣t�1Φ
0
tΛ

�1
t vt,

Pt ¼ Pt∣t�1 � Pt∣t�1Φ
0
tΛ

�1
t ΦtPt∣t�1:

(23)
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We further define Kalman gain as

Kt ¼ Pt∣t�1Φ
0
tΛ

�1
t : (24)

Then the filtered estimate of zt and its covariance matrix Pt is

ẑt ¼ ẑt∣t�1 þKtvt,

Pt ¼ I� KtΦtð ÞPt∣t�1:
(25)

4. State space representation of SS-ANOVA models

Due to the Markov structure of SS-ANOVA models after reparameterization, the
SS-ANOVA models can be represented by the state space models, allowing for effi-
cient estimation by algorithms based on the Kalman filter. Wecker and Ansley (1983)
showed the state space representation for univariate smoothing spline models [11].
Such an approach reduces the computational complexity of smoothing splines from

O N3
� �

to O Nð Þ. Based on the fast algorithm for the multivariate Kalman filter, Qin

and Guo (2006) extended the univariate case to multivariate SS-ANOVA models [12].
The two-dimensional procedure was implemented, with computational complexity of
O n1n

3
2

� �

for data of size N ¼ n1n2. The extension to higher dimensions was also
discussed. In this chapter, we focus on the univariate setting to demonstrate the
procedure to derive the state space representation of smoothing splines.

4.1 Univariate setting

We can use the state space formulation to represent model (1) (d ¼ 1) and apply
the Kalman filter algorithm to estimate the model parameters of smoothing spline
models efficiently. Based on the pioneered work in Wahba (1978) [23], the univariate
function f xð Þ can be written in the following form

f xð Þ ¼
X

m�1

ν¼0

αν
x� xlð Þν

ν!
þ

ffiffiffi

λ
p

σ

ðx

xl

x� hð Þm�1

m� 1ð Þ! dW hð Þ, (26)

where the covariate x∈ xl, xu½ � and W hð Þ is a Wiener process with the unit
dispersion parameter. When all α’s have the diffuse prior distribution, the conditional
expectation of f xð Þ given all data is the function minimizing (2) with the smoothing
parameter 1=λ. The model (26) can be rewritten as

yi ¼ 10U xið Þ þ ei, i ¼ 1,⋯,N, (27)

where 10 ¼ 1, 0, ⋯, 0½ � and U xð Þ ¼ U mð Þ xð Þ, ⋯, U 1ð Þ xð Þ

 �0

is the m-dimensional
stochastic process. In particular, we define

U jð Þ xð Þ ¼
X

j�1

ν¼0

U m�νð Þ xlð Þ x� xlð Þν
ν!

þ
ffiffiffi

λ
p

σ

ðx

xl

x� hð Þm�1

m� 1ð Þ! dW hð Þ, j ¼ m,⋯,1: (28)

The vector U contains U mð Þ xð Þ and its first m� 1ð Þ derivatives. Let αν ¼ U m�νð Þ xlð Þ,
and we can easily verify the model (27).

8
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The state space formulation relies on the Markov structure of U xð Þ, which is
demonstrated below. We define a m�m matrix, Γm xb, xað Þ, for any xb and xa within
the interval xl, xu½ � as

Γm xb, xað Þ ¼

1 xb � xað Þ …
xb � xað Þm�1

m� 1ð Þ!

1 …
xb � xað Þm�2

m� 2ð Þ!
:

:

1

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

: (29)

We can easily verify

Γm xc, xað Þ ¼ Γm xc, xbð ÞΓm xb, xað Þ: (30)

To show the Markov structure of U xð Þ, we also define a m� 1 random vector

ω xb, xað Þ ¼ ω 1ð Þ xb, xað Þ, ⋯, ω mð Þ xb, xað Þ

 �0

, where

ω νð Þ xb, xað Þ ¼
ffiffiffi

λ
p

σ

ðxb

xa

xb � hð Þν�1

ν� 1ð Þ! dW hð Þ, ν ¼ 1,⋯,m: (31)

For any ν ¼ 1,⋯,m, we have

ω νð Þ xc, xað Þ ¼ ω νð Þ xc, xbð Þ þ
X

ν�1

j¼0

xc � xbð Þj
j!

ω ν�jð Þ xb, xað Þ: (32)

Thus we have

ω xb, xað Þ ¼ Γm xc, xbð Þω xb, xað Þ þ ω xc, xbð Þ: (33)

We now apply (30) and (33) to obtain the Markov structure of U

U xbð Þ ¼ Γm xb, xlð ÞU xlð Þ þ ω xb, xlð Þ
¼ Γm xb, xað ÞΓm xa, xlð ÞU xlð Þ þ Γm xb, xað Þω xa, xlð Þ þ ω xb, xað Þ
¼ Γm xb, xað ÞU xað Þ þ ω xb, xað Þ:

(34)

The Markov structure is the key to the state space representation of SS-ANOVA
models. For xl ¼ x1 ≤⋯≤ xn ¼ xu, we have

yi ¼
X

m�1

ν¼0

αν
xi � xlð Þν

ν!
þ 10Ω xið Þ þ ei, (35)

as the measurement equation, where Ω xið Þ ¼ Ω
mð Þ xið Þ, ⋯, Ω 1ð Þ xið Þ


 �0
and

Ω
νð Þ xið Þ ¼ ω νð Þ xi, xlð Þ for ν ¼ 1,⋯,m and i ¼ 1,⋯,N. From (33), we have the state

equation

Ω xið Þ ¼ Γm xi, xi�1ð ÞΩ xi�1ð Þ þ ω xi, xi�1ð Þ, (36)
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for i ¼ 1,⋯,N. Given the parameters λ and σ, the Kalman filtering and smoothing
algorithms can be implemented to perform estimation for this state space
representation.

5. Simulation studies

We used simulated data to compare the estimates of smoothing splines with those
based on state space representation under the univariate setting. The following model
was used to simulate N ¼ 1,000 observations.

yi ¼ 7 sin π ∗ xið Þ þ ei, (37)

where xi ¼ ti=100, ti ¼ 1,⋯,1,000, and ei � N 0, 1ð Þ. To apply the univariate SS-
ANOVA model to the simulated data, we used the ssanova function in the gss package
(version 2.2-3) [24]. The GCV algorithm was used to select the smoothing parameter
of SS-ANOVA models. To implement the Kalman filtering algorithm to fit the
smoothing splines, we used Eq. (35) as the measurement equation and Eq. (36) as the
state equation. The parameters λ and σ were set to 0:01 and 1, respectively. We fitted
the cubic spline (i.e., m ¼ 2) in the simulation studies. In the state Eq. (36), we have

Γ2 xi, xi�1ð Þ ¼
1 xi � xi�1ð Þ
0 1

� 


, (38)

for i ¼ 2,⋯,1,000. The νν0th element of the variance matrix of ω xi, xi�1ð Þ is

λσ2
xi � xi�1ð Þνþν0�1

νþ ν0 � 1ð Þ ν� 1ð Þ! ν0 � 1ð Þ! , (39)

where ν,ν0 ¼ 1,⋯,m. Given the above information, we utilized the fkf function in
the FKF package (version 0.2.3) to implement the Kalman filtering and smoothing

Figure 1.
Comparison between the SS-ANOVA model fit and the model fit with the Kalman filter given λ ¼ 0:01 on
simulated data.

10

Kalman Filter - Engineering Applications



algorithms for the SS-ANOVA model. The details of iteration procedures are available
in the help document of fkf, which is similar to the procedures described in Section 3.
Figure 1 shows the similarity between the SS-ANOVA model fit with the generic
algorithm from the gss package and the model fit based on the state space representa-
tions in (35) and (36).

6. Conclusions

In this chapter, we have introduced the theoretical foundation (e.g., representer
theorem) and estimation algorithms of SS-ANOVA models. Given tensor product
operations, the SS-ANOVA models can handle the multivariate data and study the
main and interaction effects in the corresponding subspaces via functional ANOVA.

The estimation algorithms of SS-ANOVAmodels need O N3
� �

operations, which might
be prohibitive computationally for analyzing super large data. Utilizing the Markov
structure of SS-ANOVA models, the Kalman filter can be used to fit SS-ANOVA
models when reparameterized into a state space formulation [11]. This state space

representation reduces the computational complexity from O N3
� �

to O Nð Þ for the
univariate case, allowing SS-ANOVA models to be applicable to big data applications.
Additional research has been done to extend this representation to the
multidimensional setting [12]. For the two-dimensional data with the dimensions of n1
and n2, the SS-ANOVA models can be fitted with the computational complexity of
O n1n

3
2

� �

, where N ¼ n1n2. Furthermore, we provided a simulated example to compare

estimates from the state space representation and the estimates from the SS-ANOVA
model for the univariate case.
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