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Chapter

Electrospinning: The Technique 
and Applications
Govind Kumar Sharma and Nirmala Rachel James

Abstract

Electrospinning is a useful and convenient method for producing ultrathin fibers. 
It has grabbed the scientific community’s interest due to its potential to produce fibers 
with various morphologies. Numerous efforts have been made by researchers and 
industrialists to improve the electrospinning setup and the associated techniques in 
order to regulate the morphology of the electrospun fibers for practical applications. 
Porous, hollow, helical, aligned, multilayer, core-shell, and multichannel fibers have 
been fabricated for different applications. This chapter aims to provide readers with a 
clear understanding of the electrospinning process: its principle, methodology, mate-
rials, and applications. The chapter begins with a brief introduction to the history of 
electrospinning, followed by a discussion of its principle and the basic components 
of electrospinning setup. The parameters that affect the electrospinning process such 
as operating parameters and the properties of the material being electrospun are 
discussed briefly. An overview of the different types of electrospinning technique, 
capable of producing nanofibers with different morphologies, is also presented. 
Afterward, the applications of electrospun nanofibers, including their use in bio-
medical applications, filtration, energy sectors, and sensors applications are discussed 
succinctly. The perspectives on the challenges, opportunities, and new directions for 
future development of electrospinning technology are also offered.

Keywords: electrospinning, electrospun fiber, coaxial electrospinning,  
tri-axial electrospinning, core-shell fiber, spinneret

1. Introduction

Electrospinning (electrostatic fiber spinning) has been developed as a sophis-
ticated, modern, and versatile technique since the late 1990s due to its ease of 
generating nanofibers with a range of materials. It uses an electric field to produce 
microscopic threads with diameters as small as nanometers (nm). Tissue engineer-
ing, filtration, energy, biotechnology, and sensors are just a few of the fields where 
electrospun fiber membranes find extensive applications [1–5].

1.1 History of electrospinning

In nature, fibers can be found in the shape of elongated objects or continuous 
filaments. Spiders have relied on webs of fiber matting to catch food in the wild. Silk 
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fibers with sizes ranging from 2 to 5 meters make up the webs. Silkworms are also 
known for their capacity to produce silk strands in large quantities. Rayon is the name 
given to the earliest man-made textiles created from cotton or wood cellulose fibers. 
DuPont developed nylon as the first commercially feasible synthetic fabric in 1938, 
and it immediately sparked a popular interest [6–10].

A variety of techniques have been used to manufacture synthetic polymer fibers. 
The most common procedures are wet, dry, melt, and gel spinning. During the wet 
spinning process, a spinneret is immersed in a chemical bath. A polymer solution is 
extruded from a spinneret into a chemical bath, and then the polymer is precipitated 
out due to the chemical reaction or dilution effect to generate fibers through solidi-
fication. During dry spinning, a polymer solution is extruded into the air through a 
spinneret, and fibers are generated as a result of solvent evaporation from jets aided 
through a stream of hot air. For melt spinning, a polymer melt is extruded from the 
spinneret to produce fibers upon cooling. Gel spinning is used to generate fibers 
with high mechanical strength or other distinctive properties through spinning a 
polymer in the gel state followed by drying in air and then cooling in a liquid bath. In 
the gel spinning process, jets are mainly made under external shearing forces and/or 
mechanical drawing while passing through spinnerets, and fibers are generated upon 
solidification of the jets as a result of drying or precipitation. The fibers obtained by 
spinning have diameters in the range of 10–100 micrometers (μm) [11–15].

In 1887, fibers were made from a viscoelastic liquid in the presence of an external 
electric field as reported by Charles V boys. He used a setup that consisted of an insu-
lated dish connected with an electric supply. He demonstrated that viscoelastic liquid 
could be drawn into fibers when it moved to the edge of the dish [16]. Electrospinning 
is a well-known technique now, for the production of continuous ultrathin fibers with 
diameters ranging from 10 nm to 100 μm. In 1600, William Gilbert introduced the 
concept of electrospinning. In his study, cone-shaped water droplet formation was 
observed in the presence of an electric field [4]. In 1747, Abbe Nollet demonstrated 
the earliest known electrospraying experiment, in which water could be sprayed as 
aerosol while passing through an electrostatically charged container that was placed 
on the ground. Both electrospinning and electrospraying are dependent on the use 
of a high voltage to eject viscous and viscoelastic liquid jets. During electrospinning, 
the jets eject polymer solution continuously to produce fibers instead of breaking 
into droplets as with electrospraying. In 1902, John Cooley and William Morton were 
granted two patents on electrospinning, in which they described a prototype of an 
electrospinning setup [4, 17]. In 1914, John Zeleny had reported that he was working 
on the treatment of liquid drop at the end of capillaries. In this study, he tried to find 
a mathematical model of liquids under electrostatic forces. Formhals tried to produce 
electrospun fibers in the 1930s, but the system had some disadvantages such as dry-
ing, due to the distance between nozzle and collector [18, 19]. In 1940, he improved 
and modified the device to overcome the drawback. Between 1964 and 1969, Sir 
Geoffrey Ingram Taylor developed the theoretical underpinning of electrospinning, 
and his research helped advancement in electrospinning by modeling the hopper 
form in which liquid drops were formed by the electric field. His collaboration with JR 
Melcher led to expanding the “leaky dielectric model” for conducting liquids. In early 
1990s, some research groups, remarkably those led by Darrel Reneker and Gregory 
Rutledge, reinvented the electrospinning technique. These groups demonstrated that 
many different organic polymers could be electrospun into the nanoscale. For the first 
time, Darrel Reneker used high voltage to charge the polymer dispersion to produce 
fine fibers with a diameter of less than 5 μm [4, 20–22].
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This technique became a very popular and a good choice for producing continuous 
and long fibers with diameters ranging from micrometer to nanometer. Meanwhile, 
new methods were developed to control the alignment and structure of electrospun 
nanofibers, which created new opportunities in energy-related and biomedical appli-
cations. After that, many other new methods were developed for aligning the nanofi-
bers to improve several properties of nanofibers such as size, structure, morphology, 
composition, porosity, and conductivity. One such method is coaxial electrospinning 
to produce continuous core-sheath and hollow nanofibers [2, 23–27].

2. Electrospinning setup

Electrospinning is a voltage-driven technology that uses an electro-hydrodynamic 
process, in which a high voltage is applied to the polymer solution and then a liquid 
droplet is electrified to generate a jet, followed by elongation and stretching to produce 
fibers. The diameter of these fibers ranges from nanometers to a few micrometers 
(μm). One of the primary advantages of electrospinning is its adaptability in process-
ing, which allows it to create fibers with a variety of configurations and morphological 
structures [19, 28]. Figure 1 represents the schematic diagram of the basic electrospin-
ning set-up. The basic electrospinning setup consists of mainly three parts: (1) a high 
voltage power supply, (2) a spinneret (metallic needle), and (3) a grounded collector 
[7, 29–31]. The metallic collectors are generally of three types, namely stationary flat 
plates, spinning drums, and rotating disc, as shown in Figure 2.

2.1 Principle

To understand the basic principle of the electrospinning process, consider a spher-
ically charged droplet of a low-molecular-weight conducting liquid that is placed 
in a vacuum. The liquid droplet experiences two forces: (1) disintegrative repulsive 

Figure 1. 
Basic setup of electrospinning [28].
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force and (2) surface tension that tries to hold the liquid droplet in a spherical shape. 
During the electrospinning process, a high electric voltage is applied to the liquid 
droplet from polymer melt/solution at the tip of the spinneret. When the high voltage 
is continuously increased, the liquid droplet will start to elongate into a conical shape 
known as a “Taylor cone.” The elongation starts when the electrostatic repulsion 
overcomes surface tension. The charged liquid jet is directed toward the metallic 
collector once the Taylor cone has been produced. The liquid mentioned here can be 
melt polymer, polymer solution, or an emulsion. Solid fibers will develop as the melt 
cools down or solvent evaporates from the whipping action that happens throughout 
the flight time from the Taylor cone to the collector, depending on the liquid viscosity. 
As a result, the collector is covered with a non-woven fiber mat [32–35].

3. Parameters that affect the electrospinning process

The electrospinning process depends on operating parameters, material param-
eters, and ambient parameters that affect the morphology of fiber. The operating 
parameters consist of the applied voltage or electric field, the flow rate of polymer 
melt/solution, the distance between the tip of the metallic needle and collector, and 
the diameter of the needle. A small change in the operating parameters can lead to a 
significant change in the morphology of fiber [23, 26, 36–39].

3.1 Operating parameters

3.1.1 Applied voltage

The applied voltage determines the amount of charges carried by the jet, the 
degree of electrostatic repulsion among the charges, and the strength of interactions 
between the jet and the external electric field. Higher voltage facilitates the formation 
of thinner fibers, but it can also result in more fluid being ejected, resulting in thicker 
diameter fibers [36, 40].

Figure 2. 
Metallic collectors. (a) Stationary flat plate, (b) drum collector, and (c) rotating disc.
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3.1.2 Flow rate

It is necessary to adjust the flow rate of the spinning liquid for a particular volt-
age in order to maintain a stable Taylor cone during the electrospinning process. 
A uniform Taylor cone can produce uniform fibers with narrow dispersion during 
electrospinning. As the flow rate increased, the amount of material passing through 
the tip increased, resulting in the formation of fiber with a high diameter. At a very 
high flow rate, the polymeric jet becomes unstable due to the effect of gravitational 
force and tends to electrospray [40].

3.1.3 The distance between the tip of the metallic needle and the collector

The distance between the tip and the collector can also influence the diameters 
and shape of nanofibers; however, the effect is not as strong as the other factors. In 
the electrospinning process, a minimum distance is necessary to allow enough time 
for solvent evaporation before the fiber reaches the collector. Thinner fibers have 
resulted from longer distances. When the distance was too great or too small, beads 
would form [4, 7, 25].

3.1.4 Diameter of the needle

Nanofibers, electrospun with small needle diameters, are thinner, smoother, and 
bead-free and have greater fiber porosity than nanofibers electrospun with large 
needle diameters. As aforementioned, higher applied voltage, smaller spinneret 
diameter, and lower flow rate resulted in thinner electrospun nanofibers [4, 33, 36].

3.2 Material parameters

The material properties that affect the electrospinning process and fiber morphol-
ogy involve polymer concentration, the viscosity of the solution, the surface tension 
of the polymer melt/solution, and other properties related to the solvent as well as the 
polymer itself [4, 7, 25].

3.2.1 Polymer concentration

Among the material properties, the polymer concentration plays the most 
significant role in stabilizing the fibrous structure because it influences the other 
properties such as viscosity of the solution, surface tension, and conductivity of the 
material [4, 7, 25].

3.2.2 Viscosity

The viscosity of the polymer solution has a significant impact on the diameter 
and shape of the electrospun fiber. It is controlled by polymer properties includ-
ing molecular weight and polymer solution concentration. When the concentra-
tion of polymer in a solution is raised, the viscosity of the solution rises. If the 
viscosity is too high, then it will be difficult to pump the solution via the syringe 
pump, or the solution may dry at the needle tip before electrospinning can begin. 
Higher viscosity results in the increased diameter fibers and lower deposition 
region [4, 7, 25].
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3.2.3 Surface tension

Surface tension is the attraction between molecules in a liquid that is influenced 
by intermolecular interactions. During electrospinning, the charges on the polymer 
solution must be high enough to overcome the solution’s surface tension. When a high 
voltage is applied, the polymer jet begins to form from the needle’s tips and elongates 
and stretches toward the collector, breaking up into minute droplets due to the 
solution’s lower surface tension, which is known as electrospraying. Surface tension 
causes bead formation when the polymer concentration is low. If the surface tension is 
low, the formation of the jet begins at a lower voltage. The surface tension of polymer 
solution can be changed by varying solvents and by adding surfactants [26, 41].

3.2.4 Conductivity

During electrospinning, the charged liquid (melt/solution) stretches to form 
fibers due to charge repulsion. The jet carries more charges as the electrical conduc-
tivity of the solution rises, reducing the diameter of the electrospun fiber. A small 
amount of polyelectrolyte (salts) can be introduced to eliminate fiber bead formation 
since it raises more charges and helps to elongate the jet to produce fibers. The electro-
spinning of polymer solution is difficult at very high voltages, while fiber formation is 
impossible when the solution has no conductivity [4, 7, 25].

3.2.5 Solvent properties

For electrospinning, solvent choice is critical, since the process is influenced by the 
solvent’s evaporation rate (which is determined by the solvent’s vapor pressure) and 
permittivity [4, 7, 25].

3.2.5.1 Vapor pressure

The volatility or vapor pressure of the solvent determines the evaporation rate 
and, as a result, the solidification rate of the jet. High volatility is not suitable for 
spinning fibers because the jet may solidify immediately after leaving the spinneret. 
If the volatility is too low, the fibers will still be wet when deposited onto the collector. 
The solvent volatility modifies the surface fiber morphology and nano-membrane 
structure [4, 7, 25].

3.2.5.2 Permittivity

The permittivity of a solvent has a substantial impact on the electrospinning process 
and fiber morphology. The bead formation and diameter of the electrospun fiber are 
reduced when a solution with a greater permittivity is used. Higher permittivity increases 
bending instability and the traversed jet path of the electrospinning jet, resulting in smaller 
fiber diameter and a larger deposition area. Solvents such as N, N-dimethylformamide 
(DMF) can be used to increase the permittivity of polymer solutions [4, 7, 25].

3.3 Ambient parameters

The interaction between the surrounding environment such as the temperature and 
humidity of the surrounding and the electrospinning jet may alter the electrospinning 
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process and fiber morphology. The temperature is inversely proportional to the 
viscosity of the solution. So, the temperature may affect the properties of the elec-
trospinning solution. Humidity may affect the porosity of fiber because humidity 
influences solvent evaporation [4, 7, 25].

4. Types of electrospinning

Electrospinning technique is divided into two categories based on the elec-
trospinning setup: needle-based electrospinning and needleless electrospinning. 
Furthermore, needle-based electrospinning is classified into electrospinning using 
single nozzle, coaxial, tri-axial, and multichannel spinnerets. Electrospinning may 
also be categorized based on the state of the spinning material. Thus it is divided 
into three categories: melt electrospinning, emulsion electrospinning, and solution 
electrospinning.

4.1 Needle-based electrospinning

In needle electrospinning, a needle-like spinneret is utilized and a sharp “cone 
shape” arises at the needle tip under the influence of the electric field.

4.1.1 Single nozzle

Single nozzle electrospinning is the simplest and basic form of the technique in 
which only one needle is used as the spinneret as shown in Figure 1.

Side-by-side electrospinning is a modification of the basic single nozzle electro-
spinning. The side-by-side electrospinning process employs two parallel syringes to 
produce fibers with Janus structure as shown in Figure 3. The same voltage is applied 
to both solutions, and the fiber is usually separated due to repulsion between the two 
solutions. Producing a Janus structure is extremely difficult due to repulsion, and as a 
result, just a few studies have been conducted on this topic.

4.1.2 Coaxial electrospinning

A coaxial needle, made up of two concentric hollow needles, is used to produce a 
coaxially electrified jet for coaxial electrospinning. A simple approach to fabricate a 
coaxial needle is to insert a small (inner) needle into a larger (outer) needle in a coaxial 

Figure 3. 
Side-by-side electrospinning setup.
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configuration. Using two syringe pumps, the outer and inner needles are subsequently 
filled with two solutions with independently controllable flow rates. When the core 
and shell solutions meet at the coaxial needle’s exit end, in the presence of an external 
electric field, the shell solution wraps around the core solution to produce a compound 
Taylor cone, followed by the ejection of a coaxial jet. Finally, core-shell nanofibers 
with different core and shell compositions were fabricated, as shown in Figure 4.

In the fabrication of core-shell nanofibers, the properties of the inner and outer 
solutions, as well as the electrospinning parameters, all play important roles. For 
maintaining the smooth flow of jets, the inner and outer solutions, in particular, 
should have proper viscosities. Furthermore, the flow rates of the two solutions must 
be carefully controlled to ensure that the inner solution is completely wrapped by the 
outside solution. The flow rates may also be adjusted to change the diameter of the 
nanofibers and the shell thickness.

Coaxial electrospinning is used to fabricate core-shell nanofibers with better 
control over the compositions for different applications. It also allows for the fabrica-
tion of nanofibers from unspinnable liquids, as they may be used as the inner fluid 
although being controlled by the outer fluid. Hollow nanofibers with adjustable wall 
thickness can be fabricated by selectively removing the core from as-spun core-shell 
nanofibers. The core-shell morphology of coaxial electrospun fibers offers the pos-
sibility of multifunctional materials, with various functional components put into the 
two compartments of the concentric structure [24, 34, 42–54].

4.1.3 Tri-axial electrospinning

The trilayer spinneret and tri-axial electrospinning are shown in Figure 5. It 
consists of three concentric metal capillaries. Tri-axial electrospinning is often used 
to construct a three-layer system with a drug-loaded core, a hydrophobic middle layer, 
and a hygroscopic exterior layer, as seen in the Figure 5. It is vital to avoid merging 
between the spinning solutions in order to generate high-quality multi-compartment 
fibers. This means that either the compartmentalized solutions must be immiscible 
or all of the solutions must evaporate the solvent at the same rate: if one of the liquids 
evaporates quicker than the others, the compartments will separate. So, the spinneret 
needs to be designed according to the application. A properly designed spinneret 
may be utilized to control the behavior of fluids in an electrical field as well as act as 
a template for constructing the right nanofiber structures [11, 55–57]. Lallave and 
coworkers [58] were the first to report tri-axial electrospinning. They employed a 
tri-axial arrangement of ethanol, lignin, and glycerine (from outermost to innermost 
layer) with ethanol sheath flow to avoid solidification of the Taylor cone and glycerine 
as a template fluid.

Figure 4. 
Coaxial spinneret and coaxial electrospinning setup.
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4.1.4 Multichannel electrospinning

In the simplest example of multichannel electrospinning, three metallic capillar-
ies are inserted in a syringe at the three vertices of an equilateral triangle as shown 
in Figure 6. Zhao et al. [59] for the first time presented a multifluid compound jet 
electrospinning approach that can easily and quickly produce bio-mimic hierarchical 
multichannel microtubes. Multi-axial electrospinning was used to create a biomi-
metic system. They used numerous inner axial paraffin oils in a Ti(OiPr)4 solution, 
then removed the organics to construct a multilayer channel.

4.2 Needleless electrospinning

In needleless electrospinning, several cones are spun without the need for a needle 
or a tiny open structure. The jet initiation in needleless electrospinning is a self-orga-
nized process that happens on a free liquid surface and is not driven by capillary forces. 
It is based on the use of an external agitation force to concentrate the electric field on 
the free liquid surface to the intensity necessary to initiate a Taylor cone [60–63].

4.3 Melt electrospinning

Solvent removal, recycling, environmental concerns, and toxicity associated 
with the usage of solvents are all avoided with melt electrospinning. The melted 
polymer is injected into the capillary tube. The operation must be carried out in 
a vacuum, therefore the capillary tube, the charged melt fluid jet’s passage, and 
the metal collector must all be enclosed in a vacuum. Melt electrospinning has 
the advantage of producing extremely homogeneous fibers with very little varia-
tion in fiber diameter. Aside from these benefits, there are drawbacks due to the 

Figure 5. 
Tri-axial spinneret and tri-axial electrospinning setup.

Figure 6. 
Multichannel spinneret and multichannel electrospinning setup.
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specialized equipment required, as well as the high viscosity and low electrical 
conductivity of polymer melt. In comparison to electrospinning from a polymer 
solution, despite the benefits afforded by melt electrospinning, the technology has 
not achieved more popularity and has not been frequently employed. This is mostly 
owing to the high viscosity, high process temperatures, and the inability to create 
nanometer-sized fibers [64–70].

4.4 Emulsion electrospinning

Emulsion electrospinning is a word that refers to two types of electrospinning. 
(1) the electrospinning of an emulsion through a single spinneret, whereby the 
emulsion structure allows reorganization to form a core-shell fiber, similar to coaxial 
electrospinning; (2) the electrospinning of an emulsion through multiple spinnerets, 
whereby the emulsion structure allows reorganization to form a core-shell fiber, 
allowing multiple jets to be formed and a higher production rate to be achieved. 
Emulsion electrospinning increases the loading capacity of drug-polymer systems 
with low compatibility or affinity, such as water-soluble drugs or proteins loaded in 
a hydrophobic polymer for longer release. When compared with traditional blending 
methods, emulsion eliminates the need for a common solvent for both the drug and 
the polymer. Emulsifiers such as surfactants are frequently used to encapsulate and 
stabilize the drug phase [24, 71–76].

4.5 Solution electrospinning

Solution electrospinning is the most commonly used method wherein the polymer 
to be electrospun is dissolved in an appropriate solvent at a suitable concentration. 
As already discussed, the solution viscosity, as well as other conditions, needs to be 
optimized carefully to obtain nanofibers with desirable properties [5, 30, 31].

5. Applications of electrospun fibers

Electrospinning is employed extensively in industrial applications because of 
the attractive properties of electrospun fibers. The unique properties of electrospun 
fibers may be summarized as follows. First, electrospun fibers have diameters rang-
ing from micro to nanometers. Second, the fibers are porous and aligned. Third, 
the electrospun fibers have a large aspect ratio and a high surface-to-volume ratio. 
Fourth, electrospinning enables the production of fibers with an infinite number 
of chemical compositions, and fifth, it also allows the production of different types 
of morphology by modifying the spinneret. With the combination of these proper-
ties, electrospun fibers can be utilized in biomedical applications [12, 41, 43, 51, 54, 
60, 77–84], filtration [39, 85–88], energy sectors [2, 89–93], sensors [5, 26, 94–97], 
textiles, catalysis [26, 98], and electrical applications [99, 100]. Figure 7 shows the 
different types of nanofibers and their applications.

5.1 Biomedical applications

In biomedical applications, biocompatible polymers with bioadhesive and biode-
gradable properties are preferred. Material selection is critical in the production of 
these nanofibers because it affects their morphology, biocompatibility, mechanical 
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strength, degradation rate, and release profile, as well as their interactions with cells, 
which can result in a range of tissue responses.

Jalaja et al. [43] fabricated electrospun core-shell structured gelatin-chitosan 
nanofibers for biomedical applications. Chitosan as the shell can mimic the extracel-
lular matrix while gelatin in the core can incorporate drugs and bioactive molecules. 
Singh et al. [54] fabricated core-shell nanofibers for biomedical applications using a 
novel coaxial airbrushing method as shown in Figure 8.

The core-shell nanofiber was fabricated using an air brush with a coaxial needle 
to flow two distinct polymeric solutions containing biomolecules [polyethylene oxide 
(PEO)/poly-DL-lactide/PCL (polycaprolactone)] in core and PCL/PEO is in shell. 
The great potential of coaxial electrospinning in biomedical field is evidenced by a 
large number of reports and reviews available in the literature on the topic [54].

5.1.1 Drug delivery systems

The single nozzle electrospinning produces fibers with a high surface area to volume 
ratio, and as a result, more amounts of drugs would be present at the fiber surface. 

Figure 7. 
Different types of electrospun nanofibers and their applications.
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This frequently leads to a burst release, in which a large amount of the drug content 
is released into the solution quickly at the start of the process [11, 47, 84, 101, 102]. 
So, many researchers have relied on core-shell nanofibers to regulate the rate of drug 
release [34, 42, 45, 49, 103].

5.1.2 Tissue engineering

The interaction of cells and scaffolds for the secretion of extracellular matrix 
(ECM) and the development of new tissues are the core ingredients of tissue 
engineering. Biocomposite scaffolds were created to overcome restrictions such as 
inflammation, toxicity, and recognition caused by scaffold degradation. In tissue 
engineering, electrospun nanofiber scaffolds are used to replicate the function of the 
native extracellular matrix (ECM). Core-shell is a flexible approach with intriguing 
features for encapsulation of the active component, such as growth factors and drugs 
in the core of the fiber, which is advantageous in drug delivery and tissue regeneration 
[42, 48, 49, 53, 73, 81, 104–109].

5.1.3 Wound healing

Wound healing is a complicated and comprehensive process that includes four 
phases: hemostasis, inflammation, proliferation, and remodeling. These stages 
involve a coordinated and integrated process including extracellular matrix (ECM) 
mediators, cell growth factors, platelets, cytokines, and chemokines, among oth-
ers. Ideal wound healing dressings are planned to be multifunctional and capable 
of delivering various drugs required at various phases of healing. There are various 
advantages of using electrospun nanofiber for wound dressing. First, the morphology 
and microstructures of electrospun nanofibers are similar to the natural ECM, which 
offers a perfect microenvironment for cell adhesion, proliferation, migration, and 
differentiation. Secondly, the electrospun nanofibers can simultaneously combine 

Figure 8. 
Experimental setup for core-shell fiber preparation via coaxial airbrushing methods [54].
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the biocompatibility of natural polymers and the reliable mechanical strength of 
synthetic polymers. The rate and timing of drug release may be controlled by chang-
ing the fiber structure to promote effective wound healing. As a result, electrospun 
nanofibers have a lot of potential for developing improved bioactive wound dressings 
[26, 41, 47, 49, 53, 54, 66, 77, 78, 98, 108, 110, 111].

5.2 Applications in filtration process

Electrospun fibers are suitable for filtration due to the properties, particularly, 
controlled porosity and high surface area to volume ratio. The potential of electros-
pun fibers in air filtration process has been well investigated [39, 87, 88, 112, 113].

Controlling the porosity of the nanofiber mesh is crucial for air particle permeabil-
ity and avoiding hazardous particulate matter including dust, pollen, and bacteria. 
The electrospun fibers possess layer-by-layer structure that provides many interac-
tion sites for a high number of airborne particles. Because of their characteristics, 
electrospun nanofibers can be used for air filtration [4, 19, 31, 114]. Zhang et al. [14] 
fabricated electrospun ultrafine fibers for advanced face masks with capability to 
physically block viruses.

5.3 Applications in energy sectors

The one-dimensional electrospun nanofibers have nanostructured materials with 
a high aspect ratio, strong mechanical strength, and efficient electron transport, 
allowing for a wide range of applications in the energy sectors. Additional advantages 
of electrospun nanofibers include: (1) attractive properties (unidirectional electron 
flow, uniform porosity, excellent aspect ratio, high surface area, tunable wettabil-
ity, fine flexibility, and high connectivity); (2) easily tunable morphologies and 
characteristics according to the precursor solution, processing settings, and setup 
geometries; (3) simple preparation procedures at the lab scale and feasibility to be 
made on an industrial basis from a variety of materials; (4) capability to act as free 
standing electrodes without the need of conductive agents and binders; (5) possibili-
ties to further improve the properties with simple post-electrospinning procedures 
(solvothermal method, calcination, electrodeposition, chemical vapor deposition, 
etc.). As a result, electrospun 1D nanofibers have shown significant promise as suit-
able materials for supercapacitors [6, 30, 92, 115–117], Li-ion batteries [2, 7, 25, 29, 
118–123], solar cells [2, 90, 124–128], etc.

5.3.1 Supercapacitors

Electrospun nanofibers are incredibly versatile in terms of forming unique  
structures that may be altered with defects, functional groups, and other active 
materials, which is crucial for overcoming the present challenges toward developing 
efficient supercapacitors. Several research articles and review papers have discussed 
the attempts to exploit the potential of electrospun nanofibers as components of 
supercapacitors [2, 6, 22, 30, 89, 92, 115, 117].

5.3.2 Li-ion batteries (LIBs)

LIBs have sparked academic and industry interest because of their long cycle 
life, high energy density, high operational voltage, and low self-discharge rate. 
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Many advancements in LIB technology would not have been possible without the 
development of nanocomposites and nanometer-thick coatings to increase ionic and 
electronic conduction channels and prevent undesirable and irreversible side reac-
tions. Electrospun nanofibers have excellent electrical and ionic conductivity due to 
their tunable fiber diameter, high porosity, high specific surface area, and intercon-
nected pore structure, which is useful for improving cyclability and rate capability. 
Electrospun carbon nanofiber anodes loaded with metal oxide have sparked attention 
as anode materials in LIBs due to their high theoretical capacity, longer cycle life, and 
quick recharging rates [2, 118–122, 129–132].

5.3.3 Solar cells

Many inorganic precursors may be electrospun with the help of carrier polymers 
and then annealed to produce inorganic fibers. This has sparked interest in dye-sensi-
tized solar cells (DSSCs) and other solar energy-generating technologies [2, 124–128, 
133, 134]. Nanofibers of TiO2 have been produced, which are typically employed as 
the photo-sensitized anode in DSSCs. Nagata et al. [134] utilized coaxial electrospin-
ning to fabricate solar cells using heterojunction polymer fibers.

5.4 Sensors

Sensors have long been a prominent research topic among all the applica-
tions of nanomaterials. A sensor is a device that can be detected, measured, and 
converted into meaningful output signals by following certain rules. In diverse 
sectors, sensors are also known as sensitive components, detectors, converters, 

Figure 9. 
Schematic illustration of the fabrication of sensing materials via electrospinning [5].
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and so on [5, 26, 95–97]. Researchers have designed a number of unique methods 
for fabricating nanomaterials using conventional electrospinning to satisfy the 
sensor response unit’s specifications as shown in Figure 9 [5]. Many electrospun 
nanofiber-based nanomaterials are developed as gas sensors, chemical sensors, 
piezoelectric sensors [135, 136], and biosensors [137–140].

5.5 Textiles and other applications

Electrospun nanofibers are found to be potential alternative reinforcing choice 
for composites due to their superior mechanical as well as tunable chemical and 
physical properties. Despite the fact that electrospun nanofibers offer a number of 
desired features for usage as nano-fillers, little investigation into their application 
as prospective reinforcements has been done. The restriction is most likely due to 
their specific type of nano-fibrous architecture, which they may be made with. 
The electrospinning technology has been used to incorporate nanoparticles into 
composite nanofiber fabrics to impart new functions. Additional elements, such 
as metal nanoparticles, metal oxide nanoparticles, ionic liquids, and conductive 
polymers, might be included in these nano-fibrous structures to provide technical 
functions to an engineered fabric, such as electrical conductivity, strain resistance, 
and antibacterial qualities. The most often used nanomaterials are silver (Ag) and 
titanium dioxide (TiO2), followed by silicon dioxide (SiO2), carbon nanotubes 
(CNTs), and zinc oxide (ZnO), although a number of polymers are being studied 
for a range of prospective purposes. In textile applications, polymers such as poly-
ester, polyamide, polyacrylonitrile (PAN), and polyethylene oxide (PEO) are often 
used. The composited nanofiber textiles with polymer and nanomaterial filler are 
expected to be light, strong, mechanically flexible, cost-effective, and simple to 
manufacture. In the case of food science applications, however, only food-grade 
polymers and safe, nontoxic solvents should be used to make nanofibers. As a 
result, natural polymers including collagen, gelatin, elastin, fibrinogen, and chi-
tosan have been employed in electrospun technologies in a variety of applications 
[43, 77, 141]. Low basic weight, small fiber diameter, pore size, high surface area, 
and fiber chemistry are all critical in the selection of materials for specific applica-
tions. With better quality control of the electrospinning process, the fabrication 
of nanofiber-based textiles from electrospun nanofiber-based material might be 
widely commercialized [13, 79, 98, 142–144].

6. Summary and conclusion

Electrospinning allows for infinite combinations of chemical compositions, as 
defined by the periodic table, with morphologies and structures that may be con-
trolled using solution and process parameters. This opens up a vast array of one-
dimensional nanomaterials with various desired characteristics that might be used in 
a wide range of applications. This chapter explained the basic principles of electros-
pinning and information on how to carry it out. The history of electrospinning and 
principle, the configuration of electrospinning setup, parameters that influence the 
properties of electrospun fiber, various types of spinnerets to fabricate electrospun 
fibers, and their applications in diverse fields have been discussed in brief.
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7. Future prospects

Significant development has been made in the field of electrospinning in the 
previous decade than ever before, and technical breakthroughs continue to evolve. 
Despite substantial advances, there are issues to be addressed in the future.

It’s still difficult to synthesize uniform electrospun nanofibers with certain mor-
phological, mechanical, and chemical properties that are tailored to specific end-user 
applications. Furthermore, a better understanding is needed to intelligently regulate 
the processing conditions and solution parameters to impact fiber mat characteristics 
for specialized applications. Natural polymers have poor chemical and mechanical 
qualities in some circumstances, and they are less widely employed in various applica-
tions than synthetic polymers. As a result, new hybrid polymer systems based on 
synthetic and natural polymers that are electrospinnable and have better functional-
ities are needed for a wide range of applications, particularly in biotechnology.

Several spinnerets have been proposed for mass production; however, some of 
them may not be suitable, and some of them still require additional experimental 
verifications in terms of fiber quality control and the electrospinning process. 
Electrospinning processes such as coaxial, tri-axial, multichannel, and side-by-side 
electrospinning have been found to be effective in customizing the physical proper-
ties of electrospun nanofibers. However, more research into the process control and 
mechanism for core-shell and multichannel morphologies of electrospun nanofibers 
is required. In comparison to solution electrospinning, melt electrospinning provides 
benefits such as the lack of harmful solvents and high production. To achieve theo-
retically expected strengths, however, tremendous measures are needed to minimize 
fiber diameters while simultaneously establishing a high degree of orientation in 
the structure. Needleless spinnerets offer considerable promise in electrospinning 
nanofibers on large scales, but needleless electrospinning of bicomponent nanofibers 
remains a difficulty. Although over 200 polymers have been successfully electrospun 
into nanofibers, there has been little research on the macromolecular orientation and 
crystalline structures of the resultant fibers. In addition, the influence of the crystal-
line phase and molecule orientation on mechanical properties remains unclear.

Application of electrospun nanofibers: Despite the fact that electrospun nano-
fibers have been shown to be a potential candidate for composite reinforcements, 
little study has been done on this subject due to their poor mechanical properties 
when compared with standard alternatives such as carbon or glass fibers. Adding 
nanoparticles as a post-treatment to electrospun nanofibers may be an acceptable 
approach to increase mechanical properties. One of the main hurdles to the advance-
ment of electrospinning applications in tissue engineering is increasing scaffold 
thickness, pore size, and the difficulty to prepare identical scaffolds. The relation-
ships between drug-controlled release profiles and nanofiber structures should be 
investigated in detail. To understand the drug transport mechanism and to predict 
drug release kinetics as a function of nanofiber structure, mathematical models of 
drug release from diverse nanofibers might be useful. Electrospun nanofibers offer a 
lot of potential in the energy sector, but there are still a lot of obstacles and opportu-
nities to be explored in this field. “Bottleneck” difficulties in electrospun nanofibers 
such as poor conductivity, chemical structural instability, volume expansion, and 
kinetic hysteresis of active materials should be addressed in this research field. For 
filtering applications, further research might involve using different polymers and/
or post-treatment procedures to control the formation of pores on fibers, as well as a 
better understanding of the transport process through fibers with microporous rough 
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surfaces. Electrospun nanofibers have been shown to exhibit remarkable properties 
for sensor applications. Further research into improving the surface area and pore 
sizes of nano-fibrous membranes is suggested to improve sensitivity. Furthermore, 
incorporating such nanomaterials into practical devices is difficult, as it necessitates 
materials with precise orientation, size, and repeatability in order to place them in 
specific positions and orientations.
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