
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

149,000 185M

TOP 1%154

6,100



Chapter

Quantum Dots as Material for
Efficient Energy Harvesting
Paweł Kwaśnicki

Abstract

The essence of the photovoltaic effect is the generation of electric current with the
help of light. Absorption of a quantum of the energy of light (photon) generates the
appearance of an electron in the conduction band and holes in the valence band. The
illumination of the material, in general, is not uniform, which leads to the appearance of
spatially inhomogeneous charge in the band valence and conductivity. Besides, elec-
trons and holes generally diffuse with different velocities, which leads to the creation of
a separated space charge and generation of an electric field (sometimes called the
Dember field). This field inhibits further separation of cargo. The reverse processes also
take place in the system, i.e. electron recombination and holes. These processes are
destructive from the point of view of photovoltaics and should be minimized, which is
achieved; thanks to the spatial separation of electrons and holes. The point is that
electrons and holes were carried away from the area where they formed as quickly as
possible, yes to prevent their spontaneous recombination. The use of semiconductor
quantum dots introduced into the photoelectric material is currently a very important
and effective way to increase the efficiency of photoelectric devices and photovoltaic
cells. This is due to the fact that in semiconductor photoelectric materials with no
quantum dots, there is always some upper limit of the wavelength λgr gr½ �≃ 1, 24=Eg eV½ �
for absorbed light, above which the light is not absorbed.

Keywords: quantum dots, photovoltaic, QDSC, transparent PV

1. Introduction

The maximum coefficient of light to electric conversion in semiconductor systems
is determined by the so-called Shockley-Queisser limit, which is approximately 32%
with the optimal width of the band gap of 1.2�1.3 eV. However, performance can be
improved by using solutions based on semiconductor nanostructures [1–2]. Such cells
are called Third Generation Photovoltaic Cells (KFTG). One type of nanostructure
that plays an important role is the so-called quantum dots, that is, small semiconduc-
tor grains with sizes in the order of nm. As bounded systems in all three dimensions,
quantum dots are characterized by a discrete energy spectrum. The advantage of such
systems is the fact that due to the lack of translational symmetry, the limitation on
quantum transitions resulting from the behaviour of the wave vector (equality of the
photon and electron wave vector) is removed. Exclusion of this limitation leads to the
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fact that absorption can arise from deep discrete levels to high energy states. As a
result, the useful range of the light spectrum expands considerably towards violet
light. However, the width of the energy gap of the output semiconductor limits the
possibility of using the spectral part from the low-energy light side [3].

Another beneficial element resulting from the location of an electron and a hole
(exciton) in the area of a quantum dot is the slowing down of thermalization processes
and increasing the effective number of generated carriers through transitions in which
the exciton while relaxing to lower energy, generates another exciton (the phenome-
non of multiple exciton generation) [1]. Thermalisation occurs when carriers transfer
their excess energies to the crystal lattice through interaction with phonons. In this
way, large populations of non-equilibrium (hot) charges are created and the carriers
lose their energy to the lattice vibrations. Thermalisation times depend on many
factors such as carrier concentration and lattice temperature but are usually in the
range below 100 ps. The multiple generations of an exciton can only occur for high-
energy photons, due to the conservation of energy principle. This effectively means
that one photon can generate two (or more) carriers. Of course, there are also recom-
bination processes in which the exciton generated in the photon absorption process
disappears. All these factors mean that the performance of such systems may exceed
the Shockley-Queisser limit.

Numerous types of quantum dots can be used in photovoltaics: semiconductor poly-
crystalline and granular materials, quantum dots obtained by epitaxial methods or from
colloidal solutions, nanoparticles of organic dyes, etc. There are also many possibilities
for the architecture of photovoltaic cells. Their common feature is that the phenomenon
of multiple exciton excitation in dots is used, and the generated charges (electrons and
holes) are discharged in various ways to the electrodes while ensuring their spatial
separation. One possibility is to use dots dispersed in the conductive material (e.g. in
organic polymers). With the appropriate concentration of the dots, the discharge of the
charge from the dots to the electrodes can take place due to the coupling between the
quantum dots. In the case of regular networks of dots (one, two or three-dimensional),
discrete dot states are formed into mini-electron bands, ensuring charge transport. This
problem has been and is still widely studied in the literature [4, 5].

Photovoltaic cells using regular quantum dot networks and their electronic mini-
band structure (also called intermediate bands) have become one of the significant
directions of photovoltaics development [6]. The essence of this type of solution is the
fact that in the area between the electrodes in the p-n junction there is a layer with
quantum dots between which the distance is so small that an intermediate band is
created in this area. This allows the use of low-energy photons (with energy lower than
the width of the output semiconductor gap) to generate electrons in the conduction
band and holes in the valence band. This is due to the optical transitions from the valence
band to the intermediate band and from the intermediate band to the conduction band.
An important element is also the fact that recombination processes are much less likely
in the case of the intermediate band than in the case of isolated quantum dots. In this
case, it is enough for the wave functions of the dots to be quite delocalized. This can be
achieved in systems with complexes of quantum dots instead of regular lattices [7].

2. A single quantum dot

First, consider a single semiconductor quantum dot. In general, the quantization
associated with the limited size of the quantum dot leads to discrete energy values, εn
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(n = 1,2,3 … ). Each eigenvalues value corresponds to an orbital wave function ψn (r).
For the sake of simplicity, we ignore the magnetic and spin-orbital interactions in this
consideration. Then, we deal with a two-fold spin degeneration of all discrete levels of
a quantum dot. However, if there are spin-orbital or other magnetic forces in the
system, then this degeneration is generally cancelled out. A diagram of the discrete
levels of a semiconductor quantum dot in some other semiconductor matrix is shown
in Figure 1. The energy gap, both in the matrix and in the material of which the dot is
made of, is marked with a dashed line (the bottom of the conductivity band and the
upper limit of the valence band).

Both the own energy values and the corresponding wave functions fulfil the
Schrodinger equation:

� ℏ
2

2m

∂
2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2

� �

þ V rð Þ
� �

ψn rð Þ � Ĥψn rð Þ ¼ εn∅n rð Þ (1)

where V (r) is the limiting potential of the quantum dot, and Ĥ is the operator of
the total energy, that is kinetic and potential energy.

2.1 Two interacting quantum dots

Let us now consider two quantum dots at some distance from each other. Let
us assume that the separation of levels on the dots is large enough and consider
only one discrete level in a selected dot and the closest discrete level in the
second dot. Let us assume that the other levels are sufficiently distant on the
energetic scale. Let us denote this level in the first dot as ε1 and in the second
dot as ε2. If the dots were identical, then ε1 = ε2, but in general these energies
may be different. We denote the corresponding normalized wave functions as
ψ1(r) and ψ2(r). If these dots are close enough and their wave functions partially
overlap, then the wave functions of a system composed of two dots can be taken in
the form

ψ rð Þ ¼ aψ1 rð Þ þ bψ2 rð Þ (2)

Figure 1.
A diagram of the energy structure of a single semiconductor quantum dot placed in a matrix made of another
semiconductor material. The dashed line corresponds to the location of the bottom of the conduction band and the
upper limit of the valence band in the semiconductor matrix and in the material of which the semiconductor
quantum dot is made. The solid lines represent the discrete energy levels of the quantum dot.
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where a and b are constants. When the wave functions are not too large, one can

put the normalization condition |a|2 + |b|2 = 1. The energies of the system, E= Ĥ
� �

, can
then be written in the form

E ¼ ε1 þ ε2 þ a ∗ b

ð

drψ ∗
1 rð ÞV1 rð Þψ2 rð Þ þ ab ∗

ð

drψ ∗
2 rð ÞV2 rð Þψ1 rð Þ (3)

where V1(r) and V2(r) are the limiting potentials for both quantum dots.
If the dots are the same, so they have the same limiting potential, V1(r) = V2(r-d)

� V(r), where d is the vector connecting the dots 1 and 2, and the same levels energy
ε1 = ε2 � ε, and the same corresponding wave functions, ψ1(r) = ψ2(r-d) � ψ rð Þ, then
the energies of the system can be written in the form

E ¼ 2εþ a ∗ bþ ab ∗ð Þ
ð

drψ ∗
rð ÞV rð Þψ r� dð Þ (4)

The state corresponding to a = b (|a| = |b| 1=
ffiffiffi

2
p

) is a symmetric state with energy
ε2- t and the antisymmetric state, a = �b, is a state with energy ε2 + t, where

t ¼ �
ð

drψ ∗
rð ÞV rð Þψ r� dð Þ (5)

The hoping parameter t is positive because V (r) as the attracting potential is
negative. The symmetric state is the binding (lower energy) state, while the antisym-
metric state is the anti-binding (higher energy) state.

2.2 Periodic networks of quantum dots

Now, let us consider the periodic networks of quantum dots and first consider the
one-dimensional periodic chain of equal quantum dots. The wave function then sat-
isfies Bloch’s theorem, ψ(r + d) = ψ(r) exp. iQ∙d where Q is a wave vector, Q = (Q, 0,
0) and d = (d, 0, 0). Consider a chain with N dots and assume periodic Born-Karman
conditions. From the considerations, so far, it follows that the energies of such a chain
can be written in the form

E ¼
X

l

εl þ
1

2

X

l

alalþ1tl,lþ1 þ alal�1tl,l�1ð Þ (6)

where al is the amplitude of the wave function at node l, l = 1, .... N, and summing
over l means summing over all N nodes. Factor 1/2 in the second term eliminates
double counting of hoping terms. In turn tl, l � 1 means the element hoping to the
nearest neighbours. It follows from Bloch’s theorem that al � 1 = al exp. � iQd. Con-
sidering the constant value of the hoping term, tl, l � 1 = t, and the constant value of the
discrete energies, εl =ε, the total energy can be written as

E ¼ Nεþ tcosQd (7)

The one-dimensional wave vector takes the following values: Q = (2π/d) l for l = 0,
� 1, � � N. The electronic states thus form an energy band with a width of 2 t. This can
be interpreted in such a way that, in the case of the interacting dots, the discrete levels
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blur to form an energy band, as shown schematically in Figure 2. This figure shows a
finite (and relatively small) number of quantum dots, so the energy levels of the entire
system are a discrete structure. The original degeneracy is abolished. However, in the
case of a long chain, the states resulting from the interaction between the dots create a
continuous (at the limit of an infinitely long one-dimensional network) energy band
with a width of 2 t. In Figure 2, this band is marked with a shaded area in which
discrete levels are visible.

In the case of a two-dimensional rectangular quantum dot network, where the
interaction between the dots is the same for all four closest neighbours, the bandwidth
resulting from the interaction is greater due to the greater number of the nearest
neighbours and amounts to 4 t. This is shown schematically in Figure 3. Similar to
Figure 2, the energy structure diagram is shown for a finite number of quantum dots
(49 to be exact). The energy band resulting from the discrete levels corresponds to the
shaded area. The discrete structure resulting from a finite number of dots is now
virtually indistinguishable in this figure. In the case of a network with N � N dots, the
band becomes continuous for large values of N (more precisely for N ➔ ∞).

Similarly, the three-dimensional network of quantum dots can be described. As in
the above-discussed cases of the one-dimensional and two-dimensional dot network,
the interaction between the dots leads to the formation of an energy band from the
discrete level of individual dots. However, the width of this band in the three-
dimensional case is greater and amounts to 6 t for the cubic quantum dot network.

In summary, discrete levels in periodic quantum dot networks blur to form an
energy band. The width of this band depends on the value of the hoping parameter t,
and it decreases to zero with t ! 0. Besides, the bandwidth also depends on the
number of the nearest neighbours, which is 2 t for a one-dimensional chain, 4 t for a
two-dimensional square lattice, and 6 t for a three-dimensional cubic lattice.

An important aspect of the resulting band structure is the fact that the electronic
states are stretched as opposed to the localized states of a single dot. Electrons and
holes are therefore mobile in these bands and can be led relatively easily to the
appropriate electrode, even if their generation takes place at a considerable distance.
Moreover, the value of the parameter t depends on the wave function of the given
energy level of the quantum dot. Therefore, the widths of the mini-bands resulting
from the levels of a quantum dot can vary significantly from level to level.

2.3 Non-periodic systems

Let us now consider non-periodic systems in which quantum dots of various
shapes and sizes are arranged randomly. In such systems, the connection between the

Figure 2.
Diagram of the energy structure of a one-dimensional network of interconnected quantum dots. In the case of a
large number of dots in the chain, a continuous energy band with a width of 2 t is created, corresponding to the
shaded area.
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dots is also described by random hoping parameters. Moreover, if the dots are
arranged quite rarely, then only some of them are connected together. In the simplest
case, such a system includes complexes of two or three interconnected quantum dots.
In the simplest model system, the complexes of double dots are arranged randomly,
and it can be assumed that the coupling parameter between two dots and the eigen
energies of individual dots in the complex are statistically different. If the energies of
states in dot 1 and 2 are ε1 and ε2, respectively, and the coupling parameter is t, then
the eigen energies of the interacting complex, ε� for the bonding state and ε+ for the
anti-bonding state, are respectively

ε� ¼ 1

2
ε1 þ ε2ð Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε1 � ε2ð Þ2 þ 4t2
q

(8)

The appropriate wave functions are located on the dots and in the space between
the dots. If the colon complexes are different, then a spectrum of discrete levels
located in different areas of the matrix is effectively obtained.

In the case of triple complexes, in which three dots are connected together to form
one complex, the coupling is described by two hoping parameters, and the interaction
result produces three different discrete levels located on the complex and in the space
between the dots.

In the case of networks with relatively small deviations from the translational
symmetry, the interaction between the dots leads to the formation of a continuous
band. However, the corresponding wave functions may be localized. The length of the
location, that is, figuratively speaking of the number of quantum dots in the area of

Figure 3.
Diagram of the electronic structure in the case of a two-dimensional network of interconnected quantum dots. In
the case of a large (unlimited) two-dimensional network, a continuous 4 t wide energy band is created (discrete
structure from a finite number of dots is now virtually indistinguishable).
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which the wave function related to a given electron state extends, may be large
enough, comparable to the size of the structure, so effectively such states meet the
mobility conditions needed for pairing electrons and holes.

3. Two-dimensional cells with chains of quantum dots

Let us now consider examples of possible planar photovoltaic cells containing one-
dimensional networks of quantum cells. The simplest such structure is shown in
Figure 4. Quantum dots are embedded in a thin layer of optically active semiconduc-
tor, which form one-dimensional chains. The distance between the strings is so long
that the interaction between dots from different strings can be ignored. This interac-
tion is non-zero only for the adjacent dots in a given string. If the quantum dots within
one chain are the same, then the interaction between the dots generates energy bands
from discrete levels of quantum dots. The electrons and holes generated in a certain
quantum dot can then freely flow to the appropriate electrode (collecting electrons or
holes). This is possible because the states in the electron bands made of discrete dot
levels are conductive. If both electrodes were the same, then there would be no such
separation. Note that the condition is the formation of bands from discrete dot levels,
however, these bands may be different within different chains. Thus, a more general
version of the photovoltaic cell shown in Figure 4 would be a cell in which each of the
strings would be composed of other quantum dots (however, the same in the given
chain).

However, even in this case, the same electrodes can be achieved by means of
appropriate modulation of quantum dots. Besides, such a modified arrangement of
dots should also strengthen the separation in the case of two different electrodes (as in
Figure 4). Well, if quantum dots in a given chain will gradually change their sizes (in
any direction), as shown schematically in Figure 5, then the energies of a given dot
level will gradually increase for electrons and decrease for holes (or vice versa). In
Figure 5, shown quantum dots are stretched in one direction but one can consider
different direction. The change of dot parameters is so small that the shift of a given
level is much smaller than the distance between the nearest discrete levels. Then the

Figure 4.
Diagram of a planar photovoltaic cell with single-winding chains of the same quantum dots. Red- electron
transporting electrode, green- hole transporting electrode.
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electrons will go to the dot with a lower energy level (losing excess energy in ther-
malization processes), while the holes will be transported from the given dot to the
dot with higher energy, which effectively leads to electron-hole separation. As before,
a more general situation can be considered in which individual one-dimensional
strings are different.

4. Relaxation processes for energy and spin in quantum dots important
for photovoltaics applications

Possible applications of quantum dots in photovoltaics [6] call for the studies and
understanding of their optical and transport properties. These properties are either
controlled or strongly related to the energy and spin relaxation processes in these
systems. The energy relaxation is important since it determines transport properties of
the photovoltaic devices such as the probability of electron escape from the quantum
dot to the glass layer and the transparent conductive oxide and, as a result, the integral
photovoltaic efficiency. The spin relaxation is important since it is directly related to
the coupling mechanisms responsible for the energy relaxation and allows one to find
the efficient mechanisms of both the energy and the spin relaxation. In addition, the
spin states are critically important for the formation of the spectra of quantum dots
with several carriers (electrons and/or holes) and, thus, spin relaxation can determine
the photovoltaic efficiency of the charged quantum dots in the regime of strong light
irradiation, where the light intensity is sufficiently strong to produce more than one
carrier per quantum dot [8].

There are different types of quantum dots applicable in photovoltaics. Let us con-
sider ellipsoidal quantum dots serving as optical absorbers and, subsequently, source of
the photo excited electrons upon their escape from the dot. The main source of the
energy relaxation in single-electron quantum dots is due to various types of electron-
phonon coupling, which will be analysed below. In addition, we will analyse the mech-
anisms of the energy relaxation in multi-electron quantum dots taking into account the
electron-electron interaction. We will demonstrate that a novel mechanism of spin
relaxation, different from the conventional admixing mechanism, can be relevant for

Figure 5.
Diagram of a planar photovoltaic cell with single-axis chains of quantum dots, the parameters of which (e.g. sizes)
gradually change. Red- electron transporting electrode, green- hole transporting electrode.
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the quantum dots based on III-V group materials. Let us begin with a model of a
semiconductor quantum dot applicable in photovoltaics. These dots have a variety of
different properties related to their sizes and shapes. Although this variety extends the
ability to use the quantum dots for nonmonochromatic light sources such as sunlight, on
the other hand, it decreases the controllability of their applications. Direct system-
dependent analysis of properties of quantum dots is difficult and can basically be done
with the effective mass approximation as included in the Hamiltonian

H0 ¼ p2

2m ∗
þUe rð Þ: (9)

Where p2

2m ∗ , is the electron kinetic energy, p is the electron momentum, m∗ is the

electron effective mass, and U (r) is the effective confining potential of the quantum
dot. Frequently, for model calculations the confinement is taken in the form of an
anisotropic oscillator:

Ue rð Þ ¼ 2m ∗ Ω2
∥ x2 þ y2
	 


þ Ω2
zz

2
h i

=2, (10)

where Ωk and Ωz, are the corresponding frequencies of the anisotropic oscillator.

However, this potential is well-suitable only for the description of the low-energy
states of the photoexcited electrons, where wavefunction is well-localized near the
potential minimum. Another form of the potential is given by Ue rð Þ = 0 for r inside the
quantum dot, Ue rð Þ = U for r outside the quantum dot, where the inside/outside
boundary determines the quantum dot shape. Usual model shapes of quantum dot are
ellipsoidal with an example presented in Figure 6. The typical scale of the quantum
kinetic energy is determined by the z � axis extension of the quantum dot ω as

ℏ
2m ∗ω2 with the corresponding quantity of the order of 10 meV for ω � 10 nm and

m ∗ of the order of 0.1 of the free electron mass. For highly excited states, with the
energies above the excitation threshold of the order of 100 meV, but less than the
confinement potential U, a classical description in terms of the electron trajectories
becomes possible. Here emission of phonons leads to the relaxation to the lower-
energy quantum states. To study the relaxation, we present electron-phonon coupling
Hamiltonian (assuming the crystal volume � 1) in the form:

Figure 6.
(a) Two model ellipsoidal quantum dot on the surface of a glass. The vertical size of the quantum dot is denoted as
w, typically of the order of 10 nm. (b) Classical trajectory of highly photoexcited electron in the quantum dot.
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Ve�ph ¼
D

ffiffiffi

ℏ
p
ffiffiffiffiffiffiffi

2ζc
p

X

q

ffiffiffi

q
p

deð Þ e�iqra†q þH:c
� �

(11)

Where a†q is the creation operator for the phonon with momentum q, D is the

deformation potential (D = �5.5 eV in GaAs), ζ is the crystal density, d = q/q is the
phonon propagation direction, e is the phonon polarization, c is the speed of the
longitudinal sound mode, and summation is taken over the momenta. We have chosen
a single longitudinal phonon branch with (de) = 1, since for the transverse branches
(de) = 0, taking into account only the strongest interaction with the deformational
potential of the acoustic phonons.

There are different regimes of energy relaxation. The first regime is relevant for
the highly-excited semiclassical states, leading to their energy loss and subsequent
quantization with localization in the quantum states. The second regime is relevant for
the localized states, where phonon-induced transitions occur between the low-energy
quantum states in the dots. We begin with the most important for the photovoltaics
semiclassical regime, where the electron states can be presented as plane waves. For
the relaxation of these states shown in Figure 6(b) one can use the classical
Boltzmann equation based on Fermi’s golden rule. The energy-dependent phonon
emission rate 1/τ (E) per single phonon mode with wavevector q leading to the energy
relaxation is given by this rule as [9]:

1

τ Eð Þ ¼
2πD2

ℏ

ℏ2ζc

ð

qδ Ef � Ei þ ℏΩ qð Þ

 � d3kf

2πð Þ3
(12)

where the initial and final energy is Ei ¼ ℏ
2k2i

2m ∗ and Ef ¼
ℏ
2k2f

2m ∗ respectively, final electron

wavevector kf = ki� q, and δ [..]� function corresponds to the energy conservation with
(q) = cq. Taking into account that the characteristic wave vector ki of a photoexcited
electron is of the order of 106 cm�1 or higher, at the corresponding phonon momentum
its energy ℏck i is of the order of less than one meV, that is 10 K, much less than the
electron energy. As a result, the electron scattering is quasi-elastic and the occupation

number of the phonons nB ¼ exp ℏΩ qð Þ
T � 1

�h i�1
, equal to T/ℏΩ at the room temperature

T, is large. Therefore, the emission probability is greatly enhanced by the factor nB + 1.
However, this occupation factor increases the phonon absorption probability as well and
these processes partially compensate each other. This process leads to the energy depen-

dence of 1
τ Eð Þ determined by the electron density of states, proportional to

ffiffiffi

E
p

and by the

absolute value of the phonon momentum, also behaving as
ffiffiffi

E
p

and resulting in:

1

τ Eð Þ≈
1

τD

E

ℏΩD

m ∗ c2

ℏΩD

� �1=2

(13)

where τD is the nominal momentum relaxation time Ref. [9] (τD = 2.5 ps in GaAs),
and D is the Debye phonon frequency. The time-dependence of the energy due to

nearly balanced quasi-elastic emission and absorption of phonon is given by: dE tð Þ
dt ¼

ℏΩ Eð Þ
τ Eð Þ , where the energy goes to phonon subsystem. The numerical value of eτ is rather

long, being of the order of 10�7 s as a result. The resulting time dependence of energy
has the form:
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E tð Þ ¼ E 0ð Þ
ffiffiffiffiffiffiffiffi

E 0ð Þ
2
ffiffiffiffi

ℏτ
p

q

tþ 1
� �2 (14)

For the initial energy E(0) = 100 meV this estimate yields the value τ � 10 ps,
demonstrating that energy relaxation of photoexcited electrons is fast and can set up
the initial condition for the diffusion through the glass layer. Taking into account that
the electron velocity is of the order of 108 cm/s, electron during this time hits the
quantum dot boundary at least 100 times. As a result, the electron can escape from the
quantum dot if the escape probability per single boundary collision is higher than
10�2, thus, requiring for a relatively transparent boundary between the quantum dot
and the glass (see Figure 6(a)).

Quantum dots are often single-electron charged since they can absorb electrons
from the bulk of the semiconductors. Therefore, complex states built by a photoex-
cited electron-hole pair inside the dot and the resident electron, usually called ‘trions’
Ref. [9], can be formed, as shown in Figure 7(a). The formation of trions extends the
absorption range of quantum dots. The spectrum and the structure of a trion strongly
depends on electron-electron and electron-hole coulomb interaction between elec-
trons. The Hamiltonian of the system becomes:

H0 ¼
p21
2m∗

þ p22
2m∗

þ P2

2m∗
h

þUe r1ð Þ þUe r2ð Þ þUh Rð Þ þ e2

ϵ r1 � r2j j þ
e2

ϵ r1 �Rj j þ
e2

ϵ r2 �Rj j

� �

(15)

where r1 and r2 are positions of electrons (with momenta p1 and p2, respectively),
R is the position of the hole (with mass m ∗

h and the momentum P with the confine-
ment potential Uh (R)), and ǫ is the quantum dot material dielectric constant. The
process leading to the overall decrease in the escape probability is shown in Figure 7
(b). Note that this process reduces the energy of the upper electron and increases the
energy of the lower one.

Figure 7.
(a) Trion in a photoexcited quantum dot. Electron positions are r1 and r2, and the hole position is R. (b)
Interaction-induced transition between initial (left) and final (right) states in a quantum dot. Note that, due to
the Pauli principle, this transition is possible only for the singlet electron spin state.
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Despite this partial increase, the escape probability, strongly dependent on the
electron energy, decreases. The corresponding energy and time scales are given by the
following matrix element, where we neglected the exchange effects take only the

direct interactions as: VC ¼
Ð

ψ1
f r1ð Þψ2

f r2ð Þψh
f Rð ÞHCψ

1
i r1ð Þ r2Þψ

h
i Rð Þd3r1d3r2d3R

	

where the coulomb term

HC ¼ e2

ϵ r1 � r2j j þ
e2

ϵ r1 � Rj j þ
e2

ϵ r2 � Rj j

� �

(16)

The probability of this process is given by the time scale corresponding to the

energy scale of the Hamiltonian (16), typically of the order of e2

ϵω
, that is higher than

1 meV. Therefore, these processes are very fast, being, in general, energy-conserving
and dependent on the total spin of participating electrons. This energy value corre-
sponds to short time scales of these processes, of the order of a picosecond. Then, on
the top of these fast transitions, a relatively slow energy relaxation due to phonons
occurs, complicated by the transitions between the localized states in the quantum
dots. Yet, the energy relaxation weakly depends on these fast electron transitions since
these states are localized and, therefore, the estimate of long τ[loc] given in the
previous subsection is valid here as well.

Thus, understanding of energy and spin relaxation processes in quantum dots
suitable for applications in photovoltaics is crucial. The energy relaxation is due to the
phonon emission. It was found the relaxation times of semiclassical states of the order
of 1 ps, sufficient for electron escape from the quantum dot and its contribution to the
photovoltaic effects. In addition, the redistribution of electrons among the energy
levels and subsequent energy evolution can be caused by the electron-electron inter-
actions. Spin relaxation in quantum dots is caused by direct spin-phonon coupling and
leads to the spin relaxation times of the order of 1�102 microsecond, being the longest
relaxation process in quantum dots.
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