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Chapter

Optimal N-of-1 Clinical Trials for
Individualized Patient Care and
Aggregated N-of-1 Designs
Yin Li, Weng Kee Wong and Keumhee Chough Carriere

Abstract

Precision medicine typically refers to the use of genomic signatures of patients to
assign more effective therapies to treat patients, or, for improved diagnosis of the
early onset of a disease so that interventions can be delivered to prevent or delay the
disease progression. Because the aim is to provide individualized patient treatment,
such single-person trials are called N-of-1 trials. This chapter reviews fundamental
ideas, models, and construction of optimal designs for N-of-1 trials, which are invari-
ably constructed from crossover trials, where each patient receives a random sequence
of trial treatments over time. We construct examples of universally optimal N-of-1
designs for comparing two treatments under various correlation structure assump-
tions and discuss how N-of-1 trials may be combined to form optimal aggregated N-
of-1 trials for assessing average treatment effects for two or more treatments.

Keywords: crossover design, individualized care, N-of-1 trials, precision medicine,
universally optimal designs

1. Introduction

N-of-1 trials or single-patient trials focus on one patient and their main goal is to
evaluate whether the treatment is effective for the individual. The main motivation
for such trials is that each patient serves as his or her own control, and another is that
each patient is different from another and there is no average patient. This is in
contrast to conventional clinical trials where the aim is to optimize treatment for the
average patients. Consequently, their aims are different, and conventional clinical
trials are not appropriate for N-of-1 trials. These trials may appear new but they are
not, except that they probably were given short shrift and not well publicized. In the
last decade or so, there is increasing interest in N-of-1 trials. Duan et al. [1] raised
awareness among clinicians and epidemiologists that N-of-1 trials are potentially
useful for informing personalized treatment decisions for patients with chronic con-
ditions. A monograph on this topic in healthcare is [2], where their applications to
behavioral sciences and many medical settings are discussed, including the economics,
ethics, statistical analysis of running such trials, and how to report results to profes-
sional audiences. Scuffham et al. [3] showed how N-of-1 trials can improve patient
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management and save costs and Kravitz and Duan [4] provided a user’s handbook on
implementing such trials. A systematic review of the use of N-of-1 trials in the medical
literature is given in [5]. There are many ways to analyze and compare results from N-
of-1 trials; see for example, [6].

Interestingly, and perhaps, not unexpectedly, results from N-of-1 trials can be
combined to generate group mean effects, as [7, 8] demonstrated how it can be done
using systematic reviews and meta-analyses on the effects of amphetamine and meth-
ylphenidate for attention-deficit hyperactivity disorder. Li et al. [9] provided a system-
atic review of quality N-of-1 trials published between 1985 and 2013 in the medical
literature based on the CONSORT extension for N-of-1 Trials (CENT) where they
examined factors that influence reporting quality in these trials. In palliative care,
Senior et al. [10] designed a N-of-1 trial of a psychostimulant, methylphenidate hydro-
chloride (MPH) (5 mg bd), compared to placebo as a treatment for fatigue, with a
population estimate of the benefit by the aggregation of multiple SPTs. Forty patients
who had advanced cancer was enrolled through specialist palliative care services in
Australia.

Multi-crossover single-patient trials are often employed when the focus is to make
the best possible treatment decision for an individual patient [2, 11, 12]. From a clinician’s
perspective, having clear evidence of the value of one treatment over another (or no
treatment) is more useful than knowing the average response. The average response
gives the clinician the probability that a treatment will be effective, whereas N-of-1 trials
givemore certainty about whether the treatment for a particular patient will work or not.

In what is to follow, we assume that there are predetermined p periods in the
crossover study, and in each period only one of the treatments is administrated. The
same treatment may be used in other periods. We first discuss the case when there are
two treatments and two periods for N-of-1 trials before extending them to aggregated
N-of-1 trials to evaluate the effects of treatments for the average patients. Treatment
groups are generically denoted by A, B, C, and so on.

Many researchers studied the optimality of crossover designs [13–18]. Optimal
designs have been constructed under a variety of statistical models to provide the
most accurate inference of the treatment effects. It is known that the two-treatment
design AB, AA and their duals BA, BB are found to be universally optimal for two-
period experiments, with the duality defined as the sequence that switches A and B
with the same effect. Similarly, it is known that the two-sequence design ABB and its
dual BAA and the four-sequence design ABBA, AABB and their duals BAAB, BBAA
are optimal for three- and four-period experiments, respectively [19] and [20].

A direct application of this two-treatment optimal design results from the literature
with A replaced as AB and B as BA would suggest that optimal N-of-1 trials can use the
four-sequence design with ABBA, ABAB or their duals for two within-patient compar-
isons. Similarly, the two-sequence design with ABBABA or its dual may be optimal for
three within-patient comparisons, and the four-sequence design with ABBABAAB,
ABABBABA or any of their duals may be optimal for four within-patient comparisons.

However, design issues are not always as straightforward to address. For example,
Carriere and Li [21] showed that constructing N-of-1 trials for individualized care from
sequences in these repeated measurement designs is not always optimal for estimating
individual-based treatment effects. Likewise, Guyatt et al. [22] showed that aggregat-
ing a series of N-of-1 trials that are optimal for individual patients can also provide an
optimal estimate of the treatment effects for the average patient. For example, in a
multi-clinic setting in three AB pair six-period N-of-1 studies, all eight possible

sequences (26=2 ¼ 8) have been used, i.e., ABABAB, ABABBA, ABBAAB, ABBABA and
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their duals to estimate both individual-based and average treatment effects. However,
we show how these do not lead to optimal aggregated N-of-1 trials for estimating the
treatment effects for the average patient.

2. Models and information matrix

The traditional crossover design model assumes that the carryover effects last
for only one period. The patient effects are considered fixed in the model. The
traditional model assumes no carryover effects for the observations in the first
period. An alternative model which has carryover effects in the first period as well
is built by giving patients a pre-period or baseline period [23, 24]. More complex
models have also been considered. Some models incorporate higher-order carryover
effects [25]; some consider carryover effects are proportional to the treatment effects
[26], some include the interaction effects between the treatment effects and carryover
effects [27], and others have random patient effects [28–30].

We first focus on the traditional model, frequently used to analyze repeated
measures crossover data:

Y ij ¼ μþ αi þ βj þ τd i,jð Þ þ γd i�1,jð Þ þ εij, (1)

i ¼ 1, ⋯, p and j ¼ 1, ⋯, N. Here Y ij is the outcome in the ith period from the jth

patient; αi is the i
th period effect and βj is the j

th patient effect. Further, d i, jð Þ

represents the treatment assigned to the patient in period i of patient j, and τd i,jð Þ and

γd i�1,jð Þ are, respectively, the treatment effect of the treatment in the ith period and the

carryover effect of the treatment in the i� 1ð Þth period.
The model assumes that the carryover effects only depend on the treatment

assigned in the previous period but not on the treatment in the current period, which
may be unrealistic. Taking the interaction into account without introducing too many
parameters, Kunert and Stufken [17] presented a model with self and mixed carryover
effects. The self carryover effect occurs when the treatments administered in the
current and the previous periods are the same; otherwise, we have a mixed carryover
effect. The model with the self and mixed carryover effects is given by

Y ij ¼
μþ αi þ βj þ τd i,jð Þ þ γs,d i�1,jð Þ þ εij, if d i, jð Þ ¼ d i‐1, jð Þ

μþ αi þ βj þ τd i,jð Þ þ γm,d i�1,jð Þ þ εij, if d i, jð Þ 6¼ d i‐1, jð Þ

(

, (2)

where αi, βj, d i, jð Þ and τd i,jð Þ, are defined as in model (1). The parameters γs,d i�1,jð Þ

and γm,d i�1,jð Þ represent the self and mixed carryover effects of the treatment assigned

in the i� 1ð Þth period, respectively.
In an N-of-1 trial with N ¼ 1, the j index can be omitted. Further, with one patient

and p responses in total, the period effects and patient effects cannot be accommo-
dated. Therefore, we need to reduce the models for the case when N ¼ 1.

For models (1) and (2), we define the contrast of the direct treatment effects by
τ ¼ τA � τBð Þ=2, the contrast of the first-order carryover effects by γ ¼ γA � γBð Þ=2,
the contrast of the self carryover effects by γs ¼ γs,A � γs,B

� �

=2 and the contrast of the

mixed carryover effects by γm ¼ γm,A � γm,B

� �

=2.
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To construct a model-based optimal design, we commonly use design criteria such
as A-, D-, and E-optimality. The A-, D-, and E-optimal design maximizes the trace,
the determinant, or the eigenvalue of the information matrix among a class of all
competing designs. The information matrix measures the amount of information
about the unknown model parameters. Formally, given the model and the design, the
elements in the information matrix are found by first taking the expectation of the
second derivatives of the complete log-likelihood function with respect to the
parameters and multiplying them by �1. In practice, not all model parameters are of
interest. In this case, we would first partition the information matrix and work with
the submatrix corresponding to the parameters of interest.

Specifically, we first partition the design matrix X ¼ X1, X2½ �, where X1 contains
the columns of the design matrix pertaining to nuisance parameters and X2 contains
columns corresponding to the parameters of interest. The vector of model parameters
θ is likewise partitioned as θ = (τ,γ)0 or (τ, γs, γm)

0, representing the direct treatment
effects and carryover effects. Then, with Σ denoting the covariance matrix, the
information matrix can be written as

Id θð Þ ¼ X0
2Σ

�1X2 � X0
2Σ

�1X1 X0
1Σ

�1X1

� ��1
X0

1Σ
�1X2: (3)

Following [13], a design is universally optimal if (i) its information matrix is
completely symmetric, and (ii) it maximizes the trace of the information matrix. To
study the universal optimality of treatment effects in the t treatments N-of-1 designs,
we obtain the information matrix for the parameters of interest under the traditional
model. Then the universally optimal designs could be constructed as long as the
conditions given by [13] are satisfied.

2.1 Cycles and sequences

We first discuss how to find N-of-1 designs for comparing two treatments by
minimizing the variance of the estimated direct treatment effect contrast, τ. To this
end, it is helpful to define sequence feature parameters and show the association
between them and the sequences in N-of-1 designs is useful for finding optimal N-of-1
trials for model (1) and (2) .

For N-of-1 trials involving two treatments, the design sequences consist of crossover
pairs, AB and BA. Within each crossover pair, the two treatments are distinct. For two
consecutive crossover pairs, the treatments assigned to the second period in the previ-
ous pair and the first period in the latter pair can be different or the same.

Further, if an AB pair is followed by a BA pair, as in ABBA (or BAAB), we define
the design as having alternating pairs in the sequence. The performance of an N-of-1
trial sequence is related to how the pairs AB and BA alternate. The following feature
parameters define how AB and BA alternate in a sequence.

• s: the number of subsequences of AA and BB;

• m: the number of subsequences of AB and BA;

• h ¼ s�m: the indicator of how often treatments crossed between subsequences .

When we define s and m, the subsequences can be constructed by either the
treatments from a crossover pair, or be the treatments assigned to the second period in
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the previous pair and the first period in the latter pair. Therefore, in a p-period
sequence, there are p� 1 such subsequences with a length of 2. By the definition of
feature parameters, we have sþm ¼ p� 1. Determined by how a sequence is
constructed, the value of h is negative and takes on possible values in �1, �3, ⋯,
� p� 1ð Þ. Table 1 displays the relationship among h, s and m.

For a particular h, we calculate s and m by setting s ¼ p� 1þ hð Þ=2 and m ¼
p� 1� hð Þ=2. Further, for any given p, the N-of-1 designs can be classified by h. As an
example, for p ¼ 8, Table 2 shows the relationship between the design sequences and
the feature parameters.

In the next section, we show that the information matrix of the parameters of
interest are only dependent on the feature parameters. That is, sequences with the
same h values have the same information matrix. For instance, when h ¼ �3, the three
sequences ABABBAAB, ABBAABAB, ABBABAAB and their dual sequences share the
same information matrix. If this h is the optimum value, the 8 period N-of-1 trials can
use any of these three sequences and their duals.

3. Optimal 2-treatment N-of-1 designs

Let xτ, xγ, xs and xm be the design vectors corresponding to the parameters τ, γ, γs
and γm, respectively. Under the traditional model, the design matrix is [1p, xτ, xγ] for
the parameters [μ, τ, γ] with X1 ¼ 1p and X2=[xτ, xγ]. Under the self and mixed effect

h s m

� p� 1ð Þ 0 p-1

� p� 3ð Þ 1 p-2

� p� 5ð Þ 2 p-3

⋮ ⋮ ⋮

�1 p
2 � 1 p

2

Table 1.
Feature parameters of a sequence in a 2-treatment N-of-1 design.

h Sequence Alternation s m

�7 ABABABAB 0 0 7

�5 ABABABBA 1 1 6

ABABBABA 1 6

ABBABABA 1 6

�3 ABABBAAB 2 2 5

ABBAABAB 2 5

ABBABAAB 2 5

�1 ABBAABBA 3 3 4

Note: s ¼ the number of AA and BB;m ¼ the number of AB and BA in a treatment sequence, and h ¼ s�m.

Table 2.
Sequences for p ¼ 8 with corresponding design parameter values.
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model, we have [1p xτ, xs, xm] for the parameters [μ, τ, γs, γm] with X1 ¼ 1p and X2=
[xτ, xs, xm].

In 2-treatment N-of-1 trials, the Id τ, γð Þ is a function of the quantities:

x0τxτ ¼ p, x0γxγ ¼ p� 1, x0τxγ ¼ h (4)

under model (1) for θ ¼ τ, γð Þ0, or

x0τxs ¼ s, x0sxs ¼ s, x0mxs ¼ 0, x0τxm ¼ �m, x0mxm ¼ m (5)

under model (2) for θ ¼ τ, γs, γmð Þ0. Hence, the information matrix can be
expressed in terms of p, s, m and h.

Since the information matrices can be further simply expressed in terms of h and p
only, for a given p, the optimal p�period N-of-1 trial is completely determined by h,
and much simpler to construct than previously. We proceed by defining Id τð Þ appro-
priately to find designs that maximize the information below.

Under an equi-correlated error assumption, the optimal N-of-1 trial for τ and γ is
the one sequence design that consists of pairs of AB and BA appearing alternatively.
Hence, the optimal N-of-1 trials for 4, 6, and 8 periods are the one sequence design,
ABBA, ABBAAB and ABBAABBA, respectively. One could switch A and B to obtain a
dual sequence with the same effect.

Under the equi-correlated errors, the optimal N-of-1 trial for estimating the
direct treatment contrast is the sequence with only AB (BA) pairs with no
alternation, such as BABABA and ABABABAB. A closed form for the optimal h is
complicated for autoregressive errors, and selected numerical results are found
when h ¼ 1� p.

To summarize, the optimal N-of-1 trials for estimating direct treatment effects are
determined by the three feature parameters h, s, and m. However, specifying one of
these along with p determines the design sequence, as illustrated in Table 2. We used
h to summarize the optimal designs under both the traditional and self and mixed
models for 4, 6, 8, 10, and 12-period N-of-1 trials.

It can be shown that under the traditional model, the optimal trial for the direct
treatment effect uses the sequence with h ¼ �1 for all covariance structures. There-
fore, the optimal N-of-1 trial for estimating the direct treatment effect is to alternate
between AB and BA pairs. In case that the carryover effect is of interest, it can be
easily shown that these designs are also optimal for estimating the carryover effect,
which can be obtained using the same technique for optimal designs in treatment
effects. Under the self and mixed effects model, the optimal N-of-1 trial for the direct
treatment effect uses a sequence with h ¼ � p� 1ð Þ for both uncorrelated and equal-
correlated covariances. Therefore, the optimal N-of-1 trial is to use only AB pairs
throughout. Under the auto-regressive covariance structure, however, the optimal
designs depend on the value of p and the auto-regressive correlation ρ. Generally, the
optimal design uses AB and BA pairs alternately, but as ρ or p increases, some
abnormalities are observed.

4. Optimal aggregated N-of-1 trial designs with N> 1

In addition to the interest in the patient-based evidence of a treatment contrast,
it may also be desirable to obtain a population average effect of treatments.
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Aggregating the series of N-of-1 trials can give such an estimate of the average
effect [7]. Using the one sequence that was found optimal for N-of-1 trial to all
patients seems to be an obvious choice. However, it might not optimize the trial for
estimating the effects on the average patient and therefore, using the one sequence
that is optimal for a single individual patient to all patients might not serve this
purpose.

The optimal designs for aggregated N-of-1 trials can also be derived from the
information matrices we obtained, similarly as for N-of-1 trials for one patient, by
allowing j ¼ 1, … , N with N > 1. We approached the problem in two steps; first, we
optimize single N-of-1 trials, as the primary goal is to optimize estimating the effects
for each patient. Next, we optimize the overall N-of-1 trials in aggregation.

To find the optimal design, we typically choose Nk for k ¼ 1, … , s to allocate
patients to a sequence s. The sufficient condition on Nk was given by [20] for a design
to be optimal. The condition is called a duality in the design matrices, as defined
earlier. Among other things, it permits simplification of the search for the optimal
choice for Nk (see also [16]).

As noted earlier for Table 1, designs with the same value of h perform equally
in estimation precision. Although all or only one of those with an equally optimal
h can be used in a trial, practical consideration will lead to using the least
necessary number of sequences for ease of treatment administration. Further, we
found that there is a unique N-of-1 trial sequence in all p-period experiments.
Since the designation of A and B is arbitrary, the optimal N-of-1 trial can be obtained
by reversing the order of treatment administration. For example, the optimal
6-period N-of-1 trial is ABBAAB under the traditional model for N ¼ 1. Its dual,
BAABBA also has the same value of h ¼ �1 and is optimal. Hence, when N ¼ 1,
either of these two sequences will provide the maximum amount of information.
When N > 1 and a multiple of 2, we can adopt both of these sequences, as they
maximize the information, and this approach also simplifies the search for the
optimal design for estimating the treatment effect for the average patients, satisfy-
ing the duality condition in [20]. Based on this rationale, we make the following two
propositions.

Proposition 1: The optimal design for aggregated N-of-1 trials under the tradi-
tional model is to allocate the same number of patients to the optimal sequence with
AB and BA alternating and its dual.

For example, the optimal design for aggregated six-period N-of-1 trials is the two-
sequence design using sequences ABBAAB and BAABBA, allocating the same number
of patients to each. For a balanced design, N must be a multiple of 2.

Proposition 2: The optimal design for aggregated N-of-1 trials under the self
and mixed model is to allocate the same number of patients to the optimal sequence
with no alternation between AB and BA pairs and its dual. However, under the
autocorrelation errors, the optimal design is to allocate the same number of patients
to the optimal sequence that alternates between AB and BA pairs subsequently and
its dual.

For example, the optimal aggregated 6-period N-of-1 trials for multi-clinic setting
is to use the two-sequence design ABABAB and BABABA under the equal or
uncorrelated errors, and to use the two-sequence design ABBAAB and BAABBA under
the autocorrelated errors, allocating the same number of patients to each sequence.

From each sequence, we obtain individual patient specific treatment effects and by
aggregating these one sequence of N-of-1 trials, we can quantify the average treat-
ment effects.
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4.1 Numerical comparisons

To appreciate the practical performance of the optimal N-of-1 trials we
constructed, we compare the efficiencies of selected designs for estimating the treat-
ment and carryover effects under the two models. We also investigate their perfor-
mances in some aggregation for estimating the average treatment effect. We limit the
comparison to the models with independent and equi-correlation errors. In our com-
parisons, we also reference many designs, labeled with an A or S at the beginning, like
A65 and S83, that were investigated in [31].

Recall that the optimal N-of-1 trials are either to alternate between AB and BA
pairs or simply to repeat the AB pair in a sequence. Under the traditional model, the
optimal N-of-1 trial uses ABBAAB and ABBAABBA for 6 and 8 period experiments,
respectively. We refer them to S63 and S83. Under the self and mixed effects model,
the optimal N-of-1 trial is to use ABABAB and ABABABAB for 6 and 8 period
experiments, respectively, which we refer to S61 and S81. Table 3 considers other
mixtures and shows that the optimal individual-based N-of-1 trials are S63 and S81
under the respective models, as expected. We also observe from the table that (i)
there are no real practical differences among various N-of-1 trials under the self and
mixed model, and (ii) designs S61 and S81 cannot estimate self carryover effects,
making S63 and S83 preferable. Therefore, we recommend using a sequence that
alternates between AB and BA pairs, such as S63 and S83, as robust and optimal N-of-
1 trials for all models.

Based on these single sequence trials, we also consider aggregated N-of-1 trials to
numerically justify Propositions 1 and 2. We constructed 5 aggregated N-of-1 trials for
p ¼ 6 and p ¼ 8 with N ¼ 32 and compare their efficiencies for estimating the average
treatment effects as follows.

• A61. ABABAB and its dual with 16 patients in each sequence

• A62. ABABBA and its dual with 16 patients in each sequence

• A63. ABBAAB and its dual with 16 patients in each sequence

• A64. ABBAAB, ABABBA and their duals with 8 patients in each sequence

• A65. All 8 sequences, S61–S64 and their duals with 4 patients in each sequence

• A81. ABABABAB and its dual with 16 patients in each sequence

• A82. ABABBABA and its dual with 16 patients in each sequence

• A83. ABBAABBA and its dual with 16 patients in each sequence

• A84. ABABBABA, ABBABAAB and their duals with 8 patients in each sequence

• A85. All 8 sequences, S81–S84 and their duals with 4 patients in each sequence

The design A63 uses the optimal sequence S63 under the traditional model; the
design A61 uses the optimal sequence S61 under the self and mixed model although
the self carryover effect is not estimable; the design A62 is a slight rearrangement of

8

Biostatistics



designs A61 and A63; the design A64 is a combination of designs A62 and A63; the
design A65 contains all 8 possible sequences of a 6-period design. Designs A81–A85 are
also similarly constructed from various N-of-1 trials. We compare these designs under
the traditional model and the self and mixed model. Table 3 displays the comparison
results under the two models and reports the variances of the estimated τ, γ, γs and γm
after they are divided by their leading constants σ2=N (when errors are independent)
or by σ2 1� ρð Þ=N (when errors equi-correlated).

Table 3 shows that under the traditional model, the design A63 with the optimal
sequence ABBAAB and its dual provides the best precision for estimating both the
direct treatment effect and the carryover effect for the average patients. Each of the
sequences optimally estimates the individual-based treatment effect. The least effi-
cient choice would be the design A61. Design A65, which has been used in a recent
multi-clinical trial [7], is rather inefficient as well, not to mention the unnecessarily
lengthy administration time and cost required to manage many treatment groups,
which requires the number of patients to be a multiple of 8.

Design h Traditional model Self and mixed model

var τ̂ð Þ var γ̂ð Þ var τ̂ð Þ var γ̂sð Þ var γ̂mð Þ

S61: ABABAB �5 1.208 1.500 1.208 NE 1.500

S62: ABABBA �3 0.242 0.300 1.250 3.000 1.500

S63: ABBAAB �1 0.173 0.214 1.214 1.714 1.714

S64: ABBABA �3 0.242 0.300 1.250 3.000 1.500

A61 = S61 + dual 1.208 1.500 1.208 NE 1.500

A62 = S62 + dual 0.242 0.300 1.250 3.000 1.500

A63 = S63 + dual 0.173 0.214 1.214 1.714 1.714

A64 = S63 + S62 + duals 0.193 0.240 1.210 2.063 1.563

A65 = S61:S64 + duals 0.242 0.300 1.214 2.535 1.521

S81: ABABABAB �7 1.146 1.333 1.146 NE 1.333

S82: ABABBABA �5 0.229 0.267 1.167 2.667 1.333

S83: ABBAABBA �1 0.127 0.148 1.150 1.600 1.400

S84: ABBABAAB �3 0.150 0.174 1.147 1.647 1.412

A81 = S81 + dual 1.146 1.333 1.146 NE 1.333

A82 = S82 + dual 0.229 0.267 1.167 2.667 1.333

A83 = S83 + dual 0.127 0.148 1.150 1.600 1.400

A84 = S82 + S84 + dual 0.176 0.205 1.147 1.945 1.358

A85 = S81:84 + dual 0.176 0.205 1.147 1.945 1.358

Note: NE means “Not Estimable.” For N ¼ 1, a six-period N-of-1 trial may consider any one of S61,⋯, S64. For N > 1,
aggregated six-period N-of-1 trials may use a combination of these, A61,⋯, A65. Similarly, an eight-period N-of-1 trial
may consider any one of S81,⋯, S84. For N > 1, aggregated six-period N-of-1 trials may use a combination of these,

A81,⋯, A85. The variances reported are divided by σ2ε=N (under an independence error) or σ2ε 1� ρð Þ=N (under an
equi-correlated error).

Table 3.
Variances of the estimators of treatment and carryover effects in six- and eight-period designs.
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When using the self and mixed effects model, Design A61 provides the best
precision for estimating the direct treatment effect and the mixed carryover effect.
However, the self carryover effect is not estimable. Overall, A63 is the optimal choice
even in this case. However, all designs performed rather similar with over 95%
relative efficiency under the self and mixed effects model, as observed earlier for
single N-of-1 trials.

A similar observation is possible for 8-period designs and their sequences. In
summary, it appears that there is no discernable advantage to distinguish among the
two models and various error structures.

Overall, S63 and S83 for single N-of-1 trials or designs A63 and A83 in aggregation
of S63, S83 and their duals seem to be the best under both models. They are optimal
for estimating direct treatment and mixed carryover effects. Further, they are optimal
for estimating both the treatment and carryover effects under the traditional model.
Hence, we conclude that the optimal six-period aggregated N-of-1 trials is ABBAAB
and its dual BAABBA, while the optimal eight-period aggregated N-of-1 trials is
ABBAABBA and its dual BAABBAAB. For an N-of-1 trial, using one of these sequences
will optimize the treatment for an individual patient.

We close this section with a summary note. Our numerical work suggests that
alternating AB and BA pairs in sequence is likely to result in an optimal or nearly
optimal p�period design for all the models we have considered for estimating both
individual effects in N-of-1 trials and average effects in aggregated N-of-1 trials.

5. Universally optimal N-of-1 designs for more than two treatments

Oftentimes, N-of-1 trials deal with comparing t> 2 treatments and we briefly
discuss selected universal optimal N-of-1 trials for such a situation. In N-of-1 trials
with t> 2 treatments, we can consider a sequence consisting of treatments in blocks of
a size t. Every block within the sequence contains each of the t treatments exactly
once. It follows that N-of-1 designs constructed in this way can ensure treatments are
compared fairly, and poor balance can be prevented when the study is terminated
prematurely. For example, in a 3-treatment N-of-1 trial, a six-period design could be
ABC∣BCA, where the sign ∣ divides them into blocks. Li [31] denoted such a class of N-
of-1 trial designs by No1(t,t), where the first t in the notation represents the number
of treatments in the study and the second t denotes that the treatments are to be
administered to be in blocks of size t. Therefore, a six-period design in the above
example is No1(3,3).

Li [31] showed that Kiefer’s conditions could not be satisfied with designs in the
class No1(t,t). However, if we consider a slightly different class of designs, then
universally optimal designs can be obtained. Li [31] used No1(t,t+) to denote the new
class of designs, which consist of designs with one extra treatment to the last period in
No1(t,t). For instance, a design in No1(3,3+) could be ABC∣BCA∣A, ABC∣BCA∣B, or
ABC∣BCA∣C. Similarly, some examples from the class No1(2,2+) are AB∣BA∣A,
AB∣BA∣B, etc.

One disadvantage of the universally optimal designs for t> 2 treatments is that the
length of the sequence can be unmanageable, leading to drop-outs and non-
compliances before the end of the trials. As discussed in [3], a universally optimal
design in No1(t,t+) requires the length of the sequence equal to t� 1ð Þ!t2 þ 1, which is
5 for t ¼ 2, 19 for t ¼ 3, and 97 for t ¼ 4. It may be infeasible in practice because the
longer the period of the experiment, the more expensive the experiment and the
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higher the risk of drop-outs. To shorten the length of the experiment without losing
the balance in the comparison of treatments, Li [31] introduced a class of designs in
No1(t,s) or No1(t,s+) for some s< t, especially when s ¼ 2. To do so, the restriction
that the block size must be equal to the number of the treatments can be relaxed [31].
By allowing the block size to be smaller than t, universally optimal designs can be
manageable in practice, thereby reducing the risk of early dropouts and the burden of
treatment administration.

Li [31] showed some practical universally optimal designs for three-, four- and
five-treatment in blocks of size 2. In each block, two different treatments are
assigned such as a crossover pair. For t-treatment designs, there are t t� 1ð Þ
different kinds of crossover pairs. To construct the universally optimal design,
the crossover pairs are selected such that each subsequence of AiAj, 1≤ i, j≤ t,
appears only once. Therefore, for universally optimal designs, the number of periods
is p ¼ t2 þ 1. For example, p is 10 for three-treatment designs, 17 for four-treatment
designs and 26 for five-treatment designs. We close by giving examples of universally
optimal designs in selected situations. Omitting details, which are available in [31],
they are:

• No1(3,2) with t ¼ 3:

ABBCCAACBAf g or BCABBAACCBf g,

• No1(4,2+) for t ¼ 4:

ABBCCDDACBDCADBAAf g or BCCDDAABBDCADBACBf g

and

• No1(5,2) for t ¼ 5:

ABBCCDDEEAACBDCEDAEBADBECAf g or

CDDEEAABBCCEBDACBEDBAECADCf g:

6. Concluding remarks

In this Chapter, we discussed and reviewed construction of universally optimal N-
of-1 designs and how they may be aggregated to estimate treatment effects for the
average patients. Originally, Kiefer [13] proposed the concept of universal optimality
with zero row and column sums in the information matrices. We examined conditions
when such universally optimal designs exist with special application to N-of-1 trial
designs that will make them optimal no matter what criteria are applied. In particular,
we first presented a sufficient condition that ensures N-of-1 designs are universally
optimal for the traditional model that accommodates the carryover effects. Addition-
ally, we discussed extensions of our work to finding optimal aggregated N-of-1
designs. Using numerical results from our simulation for comparing the estimated
precision of several six- and eight-period designs, we were able to obtain realistic
guidelines for the practitioners.
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Overall, there are three key conclusions from this chapter. The first is that alter-
nating between AB and BA pairs in sequence will result in an optimal or nearly
optimal N-of-1 trial for a single patient for models considered in this chapter. In
particular, our work suggests that alternating between AB and BA pairs in a single trial
is quite robust to mis-specification in the error structures considered in the chapter.
Consequently, there is less need to guess or conduct a pilot study to verify model
assumptions and the error structures.

Another take home message is that when an experiment has been carried out with
the optimal N-of-1 trial and additional patients are accrued in the trial, we can
aggregate these N-of-1 trials optimally by allocating the same number of patients to its
dual sequence, thereby optimizing the trial for both the individual and average
patients.

Lastly, we also provided a strategy for finding N-of-1 trials with more than 2
treatments. By restricting the class of designs and utilizing each subsequence, we
constructed universally optimal N-of-1 trial designs when there are t ¼ 3, 4, or 5
treatments.
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