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Investigations of Using an
Intelligent ANFIS Modeling

Approach for a Li-Ion Battery in
MATLAB Implementation: Case
Study

Roxana-Elena Tudovoiu, Mohammed Zaheeruddin,
Nicolae Tudoroiu and Sorin Mihai Radu

Abstract

This research paper will propose an incentive topic to investigate the accuracy of
an adaptive neuro-fuzzy modeling approach of lithium-ion (Li-ion) batteries used in
hybrid electric vehicles and electric vehicles. Based on this adaptive neuro-fuzzy
inference system (ANFIS) modeling approach, we will show its effectiveness and
suitability for modeling the nonlinear dynamics of any process or control system. This
new ANFIS modeling approach improves the original nonlinear battery model and an
alternative linear autoregressive exogenous input (ARX) polynomial model. The
alternative ARX is generated using the least square errors estimation method and is
preferred for its simplicity and faster implementation since it uses typical functions
from the MATLAB system identification toolbox. The ARX and ANFIS models’ effec-
tiveness is proved by many simulations conducted on attractive MATLAB R2021b and
Simulink environments. The simulation results reveal a high model accuracy in bat-
tery state of charge (SOC) and terminal voltage. An accurate battery model has a
crucial impact on building a very precise adaptive extended Kalman filter (AEKF)
SOC estimator. It is considered an appropriate case study of a third-order resistor-
capacitor equivalent circuit model (3RC ECM) SAFT-type 6 Ah 11 V nominal voltage
of Li-ion battery for simulation purposes.

Keywords: battery management system, Li-ion battery model, battery SOC, SOC
UKF estimator, ANFIS model, ARX model, NMSS model, terminal voltage

1. Introduction

The most sustainable strategy to accomplish clean and efficient transport is to
stimulate the automotive hybrid electric vehicles (HEVs)/electric vehicles (EVs)
industry by developing the most advanced battery technologies. There is massive
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competition in the markets for selling batteries with different chemistry, espe-
cially between the most common nickel-metal hydride (Ni-MH), nickel-cadmium
(Ni-Cad) and lithium-ion (Li-ion) batteries. More recently, it seems that the most
promising future and great potential of development for HEVs/EVs automotive
industry worldwide have the Li-ion batteries due to their advantages compared
with other strong competitors on the market. They surpass these competitors by
features such as lightweight, high-energy-density, little memory effect, and rela-
tively low self-discharge, as is mentioned in [1, 2]. Furthermore, after substantial
improvements and research investments, the Li-ion batteries have become safer
and less toxic. The battery state of charge (SOC) represents the available capacity
of the battery cell that changes corresponding to the fluctuations in the input
charging and discharging current profile during a cycle. It is worth mentioning
that the SOC plays a crucial role in keeping the battery safe for various operating
conditions and significantly extending battery life [3, 4]. Moreover, the SOC is an
essential internal battery parameter of great significance constantly monitored by
the battery management system (BMS) [1-6]. In real life, a specialized software
package integrated onboard the vehicle estimates the value of the battery SOC due
to the lack of an accurate measurement sensor integrated into BMS [1-7]. Let us
see why the battery SOC has become a topic of great interest for researchers
working in the field, very dedicated for developing the most suitable estimation
techniques and strategies supported today by an impressive number of research
papers published in the literature. The most used model-based Kalman filter (KF)
can estimate the battery SOC with a high accuracy grade [3-7]. The BMS monitors
the battery system through sensors and state estimation algorithms to detect any
abnormalities during the battery system operation [8, 9]. The performance of the
battery SOC estimators’ model is highly dependent on the battery model accuracy.
If the battery model is accurate, then the different SOC estimation versions will
estimate the battery SOC with the same accuracy. Consequently, the battery
model is essential for implementing the most suitable SOC estimators. It is always
desirable to get a battery model as accurate as the actual battery to reduce the
mismatch between the model and the existing battery. Moreover, the battery SOC
is “a critical factor in guaranteeing that a battery system operates safely and
reliably,” as is mentioned in [10]. Also, “many uncertainties and noises, such as
current, sensor measurement accuracy and bias, temperature effects, calibration
errors or even sensor failure, etc., pose a challenge to the accurate estimation of
SOC in real applications” [10].

Additionally, over time, the effects of battery aging will be more noticeable in
degrading its performance, and the mismatch between the battery model and the
actual battery will also increase. In the “real-life” applications subjected to the plant/
process identification, fixing the possible mismatches between the plant/process and
their corresponding models with repeated effective re-identification procedures is
almost inapplicable and time-consuming, as is revealed in [10-12]. Therefore,
mismatch detection is essential for different plants/processes modeling and identifi-
cation strategies to isolate defective submodules to avoid complete re-identification,
as mentioned in [11].

1.1 State-of-the-art Li-ion battery models and SOC estimators

A suitable identification plant/process strategy is developed in [10-12] that is a
polynomial discrete state-space representation of the plant/process models based on a
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plant/process input-output measurement data set collected in an open loop. The plant/
process input-output measurement data set is used to develop and implement two
attractive statistical models.

The first model is a linear discrete state-space autoregressive exogenous input
(ARX) polynomial representation, beneficial to model a 60 Ah LiFePO4 battery mod-
ule [10]. Based on this model, an extended Kalman filter (EKF) battery SOC estimator
is developed for BMSs. The second model is an auto-regressive moving average with
exogenous input (ARMAX) model developed in [12]. The adaptability of ARX battery
models developed in [10] for designing a robust and accurate EKF SOC estimator is
rigorously assessed in the same reference [10]. Some simulation results indicate that
the proposed EKF SOC battery module estimator based on the ARX model shows a
“great performance” in terms of robustness and SOC accuracy [10]. Additionally, the
proposed EKF battery estimator “increases the model output voltage accuracy,
thereby having the potential to be used in real applications, such as EVs and HEVs”
[10]. Two MIMO ARMAX models are developed in [12] for modeling and identifica-
tion of heating, ventilation, and air-conditioning (HVAC) multi-input multi-output
(MIMO) centrifugal chiller plant. This model is built and implemented in a MATLAB
simulation environment to develop two accurate MIMO proportional integral-plus
(PIP) control strategies in a closed loop for temperature control and refrigerant liquid
control level. For comparison purposes in [11], ARX and ARMAX polynomial
discrete-time plant representations are built as decorrelation models for detecting
model-plant mismatch for a column distillation integrated into a model predictive
control (MPC) strategy. Detailed simulations in [11] show that the ARMAX models
provide:

* Higher accuracy
* Less computational complexity
* Less processing power is required with less model order than ARX.

Moreover, in [12], ARMAX models are developed for an MIMO HVAC centrif-
ugal chiller open-loop control system using the identification techniques presented
in MATLAB Identification Toolbox [13]. Also, for the same HVAC plant, an MIMO
ARMAX open-loop polynomial model helps implement an interesting closed-loop
proportional integral-plus (PIP) control strategy of chiller plant temperature and
liquid-level refrigerant. Both ARX and ARMAX models are helpful in [12] for
implementing an extended MIMO PIP control strategy as a new modeling approach
in a non-minimal discrete-time state-space system representation (NMSS). The
MATLAB simulation results show a superior accuracy of the MIMO NMSS centrif-
ugal chiller model compared with the ARMAX models. Therefore, the MIMO PIP
closed-loop control strategy based on the MIMO NMMS models performs better
than those built on the MIMO ARMAX models of the MIMO chiller plant, as is
proved in [12, 13].

Taking advantage of the considerable advances in modeling, identification, and
control systems developed in the field of literature, thanks to the latest achievements
in artificial intelligence, statistics and machine learning, deep learning, signal process
analysis, our research objectives diversify with new approaches. The most recent
results in modeling and identification for various industrial applications reported in
the literature field motivate us to investigate attractive new modeling approaches.
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Then remains to adapt these approaches to our research topic of developing new Li-
ion battery models. Furthermore, the proposed Li-ion battery SOC estimator for a
Rint SAFT model of 6 Ah and 11 V nominal voltage in the selected case study is
expected to perform much better in terms of accuracy and robustness of the battery
SOC estimates for different operating conditions [7]. For simulation and comparison
results purposes, as a case study of Li-ion battery, a third-order resistor-capacitor
(RC) equivalent circuit model (ECM) (in abbreviated notation 3RC ECM) is consid-
ered. It combines three parallel polarization circuits R-C connected in series with the
battery’s internal resistance (Rint) and voltage source, i.e., as a similar 3RC ECM
battery model developed in [7]. The model selection is suggested due to its simplicity
and ability to describe the static and dynamic behavior of the Li-ion battery accu-
rately.

Since the proposed Li-ion battery’s open-circuit voltage (OCV) has highly
nonlinear dependence on the battery SOC, as an alternative block model developed in
[7], it is an adaptive neuro-fuzzy inference system (ANFIS) model. It is a hybrid
neuro-fuzzy technique that brings the learning capabilities of neural networks to
fuzzy inference systems. The learning algorithm tunes the membership functions of a
Sugeno-type fuzzy inference system using the training input/output data [14]. More
precisely, the learning algorithm teaches the ANFIS to map the input (current driving
cycle profile) to the Li-ion battery SOC and terminal voltage through training. At the
end of the training, the trained ANFIS network would have learned the input-output
map and be ready to be deployed into the Kalman filter SOC estimator solution. The
architecture, design, and implementation of the proposed ANFIS battery model are
developed in an attractive MATLAB R2021b simulation environment [14-16]. This
new battery model adjusts the design techniques and guidelines inspired from [14-33]
to the selected model adopted in the case study from [7]. The accuracy of the ANFIS
battery model has a significant impact on the SOC Li-ion battery Kalman Filter
estimator accuracy performance built on this model. Its effectiveness is proved
through extensive simulations and comparisons conducted on the same MATLAB
platform. In this research, our motivation for using adaptive neuro-fuzzy training of
Sugano-type fuzzy inference system (ANFIS) modeling comes from the preliminary
results obtained for similar investigations on the impact of nonlinearities and uncer-
tainties actuators [18]. The ANFIS modeling is well documented in the most recent
MATLAB release versions that use the fuzzy logic toolbox and fuzzy inference tuning
procedure [14-16]. Handy tutorials of using ANFIS modeling architectures are
presented in [14-17]. For MATLAB implementation and simulation intent, as well as
“proof concept” in this research, the accuracy of the Li-ion battery ANFIS model is
tested for a battery urban dynamometer driving schedule (UDDS) input current
profile.

In the proposed case study, for both ARX and ANFIS models an adaptive EKF
(AEKF) SOC estimator is adopted attached to Li-ion battery used for creating fault
detection and isolation (FDI) control strategies in [12], preferred for its simplicity,
SOC accuracy, real-time implementation capability, and robustness. Its robustness is
tested for four different scenarios, such as to changes in SOC initial values (guess
values), ranging 70-40%, 20, 90, and 100%, to federal test procedure for 75 F
(FTP-75) degree Fahrenheit driving cycle profile test, changes in measurement-level
noise (from 0.001 to 0.01), to changes in the battery capacity value from 6 Ah to
4.8 Ah due to aging effects, and changes in internal resistance due to temperature
effects, and also for simultaneous changes [7, 29]. Based on a rigorous performance
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analysis of SOC residual error compared with the similar results reported in the
literature with a typically 2% error, in some situations, the AEKF estimator SOC
residual error reached values smaller than 1%, such as shown in [29]. Since of the
lack of data in the literature field for similar situations developed in our research
for Li-ion battery, it is not easy to make a state-of-the-art analysis of the results
reported in the literature related to Li-ion battery SAFT 6 Ah and 11 V nominal
voltage AEKF SOC estimators based on ANFIS models analysis. The overall ANFIS
battery model consists of two ANFIS models, the first one attached to the battery
Rint-3RC active part and the second to OCV(SOC) nonlinear block. The SOC and
terminal voltages accuracy of the overall battery ANFIS model and AEKF SOC
estimators, as well as their robustness to changes in the initial values of the battery
SOC from 70 to 40%, are proved in this research paper based on extensive simula-
tions conducted on MATLAB R2021b platform.

1.2 Statistical criteria for evaluating the performance of Li-ion battery - SOC and
terminal voltage

Based on MATLAB simulation results useful information on SOC and battery
terminal voltage accuracy can be extracted based on SOC and terminal voltage resid-
uals and based on four statistic criteria values shown in eight tables, defined in
[29, 30], and grouped as:

* Root mean squared error (RMSE)

* Mean squared error (MSE)

e Mean absolute error (MAE)

* Mean average percentage error (MAPE)

For each Li-ion battery model developed in this research, the SOC and terminal
voltage performance are evaluated by simulations conducted on MATLAB Simulink
platform. The information extracted from these simulations is beneficial for a rigorous
comparison of performance, so that the reader has a better perspective on the model-
ing, design, and implementation of the battery. From a variety of battery models, the
reader has the ability to decide which model and estimator are best for a particular
application.

1.3 Manuscript structure, objectives, and performed results

The paper is organized as follows: Section 2 gives a brief description of Rint Li-ion
SAFT 6 Ah 11 V nominal voltage and battery selection for the case study, model
option, and its validation using the National Renewable Energy Laboratory (NREL)
ADVANCED SIMULATOR (ADVISOR) 2003 for HEVs and EVs design. An equiva-
lent electric circuit model (ECM) for the Li-ion battery SAFT Rint model is preferred
due to its simplicity and ability to capture all the battery dynamics such that its SOC
and the predicted terminal cell voltage are of high accuracy. The dynamics battery
part ARX and ANFIS models, the ANFIS battery OCV(SOC) model, their order
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selection, parameters identification and model implementation, ANFIS models’ gen-
eration and performance, and the MATLAB simulation results are shown and
discussed in Sections 2 and 3, respectively. For the ARX model and hybrid combina-
tions of the ARX model and ANFIS model of OCV(SOC) nonlinear block, an overall
ANFIS battery model consisting of ANFIS dynamic battery part model and ANFIS
OCV(SOC) nonlinear battery block models are considered. A rigorous analysis of
AEKF SOC estimator adaptability for all these models is evaluated based on simulation
results conducted on MATLAB R2021b and Simulink environments that provide
valuable information on SOC and battery terminal voltage accuracy and robustness
performance. Also, a comparison of the evaluation of the results is made based on the
SOC and battery voltage residuals and statistics criteria values summarized in almost
eight tables in the last subsection 2.1.3 of Section 2 and all Section 3. Section 4 is
dedicated to Conclusions supporting all the previous MATLAB results. In summary, in
this research paper an impressive number of investigations are done on the accuracy
and adaptability of six alternative Li-ion batteries models to the original NREL Li-ion
Rint SAFT-type 6 Ah 11 V rated voltage battery model. The main reason of this
selection is that the Li-ion batteries are very common in a wide variety of HEVs/EVs
applications in the automotive industry, Also, it is a beneficial option to be used as a
baseline model of Li-ion battery for performance comparison and validation of alter-
native models, among them the linear, simple, and accurate 3RC ECM Li-ion battery
model developed in this research work. This alternative model is designed by using
one of the most used designing tools very spread in the automotive industry, created
by NREL, known as ADVANCED SIMULATOR (ADVISOR) with the final launch in
2003 for HEVs/EVs design. The Li-ion battery model 3RC ECM model is selected for
simulation purpose and “proof” concept for developing new alternative battery
models. Five alternative models that derivate from 3RC ECM Li-ion battery model are
developed in this research work: (a) ARX-ECM that models the dynamic part of the
battery represented by the Rint-3RC circuit using an equivalent ARX model; (b)
ANFIS-ECM replacing the Rint-3RC circuit with an ANFIS model; (c) ARX-ANFIS
hybrid structure that is a combination of ARX model for Rint-3RC dynamic part and
an ANFIS model of the nonlinear static block OCV (SOC); (d) Rint-3RC -ANFIS
model that keeps the dynamic part of the battery combined with the ANFIS model of
OCV(SOC) static block; (e) full ANFIS model structure derived from ARX-ANFIS,
which replaces the ARX model with an ANFIS model. The MATLAB simulation results
for each model provide a large database stored in 10 useful tables for a rigorous
analysis of the performance of the Li-ion battery in terms of SOC accuracy and
terminal voltage, as well as the robustness of the AEKF algorithm for estimating the
SOC of the selected battery.

2. Li-ion battery selection, modeling, MATLAB implementation, and
ADVISOR simulator experimental test setup validation

2.1 Li-ion battery model selection, description, and validation: case study

In this section, we focus our attention on the Li-ion battery selection for the case
study, its description, and developing the most suitable battery model of high
accuracy. The selected model is validated through an impressive number of simula-
tions conducted on the MATLAB R2021b platform. Then will compare the
MATLAB simulations result to an experimental test performed in a similar
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MATLAB environment integrated with a specialized simulator ADVISOR for batte-
ries design of different chemistry, which is very spread in the automotive industry.
National Renewable Energy Laboratory (NREL) developed this simulator in 1983
and improved its performance until the last release in 2003-00-r0116. A 6 Ah
nominal capacity and 11 V nominal voltage SAFT Li-ion battery integrated into the
hybrid electric vehicle (HEV) BMS structure, namely a Japanese Toyota Prius, one
of the most spread commercial hybrid electric cars on the automotive industry
market. It is equipped with an MC-AC75 motor of 75 kW and a powertrain control
version, TX-5SPD manual transmission with five speeds and frontal wheel drive, as
shown in Figure 1. In this figure on the right side, the reader can see the type of
vehicle in the database of the ADVISOR simulator considered one of its primary
inputs; also, at the bottom side is shown the open-circuit voltage (OCV) graph of
the proposed SAFT Li-ion battery as the most suitable for the HEV car selected in
the case study.

Figure 2 shows the Simulink diagram of the Toyota Prius HEV car configuration.
In Figure 3, you can see the graphical user interface that selects the urban dynamom-
eter driving schedule (UDDS) of cycle speed profile for a driving test, the initial
temperature, state of charge (SOC), and the ambiental conditions.

In Figure 4, the MATLAB simulations results are displayed. Among these results
two of the variables of interest can be emphasized, such as the UDDS driving cycle
input current profile (ess_current) and the battery SOC evolution (ess _soc_hist).

The UDDS driving cycle of the current profile shown in Figure 5 is the equivalent
of the UDDS driving cycle speed profile shown in the graph in Figure 3. It represents
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Figure 1.

The ADVISOR 3.2 simulator -input interface set up.
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Block diagram of HEV powertrain configuration.
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Graphical user interface with the ADVISOR simulator parameters.

the evolution of the input battery current during a repeated sequence of charging and
discharging the battery for different periods.
More precisely, the ADVISOR 3.2 Simulator provides an extensive Database of

different types of HEV cars, driving cycles speed tests, and input currents profiles for
battery charging and discharging cycles.

2.1.1 Li-ion battery electrical equivalent civcuit model

For simulation purposes and “proof concept,” a starting point for developing new
Li-ion battery alternative models might be a linear electrical circuit consisting of one
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Figure 5.
The input UDDS driving cycle current profile (battery charging and discharging periods).

of the combinations of an open-circuit voltage (OCV) controlled source, known in the
literature as Thevenin voltage source, connected in series with the internal resistance
(Rint) of the battery, followed by one, two, or three parallel resistive and capacitive
polarization cells (RC). These combinations lead to a simple electrical equivalent
circuit models (ECMs) very spread in the literature field as is shown in Figure 6 [7].
Until now, the ECMs proved that they are of the high simplicity and are the most
suitable models to capture the battery’s dynamic electrochemical behavior and
increase the model’s accuracy. Since in Figure 6, the ECM has three parallel RC bias
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Electrical schematic of third-order 3RC ECM battery selection (see [7]).

polarization cells, it is known in the literature field as a three-order RC (3RC) ECM Li-
ion battery model. The ECM schematic is built using the Multisim 14.1 software
package provided by the well-known National Instruments (NI) company. The first
R1pClp polarization parallel cell captures the fast transient of the battery compared
with the last two RC cells that capture only the slow steady state with a great impact in
the increase of the battery model accuracy [7]. Since most HEV/EV technologies are
very dependent on batteries nowadays, it is crucial for developing and implementing
accurate Li-ion battery models. These models must suit better the BMS requirements
to be easily deployed on-board power simulators and electronic on-board power
systems. Moreover, the 3RC ECM accuracy performance is a baseline for all other
alternative battery models developed in this research paper for comparison purposes.
For MATLAB simulation’s goal, a similar setup for the 3RC ECM Li-ion battery model
parameters used in [7], shown in Table 1 or directly on the electrical schematics from
Figure 6, is considered to prove the effectiveness and the robustness of an adaptive
extended Kalman filter SOC estimation strategy, similar to those used in [9] for a
generic Li-ion cobalt battery and adapted to the 3RC ECM model, presented in
Appendix A. This setup is achieved from a generic ECM by changing only the values
of the model parameters in state-space equations.

2.1.2 Li-ion battery 3RC ECM validation

The Li-ion battery 3RC ECM model parameters and the OCV nonlinear model
coefficients are given in Tables 1 and 2. The OCV shown in Figure 7 is a nonlinear
function of SOC that combines three additional well-known models, namely Shep-
herd, Unnewehr universal and Nernst (SUN-OCV) models, defined in [3, 5, 7, 9] with
the coefficients set at same values as in [3, 7, 9].

According to the values of the parameters and coefficients set in the Table 1 the
Li-ion battery model dynamics is described by the following discrete-time Eqs. [7]:

Xl(k + 1) = allxl(k) + blu(k) = Vl(k) (1)
xz(k + 1) = azzxz(k) + bzu(k) = Vz(k) (2)
.’X?3(k + 1) = a33x3(k) 4+ b3u(k) = Vg(k) (3)
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Item Parameters/Coefficients Symbol Value Unit Measure
1 Li-ion battery ECM parameters
1.1 Internal ohmic resistance Rint+ 13.333 mQ (milliohm)
1.2 First cell polarization resistance Rpl 0.65 mQ
13 Second cell polarization resistance Rp2 1.06 mQ
1.4 Third cell polarization resistance Rp3 0.2 mQ
15 First cell polarization capacitance Cp1 5847.08 F (Farad)
1.6 Second cell polarization capacitance Cp2 47719.07 F
1.7 Third cell polarization capacitance Cp3 8.99¢9 F
2 Li-ion battery OCV coefficients
2.1 kO 11.38
2.2 ki 3.86e-5
2.3 k2 0.24
2.4 k3 0.22
2.5 k4 0.04
Table 1.

The 3RC ECM parameters and OCV coefficients [3, 7, 9].

Criteria indices Acronyms Values
ARX-ECM ANFIS combined model
IC1 RMSE 8% 2.2%
IC2 MSE 0.64% 0.051%
IC3 MAE 4.17% 1.1%
IC4 MAPE 8.12% 1.73%
Table 2.

Performance of the Li-ion AEKF SOC ARX model compared with AEKF SOC estimator ANFIS model for UDDS
driving cycle test [7].

nTsu(k)

x4(k + 1) = x4(k) + C

,x4(k) = SOC(k) = SOC(kT,) (4)

OCV(k) = ko — k2x4(k) - xf(lk) + kln (X4(k)) + klin (1 — x4(k)) (5)

y(k) = OCV (k) — Riyu(k) = Via(k),u(k) = Ipau(k) (6)

where T = 1 [s] is the sampling time, and the values of the equations’ coefficients

] Tx — T: — Tx J— i Tx — Tx
(D)-(6) aregivenbyan =1-,anp =1-F,a3=1—-3,a4 =1,b =cobh=¢5s

by = CLI; ,and by = — %. In the expression of the coefficient by,  is the Coulombic

efficiency, and Q,,,,, represents the nominal capacity of the battery, set to the following
values: n = 0.85, and Q,,,,, = 6Ah. Also, the time constants of the polarization cells T4, T5,
and T3 are given by T1 = Rplcpl, T2 = szsz, and T3 = Rp3Cp3.
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Figure 7.
Battery terminal Rint-3RC ECM voltage versus ARX — ECM for the dynamic part of the battery.

A Simulink model based on these previous equations is shown in Figure 8a, com-
pact in compact form, and in Figure 8b, for a detailed form.

The MATLAB simulation results are shown in Figure 9. In Figure 9a and b are
depicted the SOC of the battery 3RC model versus SOC estimated by the ADVISOR
simulator. In Figure 9c and d are presented the OCV = £(SOC) curve and the battery
SOC for a complete UDDS discharge cycle respectively. In Figure 9e is shown only the
terminal voltage for a single UDDS cycle. The SOC residual represented in Figure 9b
reveals a good SOC accuracy performance of the 3RC EMC battery model with respect
to the estimated battery SOC on the ADVISOR simulator integrated with the
MATLAB platform. This excellent result is a realistic argument that validates
certainly the proposed 3RC ECM Li-ion battery attached to the generic Rint model of
SAFT-type battery.

2.1.3 Li-ion battery 3RC ECM SOC estimation using an adaptive extended Kalman filter
(AEKF)

The main goal of this section is to estimate the battery SOC and analyze the AEKF
SOC estimator accuracy compared with the actual value of the battery model validated
in the previous section. It is essential to prove that an accurate battery model in terms
of SOC and terminal voltage is vital for building the most accurate SOC estimator. To
accomplish this goal, an adaptive extended Kalman filter (AEKF) SOC estimator is
adopted in this research, encouraged by the preliminary results obtained in [9, 29] by
using the same AEKF estimator for a similar application. The SOC estimator imple-
mentation is performed on the MATLAB R2018b platform, and the simulation results
are depicted in Figure 10. Also, in Figure 10a is shown the SOC AEKF estimator
accuracy and its robustness to changes in the SOC initial value from SOCini = 0.7 to
SOCini = 0.4, compared with the 3RC ECM model values. In Figure 10b, the battery
model terminal voltage is compared with the AEKF estimate of the terminal voltage.
Both Figure 10a and b reveal that the SOC AEKF estimator performs well with high
SOC accuracy, evaluated also based on their errors shown in Figure 10c and d.
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(a) The Simulink model of the 3RC ECM Li-ion battery in compact form; (b) the detailed Simulink model of the
3RC ECM Li-ion battery.

2.1.4 The ARX model of the Rint-3RC ECM circuit dynamics (ARX-ECM)

An alternative to the battery model is a linear polynomial model in discrete-time
state-space representation, namely an autoregressive with exogenous terms (ARX)
model, which captures the dynamics impact on the series circuit Rint (internal battery
resistance) and all three RC polarization cells. The linear discrete-time polynomial
model ARX is one of the simplest models that incorporate the stimulus input signal to
capture some stochastic dynamics as part of the 3RC ECM dynamics. Since the
OCV = {(SOC) curve is of high nonlinearity, an ANFIS model is also assessed. A
hybrid battery model structure ARX Rint-3RC ECM — ANFIS OCV(SOC) model will
be developed as a challenge in this valuable research for the reader to have a good
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(a) Li-ion battery 3RC ECM model SOC versus battery ADVISOR simulator estimated; (b) SOC vesidual error;
(c) OCV = f(SOC) curve for 5 hours full discharge of the battery to a UDDS driving multi-cycles; (d) SOC for a
full battery discharge SOC; (e) SOC for a single UDDS driving cycle discharging input profile (1370 seconds).

insight on OCV(SOC) impact on battery SOC accuracy. Finally, a combined ARX
Rint-3RC ECM - ANFIS OCV(SOC) model structure is investigated. The Simulink
diagram with all these alternative modeling techniques is shown in Figure 8. To build
a single-input single-output (SISO) ARX model, the system identification MATLAB
toolbox and Simulink are the most precious tools [13]. Also, for good documentation,
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(a) SOC voltage; (b) battery terminal voltage versus AEKF estimated. (c) Terminal voltage residual evror; (d)
SOC residual ervor.

a piece of valuable information about ARX models is provided in the references
[10-13, 31]. MATLAB’ arx command is helpful to generate and estimate the models’
parameters from the input-output data sets. This MATLAB command is a routine
based on a prediction-error least-squares method and specified polynomial orders to
estimate the parameters of ARX polynomial discrete-time models. The model proper-
ties include covariances (parameter uncertainties) and goodness of fit between the
estimated and measured data. Fundamental work on systems identification is done in
[31]. The MATLAB implementation and simulations of SISO polynomial ARX models
can be performed on any recent MATLAB platforms available online at www.math
works.com/help/ident/ref/arx.html [13]. A “trial and error” procedure is considered
to select the most suitable ARX model order. This procedure is repetitive until the best
match of the data set is found, provided by the following status indicators:

* Fit to data estimation (prediction focus)
* Final prediction error (FPE)

* Mean square error (MSE),

as recorded output data of ARX model. The ARX model can be represented in the
discrete state-space by the following polynomial with constant coefficients:
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A(q)y,(t) = Blq)u(t) +e(t) )

where y,(¢) is the output dynamics part of the series circuit Rint-3RC, given by
Ya(t) = Ringtt(£) + V1(2) + V2(t) + V3(t) = va(?) (8)

where the voltages V1(t), V,(t), and , V3(t) are given in Eq. (1), Eq. (2), and
respectively Eq. (3). The Rint-3RC circuit input #(¢) denotes the battery charging and
discharging current input (e.g., UDDS driving cycle input current profile). The linear
discrete time polynomials A(¢g) and B(q) in Eq. (7) have the degrees n, (poles),
respectively 7, (zeroes) and are described as,

AlgY)y=1+aig '+ ... +anq ™ 9)

B(g") =big "+ e A bug T =g (bag  + o+ byg ™) (10)

where #;, designates an integer number of samples as a track record of pure
transport signal flow delay between the system input-output measurement sensors.
Also, u(t) and y,(t) in Eq. (7) denote the Rint-3RC ECM input, respectively, its output
at the discrete instant t = kT, keZ™, q is a forward shift operator, i.e., q(u(t)) =
u(t+1),q(y,(t)) =y, +1),and g ' is backward shift operator, i.e., ¢! (u(t)) =
u(t—1),q7 (y,(¢)) =»,(¢ —1). T, represents the sampling period, and e(t) term
denotes the white noise disturbance value at the discrete instant t. The values of 7,
and 7, that signify the degrees of the polynomials A(q) and B(q), respectively, are set
to the arguments in the syntax of the specific MATLAB arx command from Control
Systems Identification MATLAB Toolbox. To use MATLAB Simulink to build the 3RC
ECM battery model based on ARX model of the Rint-3RC electrical circuit dynamic
part, a transfer function representation of the linear discrete-time polynomial ARX
model is required. Some of MATLAB simulations results obtained after the use for
ARX Rint-3RC ECM model implementation of the identification systems toolbox arx
command are shown below. Discrete-time ARX (2,2,1) (i.e., ARX (n, =2, n, = 2,
n, = 1) model [10, 12, 13]:

A(z)y,(t) = B(z)u(t) +e(t) (11)
A(z) =1-112121 + 028372 2,41 = —1.121,a, = 0.2837 (12)
B(z) = 0.006972z* — 0.0052927%, b1 = 0.006972, b, = —0.005292 (13)

Sample time: 1 seconds, Parameterization: polynomial orders: n, =2, n, =2, n =
1, Number of free coefficients: 4, Status: Estimated using ARX on time-domain data,
Fit to estimation data: 33.89% (simulation focus), FPE: 0.007562, MSE: 0.004557.

Remark: Since the roots of the characteristic equation A(z~!) = 0 are equal to

0<z1= 0.735 < 1, <0 and 2, = 0.385 < 1, then the dynamic part of the 3RC ECM
model is stable. The Simulink model of the ARX Rint-3RC ECM dynamic model part is
integrated into the overall Simulink diagram shown in Figure 8, and the MATLAB
simulation results for the new Li-ion battery SAFT accurate model implementation are
presented in Figure 11 for the ARX model of Rint-3RC ECM dynamic part voltage
versus the voltage measurement values. In Figure 7, the result of simulations is related
to battery terminal voltage based on the original 3RC ECM model versus battery
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terminal voltage in the integrated structure with ARX Rint-3RC ECM, the dynamic
part model. For a good visualization of battery accuracy performance, the residual
voltage between two previous voltages is depicted in Figure 12.

According to Eq. (4) and Eq. (6), an overall discrete-state space representation for
the integrated ARX model structure of 3RC ECM SAFT Li-ion battery model can be
written as follows:

soc(k + 1) = soc(k) — nTsu(k) ,s0¢(0) = SOCini (14)
y(k) = —=Vy(k) + Vocv (k) = —ARX(u(k)) + OCV (soc(k)) (15)

where y,(k) = V,4(k) represents the output voltage of the dynamic part Rint-3RC
ECM, and u(k) = i(k) the input current profile of the battery. Also, a detailed discrete-
time state-space representation has the following form:

x(k+1) = Ax(k) + Bu(k) + w(k) (16)
y(k) = Cx(k) +v(k) (17)
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where

oo - gTS OCV (soc(k
A=10 aq ay |, B = o 5 C:MCjCz, (18)
by soc(k)

0 05 O 0
soc(k)

x(k) = |x1(k) |,u(k) =i(k) and represent the battery state vector and input
x2 (k)

current driving cycle profile, respectively. The components x1(k) and x(k) of the
state vector describe the Rint-3RC ECM dynamics part of all three parallel polarization
cells, and y(k) is the predicted battery terminal voltage. The new model parameters
have the following values: a; = 1.121,a, = —0.5674,¢; = 0.058578, and ¢; =
—0.08467. The advantage of the new discrete-time state-space representation com-
pared with 3RC ECM battery original model is its third-order simplified structure.
This structure is used to estimate the battery SOC using an AEKF SOC state estimator

AEKF SOC estimate vs SOC ARX ECM battery model
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(a) The battery SOC true values versus SOC AEKF estimated values and SOC ADVISOR estimate for

SOCini = 40%.; (b) AEKF battery terminal voltage versus battery ARX ECM and 3RC ECM models terminal
voltages; (c¢) SOC battery residual between ARX model SOC and AEKF SOC estimator; (d) terminal voltage error
between ARX model and AEKF estimator.
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and then to compare its accuracy performance with 3RC ECM Li-ion battery original
model. For comparison purposes, the MATLAB simulation results of AEKF SOC
estimator based on ARX battery model are shown in Figure 13. To also highlight the
robustness of the AEKF SOC estimator to the changes in the initial value of battery
SOC, in Figure 13a is depicted the battery SOC true values versus SOC AEKF esti-
mated values and SOC ADVISOR estimate for an SOCini = 40%. The simulation
results reveal an excellent robustness and SOC accuracy of the adopted AEKF SOC
estimator. Moreover, the simulation results are shown in Figure 13b-d that highlight
the accuracy of battery terminal voltage of ARX ECM model compared with 3RC ECM
and AEKF SOC estimator based on ARX model, as well as both residuals SOC and
battery terminal voltage.

3. ANFIS Li-ion battery model design for dynamic part Rint-3RC ECM
and OCV(SOC) nonlinear block

As an alternative to 3RC ECM and ARX battery models, the ANFIS modeling
techniques are based on specific MATLAB commands provided by fuzzy logic
toolbox and based on fuzzy inference tuning procedures [14-16]. The Sugeno-type
inference system FIS is tuned based on an input-output training data set collected
in open-loop from 3RC ECM Li-ion battery model. From our most recent
preliminary results in the Li-ion battery field, modeling and SOC estimators
disseminated in [12, 25, 26], an interesting state-of-the-art analysis of similar SOC
AEKF estimators performance reported in the literature is done in terms of statistical
performance criteria values, such as root mean square error (RMSE), mean square
error (MSE), mean absolute error (MAE), standard deviation (std), mean
fundamental percentage error (MAPE), and R2 (R-squared). Among three SOC
Li-ion battery estimators, the AEKF, adaptive unscented Kalman filter (AUKF), and
particle filter (PF) SOC estimators, the AEKF proved that is the most suitable for
HEVs applications [29].

3.1 Detailed ANFIS Li-ion battery model design steps

3.1.1 ECM hybrid and combined Li-ion battery models structuves: Training phase and
battery terminal voltage accuracy

A specific MATLAB function anfis(trainingData) that has as argument the
TrainingData generates a single-output Sugeno fuzzy inference system (FIS) and
tunes the system parameters using the specified input-output training data. The FIS
object is automatically generated using the grid partitioning method. The training
algorithm uses a combination of the least-squares and back propagation gradient
descent methods to model the training data. Also, the same MATLAB function could
have a second argument called options with the syntax anfis (trainingData, options)
and tunes an FIS using the specified trainingData and options. Using this syntax, the
user can select an initial FIS object to tune, validate the data to prevent overfitting to
training data, the training algorithm options, and display training progress informa-
tion. In the last two decades, an impressive amount of research was done by
researchers, developers, and implementers in the artificial intelligence field to
develop a robust theoretical background on neural network architectures, fuzzy
logic design, and ANFIS modeling approach, as well as to create the most suitable
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algorithms and techniques to be implemented in an extensive palette of applications
[14, 18]. The following summarizes some of the key lines of MATLAB code that are
much easier for MATLAB readers and users to understand a quick implementation
of the online generation of the ANFIS model based exclusively on the input-output
measurement data set suggested in [14]. The MATLAB implementation steps
required to generate an ANFIS plant/process model, the actions that guide the
reader/implementer are:

Step 1: Set up the driving cycle profile for Li-ion battery as input u, and the battery
SOC (y1) and terminal voltage (y2) as battery outputs; The Li-ion battery input—
output measurements data set will be collected from a 3RC ECM original battery
model given by Eq. (1)-Eq. (7) from previous section through several extensive
simulations conducted on MATLAB platform.

Step 2: Generate the ANFIS model grid partition method-based options using the
specific MATLAB function:

options = genfisOptions(‘GridPartition’)

options. NumMembershipFunctions = 5 or greater than this

Step 3: Construct the FIS input attached to the battery SOC and terminal voltage

in_fis1 = genfis (u, y1, options)

in_fis2 = genfis (u, y2, options)

Step 3: Select for training the ANFIS model options

options = anfisOptions.

options. InitialFIS1 = in_fis1

options. InitialFIS2 = in_fis2

options. EpochNumber = 20 or greater to get a reasonable accuracy

Step 4: Construct the FIS output attached to the battery SOC and terminal voltage

out_fis1 = anfis ([u y1], options)

out_fis2 = anfis ([u y2], options)

Step 5: Plot the input-output measurements data set versus input-output of both
ANFIS models

plot (u, y1, u, evalfis (u, out_fis1))

plot (u, y2, u, evalfis (u, out_fis2))

legend (‘trainingData’,ANFIS Output’).

The previous steps must be adapted to generate both ANFIS models of the Rint-
3RC ECM dynamic part and the OCV(SOC) nonlinear function. The MATLAB
simulation results are depicted in Figure. Figure 14a presents the ANFIS Rint-3RC
ECM dynamic part model output and voltage training data set measurements, and
Figure 14b shows only the ANFIS model output. The impact on battery terminal
voltage accuracy using the ANFIS -ECM model compared with ARX -ECM
developed in the last Section 2.1.4 is shown in Figure 14c. The accuracy of
ANFIS -ECM model is revealed in Figure 14d, which presents the battery terminal
voltage residual.

Also, for building some interesting Li-ion SAFT battery structures, an ANFIS
model is developed for OCV(SOC) nonlinear function block in Figure 15a for train-
ing data phase, and in Figure 15b for OCV(SOC) ANFIS output model. Both ANFIS
models are based on a repeated UDDS driving cycles input current profile for almost
5 hours to assure a large interval of input-output data set measurements for SOC,
OCV, and battery dynamic part voltage. The impact of OCV(SOC) ANFIS block on
battery terminal voltage accuracy based on 3RC ECM is revealed in Figure 15c and d.
In Figure 15c it is very difficult to distinguish between ECM battery terminal voltage
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(a) ANFIS ECM dynamic part model output and voltage training data set measurements; (b) Rint-3RC ECM
dynamic part ANFIS model yd. circuit output; (c) terminal battery voltage Vbat with Rint-3RC ECM dynamic
part ANFIS model (ANFIS-ECM); (d) terminal voltage residual error.

graph and the second one ECM Li-ion battery terminal voltage that integrates the
OCV(SOC) block ANFIS model due to the high ANFIS OCV(SOC) model block
accuracy. The reader can have a better insight on the battery terminal voltage
accuracy in Figure 15d that reveals a very small battery terminal voltage residual
error compared with the ARX ECM dynamic part battery model terminal voltage
shown in previous Figure 14d.

Let us discuss why the ANFIS battery integrated model is the most suitable to build
hybrid integrated battery Li-ion structures in terms of high accuracy.

An exciting hybrid battery Li-ion structure can incorporate into the ARX ECM
dynamic part model and an ANFIS OCV(SOC) nonlinear block model. The MATLAB
simulations result of the Li-ion battery hybrid structure is presented in Figure 16a and b.

A rigorous analysis of MATLAB simulation results from Figure 15c and Figure 15d
shows a high battery terminal voltage accuracy compared with the battery hybrid
structure, as can be seen in Figure 16a and b.

The last combined battery structure consists of two ANFIS models, the first one for
Rint-3RC ECM active battery part and the second one that replaces the Li-ion SAFT
ECM SUN OCV(SOC) nonlinear block with an ANFIS model block. The MATLAB
simulation results are depicted in the Figure 17a and b.
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(a). ECM Li-ion SAFT hybrid structure — ARX Rint-3RC dynamic part and ANFIS OCV (SOC) nonlinear block
model (ARX-ANFIS; (b) Li-ion SAFT battery terminal vesidual voltage ervor for hybrid structuve.

The voltage accuracy performance revealed by simulation results from Figure 17a
and b seems to be better than the previous hybrid ARX and ANFIS battery structure.
Still, it is slightly inferior compared with the design that integrates only the ANFIS
model for SOC(OCV) nonlinear battery block.
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Figure 17.
(a) ECM Li-ion SAFT battery terminal voltage versus ECM ANFIS combined structuve terminal voltage; (b)
ECM Li-ion SAFT battery terminal residual voltage error for ECM ANFIS combined structure.

3.1.2 AEKF SOC estimator for ANFIS 3RC ECM SAFT Li-ion battery model: accuracy
performance

For simplification purpose and SOC and battery terminal voltage accuracy, as
alternative Li-ion 3RC ECM structure required to implement the AEKF SOC
estimator on a MATLAB R2021b platform is considered the ANFIS 3RC ECM SAFT
Li-ion battery model consisting of Rint-3RC ECM dynamic part block, and
second ANFIS model attached to OCV(SOC) nonlinear block. The overall
simplified ANFIS 3RC ECM battery model structure is described by the following
equations:

soc(k + 1) = soc(k) — nTsu(k) ,50c(0) = SOCini (19)
= — = anfis(soc(k)) soc(k) — anfis(u
310) = Voo ) = Va(k) = (L2 Ysoch) — amfsuts) 20

In all the MATLAB simulations for implementing the AEKF SOC estimator are
considered the following parameters values:

¢ SOC initial value = 0.4,

Covariance of estimated value of SOC, Phat = 1e-10,
* Covariance process noise Qw = 0.01,
* Measurement noise Rv = 0.001.
e a=0.791,r = 5.

The MATLAB simulations results are presented in Figure 18a—c. Similar to
ARX model developed in previous chapter 2, in Figure 18 the robustness of AEKF
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(a) Robustness of ANFIS AEKF SOC estimator to changes in SOC initial values from SOCini = 0.7 to
SOCini = 0.4; (b) the ANFIS 3RC ECM Li-ion battery OCV voltage accuracy.
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Figure 19.

(a) The ANFIS 3RC ECM Li-ion battery SOC residual ervor; (b) the ANFIS 3RC ECM Li-ion battery terminal
voltage residual error with vespect with the battery terminal voltage estimated by AEKF.

SOC estimator to changes in the battery SOC initial values from SOCini = 0.7
to SOCini = 0.4 is shown. In Figure 18b the predicted values of battery
terminal and OCV voltages cell by AEKF and ANFIS are compared with 3RC ECM
true values.

The battery SOC and terminal voltage accuracy are revealed in Figure 19a and b,
respectively, based on SOC and battery terminal voltage residuals.

3.2 Discussion: ANFIS models and AEKF SOC estimator performance analysis

Based on the information accessible from the battery SOC and terminal voltage
residual errors presented in the first two subsections of Section 3, more precisely the
MATLAB simulation results and the statistics criteria values RMSE, RSE, MAE,
MAPE, collected in Table 2, can be made a rigorous performance analysis of both
ANFIS models and AEKF SOC estimator.
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3.2.1 ANFIS models performance accuracy analysis

The performance analysis is made on the information provided by the battery
terminal voltage residuals errors. The MATLAB simulation results reveal a battery
terminal voltage prediction accuracy for ANFIS Rint-3RC ECM dynamic part model of
an absolute residual error less than 0.0 3 volts and greater than —0.04 volts, compared
with ARX model of same structure that is situated in the range (—0.2, 0.15) volts. The
voltage error of OCV(SOC) ANFIS model is very small ranged inside the interval
(—1.5 x 10e-4, 1.5 x 10e-4) volts. For the ANFIS combined structure (ANFIS-
ANFIS), the residual error remains in the same range as Rint-3RC ECM dynamic part
model, i.e., (—0.04, 0.03) volts.

3.2.2 AEKF based on ANFIS combined model (ANFIS-ANFIS) performance accuracy

analysis

The performance analysis is made on the information provided by the battery SOC
and terminal voltage residuals errors shown in Figure 19a and b. During the steady
state, more precisely after 347 seconds, the SOC residual error is less than 1% smaller
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System-level flowchart diagram.
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than usual SOC residual error of 2% value reported in the literature field. Since the SOC
residual error of AEKF based on ARX ECM battery model that is less than 1% during
the steady state after 600 s, as is shown in Figure 13c, is obviously that the AEKF based
on ANFIS battery model performs better. For a complete information about the suit-
ability of AEKF SOC estimator based on ANFIS battery model is built in the Table 2,
which incorporates all the statistics of criteria values RMSE (IC1), MSE (IC2), MAE
(IC3), and MAPE (IC4), the most common criteria that have been used in the litera-
ture field to measure model performance and select the best model from a set of
potential candidate models [7, 29, 30]. Comparing both statistics criteria values (third
and fourth columns) is straightforward that the AEKF SOC estimator based on ANFIS
battery model performs better than AEKF SOC estimator based on ARX battery model.

By comparing the terminal battery voltage residuals shown in Figure 12 for AEKF
based on ARX model and AEKF based on ANFIS model depicted in Figure 19b, they
are ranged inside the intervals (—0.2, 0.3) volts and (—0.01, 0.08) volts, respectively;
thus, the second SOC estimator based ANFIS battery model performs better than the
first one. Based on the performance analysis of SOC accuracy, robustness to changes
in SOCini value and terminal battery voltage prediction accuracy it can conclude that
the AEKF SOC estimator based on ANFIS model is the most suitable SOC estimator
for HEVs/EVs applications.

A system-level flowchart/flow diagram is shown in Figure 20. It indicates the
major steps involved in the key sections of the last two chapters to provide an over-
view of the differences in steps between generic ECM, ARX ECM, ANFIS ECM,
hybrid (ARX-ANFIS), and combined (ANFIS-ANFIS) models.

A detailed description for each small block of the overall diagram of the models
along with a flow of the equations is also considered in the overall diagram shown in
Figure 20.

4. Conclusions

This research paper has opened a new Li-ion battery modeling research direction
in the HEV BMS applications field by performing several investigations on ARX and
ANFIS alternative accurate battery models with a high impact on improving the
battery SOC estimators’ accuracy and their robustness, design, and real-time imple-
mentation in MATLAB and Simulink environments.

The effectiveness of the modeling and SOC estimation strategies is demonstrated
through an extensive number of simulations in a MATLAB R2021b software environ-
ment. The preliminary simulation results are encouraging, and extensive investigations
will be done in future work to extend the applications area. The performance analysis
from the last section reveals that ANFIS battery models overpass the second-order
linear ARX polynomial battery model in terms of SOC and terminal voltage accuracy
and by their capability and suitability to simplify the battery model structure and build
robust and accurate SOC Li-ion battery estimators with a high terminal voltage predic-
tion accuracy. The AEKF SOC estimator accuracy based on combined ANFIS model
structure is also very accurate compared with AEKF SOC estimator based on ARX
dynamic part model with the SOC absolute value lower than 1%, better than the usual
2% SOC value reported in the literature field. Both alternative models are based only on
the measurement input-output data set collected by a data acquisition (DAQ) system
incorporated in the BMS of HEVs. Besides, the battery SOC and output voltage signals’
accuracy is not affected by noise as long as the AEKF SOC estimator is very robust.
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EV

HEV

BMS
FTP-75
UDDS
OoCV
SUN-OCV
SOC

ARX
NREL’s

AEKF
ANFIS

ECM

MPC

3RC
Rint-3RC
FDI

RMSE

MSE

MAE

MAPE

std.

R2
ARX-ECM
Rint-3RC-ANFIS
ARX-ANFIS

ANFIS-ANFIS
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electric vehicle

hybrid electric vehicle

battery management system

Federal test procedure at 75 F

Urban Dynamometer Driving Schedule

open-circuit voltage

Shepherd, Unnewehr universal and Nernst open-circuit voltage
state of charge

autoregressive exogenous

ADVISOR National Renewable Energy Laboratory Advanced
Vehicle Simulator

adaptive extended Kalman filter

adaptive neuro-fuzzy inference system

equivalent circuit model

model predictive control

ECM third-order RC ECM

ECM third-order internal resistance RC ECM

fault detection isolation

root mean square error

mean square error

mean absolute error

mean absolute percentage error

standard deviation

R-squared

Rint-3RC replaced by ARX model

OCV(SOC) block replaced by ANSIM model

Rint-3RC replaced by ARX and OCV (SOC) by ANFIS (hybrid
structure)

Rint-3RC replaced by ANFIS and OCV (SOC) by ANFIS
(combined structure)
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