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Abstract

The lipids are essential compounds of cells, with biochemical and structural 
properties. Lipids are classified according to their chain length or saturation levels 
and biogenesis. Lipidomics is a spectroscopic and spectrometric technique, like Mass 
Spectrometry and Nuclear Magnetic Resonance, as well as bioinformatics to quantify 
and characterize the lipid profile. Lipidomics enables the fundamental understanding 
of lipid biology, the identification of drug targets for therapy, and the discovery of 
lipid biomarkers of disease cohorts. Therefore, lipidomics allows knowing the diagno-
sis and clinical follow-up in medical therapy towards any disease. In this way, the lipid 
profile allows us to monitor the administration of a clinical treatment and assertively 
diagnose human diseases.

Keywords: clinical biomarkers, lipid biomarker, lipidomic methodology, lipidomic 
profile, personalized medicine

1. Introduction

Lipids are prominent among the four main macromolecules (the others being 
amino acids, carbohydrates, and nucleic acids) in the diversity of molecular species 
[1]. They are essential to the biochemical and biophysical properties of all cells [2, 3]. 
Lipids serve as energy storage sources [4], homeostasis regulators [5], and nutrients; 
besides, they participate in events of pathophysiological importance [6]. Current 
estimates place the number of lipids at 100,000–500,000 [6].

Classification of lipids is based on their chain length, backbone, or saturation 
levels. Chain length classification is self-explanatory, while lipids are catego-
rized into phospholipids, glycolipids, SPH, and sterols based on their backbone 
or saturated or unsaturated according to their saturation level [3, 7]. Complex 
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lipids, such as glycolipids and sphingolipids, are combinations of carbohydrates or 
sphingoid bases and fatty acids [3]. Ceramides are bioactive lipids that participate 
in biochemical reactions, such as metabolism, apoptosis, and inflammation, that 
produce cardiovascular diseases when dysregulated [8]. Lipids comprise around 
one-third of the components of cells and are essential to metabolism and intra-
cellular signaling. Thus, fully understanding their dynamic is fundamental to 
preventing, diagnosing, and treating a wide range of human diseases [9], such as 
cancer, where lipid biosynthesis is often increased [10]. However, the diversity and 
number of lipids as well as their variation between individuals is a current topic 
under study [6].

Lipidomics is a sub-branch of metabolomics devoted to studying the complete 
lipid profile within a cell, tissue, or organism through spectroscopic and/or spectro-
metric methods in combination with bioinformatic analysis [4, 9, 11]. This combined 
approach provides a comprehensive understanding of the role of the lipid profile –the 
lipidome– in biological systems [12]. Thus, the stability and reproducibility of the 
analytical methods are critical for producing reliable output [13]. The degree of under-
standing of lipid biology available through lipidomics facilitates biomarker discovery 
and offers therapeutic possibilities [6]. A case in point, it developed a mouse model for 
the Gulf War Illness through lipidomics, which led to a therapy scheme that effectively 
modified the lives of roughly 250,000 soldiers affected by the disease. This chapter 
reports on the importance of lipidomics in diagnosing and clinical follow-up in medical 
therapy [14, 15].

2. Toward personalized medicine

2.1 Omics sciences: the big data age

Lipid analyses performed on clinical chemical analyzers, such as TAG, HDL-C, 
and FC, have traditionally been used to analyze and predict the state of health and/
or the risk of developing a disease [16]. But with the advent of the post-genomic 
era, these individual analyses are quickly being replaced by broad ”-omics” studies, 
made possible by a rampant development of precision instrumentation and compu-
tational resources [4]. This technology allows analyzing a large number of biological 
samples in a profitable way for clinical tests [17]. Multi-omics research strategies 
have proven to be a comprehensive system for the identification of biomarker 
molecules, which can detect individuals with potential risk of diseases, as well as 
their nutritional evaluation [18]. Illnesses can be studied in greater detail through 
lipidomics since they comprehensively evaluate the metabolites and metabolic path-
ways [19], allowing the simultaneous study of several lipid species in body fluids 
[20]. This balance between flexibility and detail is the cornerstone of personalized 
medicine.

The use of omics over classical markers has clear advantages. It has, for instance, 
yielded more practical and valuable indicators for diabetes, contributing to a broader 
picture of the disease [21]. Moreover, lipidomics findings are being combined with 
other omics studies –such as transcriptomics, metabolomics, and proteomics–and 
advanced imaging to reach a previously unattainable degree of precision phenotyping 
in progressively numerous cohorts. Undoubtedly, biomarkers and pharmaceutical tar-
gets discovered through these combined approaches are rapidly gaining importance in 
clinical scenarios [22, 23].
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2.2 Lipid biomarkers in the clinic

Biomarkers are quantifiable characteristics distinctive of metabolic or pathogenic 
processes; the latter enables diagnostic, treatment assignment, and response monitor-
ing [18, 24]. Individual lipids and lipid profiles have been appointed as biomarkers 
of human diseases and are analyzed by means of various chromatography techniques 
coupled with mass spectrometry, as summarized in Table 1.

Pre-analysis Instrumentation Analysis/Post-analysis Ref.

Disease (biological sample) (Mass analyzer) 

system

Results/Conclusions

44 cystic fibrosis patients 

(plasma)

(ion-trap) LC-MS PC and LPC detected species [25]

DM-2 and NAFLD patients 

(plasma)

GC-MS

*NMR1H

Liver fat content is strongly associated 

with Chol synthesis independently 

of obesity

[26]

6 preeclampsia patients 

(placental)

(Q-trap) LC-MS Lipids of STBM are implicated in 

immune response, coagulation, 

oxidative stress and apoptosis.

[27]

7,500 Atrioventricular septal 

defect patients (blood)

(Q-Trap) LC-MS

GC-MS

Biomarkers will be assessed 

for association, calibration, 

discrimination and reclassification

[23]

3 Gaucher disease patients 

(plasma and urine)

(ion trap) 

nLC–ESI–MS/MS

20 plasma and 10 urinary lipids were 

selected as significant species of 

Gaucher disease

[28]

10 CKD patients (stage 4/5 

renal disease) (plasma)

(LTQ ) LC-MS/MS Lipid alterations in CKD disease 

(plasmenyl ethanolamines, 

sulfatides, Cer and Chol sulfate)

[29]

8 CVD patients: lipoprotein 

apheresis treatment (plasma)

LC-MS/MS Increases of anti-inflammatory lipid 

mediators derived from AA or EPA 

and DHA.

[30]

150 coronary disorders 

Tunisian patients (blood)

GC/MS-SIM PA and PS as biomarkers of 

peroxisomal metabolism

disorders in atherosclerosis 

progression.

[31]

30 hypercholesterolemia 

pregnant women (plasma)

(QTOF) 

UPLC- MS/MS

PC (16:0/20:4) (18:0/20:4) lipid 

species in cord blood affected by 

gestational hyper-cholesterolemia.

[32]

75 anorexia nervosa patients 

(plasma)

GC/MS Increased: ω-3 ALA, EPA. Decreased: 

ω-6 to ω-3, LA, ALA, AA, EPA. 

Dysregulated PUFA metabolism

[18]

18 advanced rectal cancer 

patients: CAPOX-treatment 

(plasma)

MRM-LC-MS/MS LPE (22:5/0:0), SM (d18:2/18:1), LPC 

(16:0/0:0), LPC (15:1(9z)/0:0) and 

PC (40:2) are lower in NRP

[33]

20 myeloid leukemia patients 

(plasma)

(QTOF)UPLC-

ESI-MS. GC-MS

Increase of AA precursors in 

leukemia patients’ plasma. New 

targets for drug therapy

[5]

30 nascent MetS patients 

(plasma)

(QTOF) LC-MS/MS Increases of PC (34:2) in patients 

with MetS. Novel biomarker in MetS.

[34]
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Pre-analysis Instrumentation Analysis/Post-analysis Ref.

Disease (biological sample) (Mass analyzer) 

system

Results/Conclusions

172 AD patients (plasma) (LTQ ) UHPLC-

ESI-MS/

MS

TAG (50:1), DAG (18:1) and PE (36:2) 

present in brain atrophy.

[35]

15 DM-1 and diabetic 

nephropathy children (urine)

(Triple TOF) 

UHPLC-MS

Increase of Cer (44;0,2) and HexCer 

species, suggesting as biomarkers of 

renal function decline.

[36]

70 endometriosis (plasma/

peritoneal)

(QTOF) LC-MS/MS Biomarkers: LPC 16:0, PE O-20:0,  

PE O 34:1, PC 36:2, PC 36:4, PC 36:5, 

PC 38:4, PC 38:6 and SM 34:1.

[37]

Liver/gastric/lung/colorectal/

thyroid cancer (plasma-urine)

(ion trap) 

nUHPLC-ESI-MS/

MS

LPE and PS high in thyroid cancer. 

Validation of cancer-specific lipid 

markers

[38]

432 DM-1 patients (plasma) (triple Q )LC-MS/

MS

lactosyl-Cer: predicts 

macroalbuminuria in DM-1

[39]

Multiple sclerosis patients 

(plasma)

(triple TOF) LC-MS Cer-induced DNA-methylation of 

antiproliferative genes.

[40]

67 unipolar/bipolar disorders 

patients (plasma)

(Q Trap) 

LC-ESI-MS/MS

Increases: Cer (C16, C18, C20, 

C22, C24, C24:1, C24:1GluCer, C24 

lactosylceramide), DAG, TAG

[41]

20 colorectal cancer patients 

(colon tissue)

LC-MS/MS Increases of LPC, LPE, LPI (18:1) and 

LPI (18:0)

[42]

63 cutaneous leishmaniosis 

patients: treatment (plasma)

(triple TOF) 

LC-MS/MS

LTB4, 5-HETE, 5-oxo-HETE, 

12-HETE, 11-HETE, PGE2, and 

15-HETE. Targets of therapy

[43]

29 SARS-CoV-2 patients 

(plasma)

UHPLC-MS/MS Alterations in PAs, sterols, SPHs 

and LPAs. Increases of Cer-

phosphorylethanolamine and PE.

[44]

13 multiple sclerosis patients 

(post mortem brain tissue)

(Q-Trap) LC-MS/

MS

Multiple sclerosis lesions: decrease: 

dhCer, Cer and SM subspecies. 

Increase: HexCer, Cer 1-phosphate

[45]

47 mTLE-HS patients 

(hippocampal sclerosis)

(QTOF) 

UPLC-ESI- -MS

33 lipids expressed. Decreased: 

Cer and lactosylceramide levels in 

mTLE-HS patients.

[46]

40 MetS patient (plasma) (QTOF)/

(Q-orbitrap) 

UHPLC-MS

PC: 18:1/16:0, o-22:3/22:3, P-18:1/16:1. 

Choline metabolism is affected. 

Biomarkers with prediction.

[24]

221 myopia children/

adolescents (serum )

UHPLC-MS 275 metabolite presents in 33 

pathways

[47]

106 colorectal cancer patient 

(tumor tissue)

(Q-Trap) HRMS/

LC- MS/MS

Presence: LPC (16:1, 18:1, 20:4, 22:6) 

and SM species. Cer: C24:0–C26:0. 

GPL, GL and SM

[48]

Mild/moderate/severe asthma 

patients (bronchoscopy)

(orbitrap)-

UPLC-MS

Increase: PC, LPC, bis 

(monoacylglycerol) phosphate. 

Decrease: OXPHOS (severe asthma).

[49]

33 lupus erythematosus patients 

(blood)

(triple Q ) LC-MS/

MS

Increase: LPL, PS species. Decrease of 

plasmalogen.

[50]
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In CKD, TAG, and N–acyl taurines increased, although total lipid and cholesterol 
levels, usually evaluated in clinical biochemistry, remain unchanged [29]. In patients 
infected with DNefHIV, lipidomic profiles revealed differences in the abundance 
of PS and SPH [63]. ACLF patients present with a particular lipid profile, mainly 

Pre-analysis Instrumentation Analysis/Post-analysis Ref.

Disease (biological sample) (Mass analyzer) 

system

Results/Conclusions

826 AD cirrhosis patients 

(serum)

LC-MS/MS SM permit distinguish between 

patients with compensated and 

decompensated cirrhosis.

[51]

15 Niemann-Pick disease 

patients (plasma)

LC-MS/MS Increase: DG, AA and CE. [52]

COVID-19 asymptomatic 

patients (serum)

(TOF)

UHPLC-TIMS

15 lipids present in asymptomatic 

COVID-19 patients.

[53]

29 lung adenocarcinoma 

(tumor tissue)

(Q-orbitrap) 

LC-MS/MS

Increases of free-cholesterol and CE 

(18:1 and 20:4)

[54]

37 persons recovered/severe 

(SARSCoV-2)(plasma donor)

(QTOF)

HILIC-LC-MS

Levels of fatty acyls and GPL were 

lower in recovered patients

[55]

SARS-CoV-2 peripheral 

leukocytes, colon/jejunum 

(plasma)

HPCL-MS/MS Infection involving EPA, AA and 

gonadal steroids. ω-3 FFA associated 

with SARS-CoV-2 receptors

[56]

132 metastatic castration-

resistant prostate cancer 

patients ENZA/AA drugs 

(plasma)

LC-MS Increased Cer was associated 

with androgen receptor signaling 

inhibitors resistance.

[57]

60 CHD/HLP patients: Salvia 

milthiorriza treated (plasma)

(QTOF) UPLC-MS Presence: PC (18:0/18:4; 18:2/16:0), 

PE (15:0 /22:1), LPC (0:0/18:0).  

S. miltiorrhiza reduce lipids

[58]

256 arthritis rheumatoid 

patients (serum)

(Q-orbitrap) 

UPLC-MS

Biomarkers: PE 16:0-18:2,  

TG 18:0-18:1-18:2

[13]

Patient: proteinuria, Fabry 

disease (plasma)

(Orbitrap) 

HRMS-UHPLC-MS

Galabiosylceramide-related lipid 

biomarker was higher in the patient’s 

renal tissue biopsy

[12]

126 COVID-19 patients (serum) (QTOF) 

UHPLC-MS

Biomarker: LPC 22:6, PC 36:1, bile 

acids. Lipidomics/machine learning 

techniques

[59]

206 obstructive sleep apnea 

patients (plasma)

(QTOF) 

UHPLC-ESI-MS/

MS

GPL and bile acids are present. 

Adaptive mechanisms in response to 

obstructive sleep apnea

[60]

20 radiation/atherosclerotic 

carotid plaques patients

(QTOF)

DESI-UPLC-MS

Biomarkers: 6 TG in the radiation-

induced carotid plaques and 

atherosclerotic carotid plaques.

[61]

112 cystic fibrosis patients: 

drugs ELX/TEZ/IVA (plasma)

LC-MS/MS Decrease: Cer (C16, C18, C20, C24:1). 

Up-regulation dhCer C24.  

ELX/TEZ/IVA

[62]

*Spectroscopy method.

Table 1. 
Methodology, instrumentation, and human diseases diagnosed by lipidomic profiles.
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comprising CEs. These lipids also predict AD treatment outcomes [51]. In adverse 
pregnancies, the STBM contained the potential biomarkers SM, Chol, PS, PC, and 
PI [27]. In patients with CVD, the presence of the Cer d18:1/16:0, Cer d18:1/24:1, and 
Cer d18:1/24:0 were associated with a fatal outcome [8]. In DM-1, lipidomics can 
predict changes in SPH distribution associated with increased vascular permeability 
in different organs; this occurs only during the early onset of the disease and plays a 
critical role in developing complications [39]. In mTLE-HS patients, alterations to the 
hippocampus lipidome with potential for lipidomics-based therapies were reported. 
[46]. Lysophosphatidyl ethanolamine and lysophosphatidyl inositol species were 
associated with a number of cancer types. They are present in the liver (four PI and 
DAG 16:1_18:0), gastric (PI 34:2, 36:3, and 36:4, and LPA 18:2), lung (LPI 16:0, SM 
d18:1/20:0 and TAG 50:1 and 54:4), and thyroid cancer (LPI 18:0 and 18:1) [38]. Lipid 
differences between tumor and normal tissue have been proved to be of diagnostic 
and therapeutic significance [64]. Meanwhile, the upregulation of SPH downregula-
tion of PI and glycerol phospholipid metabolism are associated with worse survival in 
patients with adrenocortical carcinoma [65].

In patients with depressive conditions, oxylipin concentration fluctuates between 
depression states. Dietary ω-6 (LA, AA) and ω-3 (EPA and DHA) fatty acids may 
underlie inflammatory states in symptomatic major depressive disorder with a 
seasonal pattern [66]; while brain lipidome changes include decreased PI, PA, and CL 
contents have been described [67]. Obese children with NAFLD showed increased 
hepatic epoxyeicosanoids with higher grades of steatosis and unaltered PUFA precur-
sors [68]. In addition, in ACLF, Lipoxin A5 and epoxy keto octadecenoic acid formed 
a signature associated with coagulation and liver failures [69]. Moreover, in myocar-
dial infarction, lipidomics showed an association between 2-aminoadipic acid and 
alterations of plasma metabolic signaling of hexoses, amino acids, biogenic amines, 
acylcarnitines, glycerophospholipids, and SPH showing the diagnostic and prognostic 
limits in acute and chronic heart failure [70].

Exposure to environmental pollutants can also alter lipid profiles; Cer, SPH, and 
TAG are potential biomarkers of lipotoxicity [71]. Macrophages reprogram their lipid 
metabolism in response to environmental cues [2]. Finally, there is an association 
between ether lipid signature and exceptional human longevity [72]. The diversity of 
conditions associated with differences in lipid profiles supports the growing impor-
tance of lipidomics as a clinical diagnostic tool.

2.2.1 Lipidomics in animal health

The study of lipidomics focuses not only on human health issues but also on ani-
mal health topics. Lipidomics helped explain the dynamics of inflammation during a 
bacterial attack in bovine mastitis [73] and provided a diagnostic biomarker for fatty 
liver disease in dairy cows [74]. Similarly, lipidomics contributed to understanding 
cystic fibrosis lung disease in newborn pigs [75] and identifying ganglioside disease 
markers in cats undergoing gene therapy [76]. Examples like these are poised to 
increase in the coming years as lipidomics extends its prognostic threshold to humans 
and animals, both economically relevant and wild.

2.3 Lipidomics in the study of rare diseases

Rare disorders remain a challenge even to modern medicine, and mounting 
evidence shows the prominent role of lipidomics in this scenario [12]. In patients with 
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Gaucher disease, the lipid profile allowed the diagnosis during enzyme replacement 
therapy [28]. Olmsted syndrome caused striking decreases in 15-LOX and dhCer levels 
[77]. In patients with Fabry disease, the presence of glycosphingolipids, galabiosyl-
ceramide, and globotriaosylsphingosine is observed in vascular endothelium, nerves, 
cardiomyocytes, and renal glomerular podocytes [12]. A dysregulation in lipids 
involved in both cellular structure and membrane integrity was identified in fragile 
X syndrome, suggesting that X chromosomal deletion disorders are not limited to 
alterations in neuronal functions [78]. Barth syndrome showed a significant decrease 
in linoleic acid (18:2)-enriched molecular species, most notably tetra-18:2 (18:2-18:2-
18:2-18:2), which is the major molecular species of cardiolipin in the myocardium [79].

2.3.1 Tay-Sachs Disease: an unwanted inheritance

The Tay-Sachs disease (TD) is a very rare (1:300 000) autosomal-recessive lyso-
somal storage disease [80]. This disorder is caused by mutations in the HEXA gene, 
which encodes for the β-hexosaminidase (Hex) enzyme [81]. Hex deficiency or low 
activity causes fatal inherited disorders [80]. Lysosomal enzyme Hex degrades the 
GM2 ganglioside; gangliosides are glycolipids present in neuronal cell plasma mem-
branes. There are different Hex isoenzymes. HexA has two subunits (α and β), which 
are encoded by HEXA and HEXB genes, respectively. Hex B is a homodimer (two 
β-subunits), and HexS is a homodimer (two α-subunits) (Figure 1) [82].

Lyso-GM2 ganglioside concentrations in plasma and the brain of TD patients are 
elevated in association with loss of alpha-hexosaminidase activity. This molecule is 
thus a useful diagnostic and monitoring biomarker for this disease [83].

2.4 Lipidomics of COVID-19

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has demonstrated the 
devastating impact of a critical illness on a global scale [44, 84]. In an equally unprec-
edented effort, the scientific community joined efforts to understand this disease from 
every conceivable point of view. Almost expectedly, SARS-CoV-2 infection disrupts 
the cellular lipid profile. Serum from recovered patients displayed different cytokine 
and lipidomic compositions than patients with severe disease [55]. The overall lipid 
metabolism increased the production of short- and medium-chain production of 
saturated fatty acids, acyl-carnitines, and SPH [44]. Lipidomic signatures, including 
n-3 long-chain PUFA, hydroxy fatty acids, and female gonadal steroids, were linked to 
SARS-CoV-2 infection [56]. Moreover, in a study by Castane et al. (2022), O-octanoyl-
R-carnitine, LPE, AA, and oxylipins were the most altered parameters in COVID-19 
patients compared to healthy volunteers, although the number of cases studied was 
small [59]. SARS-CoV-2 dysregulates lipid metabolism, especially the enhanced mem-
brane phospholipid synthesis, and alters SPH homeostasis, implicating the specific 
host immune, inflammatory, and antiviral responses in asymptomatic COVID-19 [53] 
(Hao et al., 2021). Global response to COVID-19 infection highlighted the importance 
of cost- and time-effective biomarker detection, which is a requirement that lipidomic 
and machine learning fulfilled in a timely manner [59].

2.5 Lipidomics of pharmacologic interactions

Despite constant scientific advances, resistance and adverse reactions remain a 
pressing issue in clinical practice [85]; several groups report lipid profile alterations as 
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reactions to treatment. The antitumoral drug Imidazole Ketone Erastin increased the 
DAG, monoacylglycerol, and phospholipids, possibly through activation of the TAG 
hydrolysis enzyme (ATGL) in response to oxidative stress [86]. The CAPOX drugs 
employed in colorectal cancer treatment elicited differential levels of SM (d18:2/18:1), 
LysoPC (16:0/0:0), LysoPC (15:1(9z)/0:0), and Lyso PE (22:5/0:0) in responders 
versus non-responders [33]. In paclitaxel-resistant breast cancer, the forkhead box 
transcription factor M1 increased TG and PC, and decreased phospholipase D1 and 
lipid droplets [87]. In brain tumors, GPD1 displayed specific expression in brain 
tumor stem cells [88]. In general, lipid metabolism irradiation therapy (RT) disrupts 

Figure 1. 
Human β-hexosaminidase. A) Human β-hexosaminidase isoenzyme A structure (PDB ID: 2GJX) comprises 
two subunits from different genes. The subunit α (orange surface) is encoded by the HEXA gene (UniProtKB: 
P06865), and subunit β (blue light surface) is encoded by HEXB (UniProtKB: P07686). B) Hex isoenzyme A 
structure (PDB ID: 1NOU) comprises two β subunits (purple and blue light surfaces). C) Secondary structure 
representation of α and β subunits superimposed (helix in purple, β strands arrows in yellow, and turns/coil in 
cyan/white, respectively) in the same position that subunits orange and purple on A and B. Two CATH domains 
form both subunits; on the N-terminal, an α-β 2-layer sandwich architecture (**), followed the C-terminal by a 
catalytic α/beta-barrel fold architecture (*), the typical circular beta-barrel from the TPI enzymes. D) Secondary 
structure representation of α and β subunits superimposed rotated to see the α/β-barrel fold (*).
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the regulation of lipogenic genes, decreasing LPCs and cholesterol [89]. Meanwhile, 
in patients with distal esophageal cancer, RT induced cardiotoxicity, detecting six 
metabolites, after a four-week RT therapy [17].

Similar effects have been observed in human cancer-derived cell lines. Oxaliplatin, 
a frequent first-line adjuvant therapy for colorectal cancer, altered TAG and phospho-
lipid levels in HT29 cells [85]. Diclofenac altered the cell phospholipid metabolism 
and induced PUFA accumulation in a neuroblastoma-derived cell line, suggesting 
tumoricidal potential [90]. The experimental antitumoral drug T-3764518 induced 
lipidomic changes and suppressed PC desaturation indices in HCT-116 cells [10]. 
Another experimental drug, FTY720, induced elevated levels of sphingosine, causing 
apoptosis in leukemic natural killer cells [91]. When treated with inducers of sodium 
phenylbutyrate (SPB) and all-trans retinoic acid (ATRA), the glioblastoma-derived 
cell line U87-MG displayed an increase in saturated PCs (38:1), 816 m/z; PC (36:1), 
788 m/z; (31:1), 725 m/z, and a decrease in saturated PCs (PC (32:0), 734 m/z). These 
modifications in the lipidomic profile have potential application in therapy personal-
ization [64].

Not only cancer cells respond to treatment with lipid metabolism imbalances. The 
VEN/OL drugs increased Cer (C18, C22C, and C24) in patients with depression or 
bipolar disorder [41]. Statin therapy to treat atherogenic dyslipidemia induced LPC 
and LPI [92]. Astaxanthin treatment revealed the over-accumulation of myocardial 
Cer in cardiac fibrosis [93]. Leishmaniasis biomarkers predicted by machine learning 
and lipidomic profile, such as eotaxin, 11-HETE, and transforming growth factor-β, 
were useful in identifying potential treatment failure [43]. Older HIV+ Australian 
men on antiretroviral therapy displayed high lipid dysregulation, specifically in GM3 
ganglioside and mon ohexosylceramides, previously identified as frailty biomark-
ers [94]. Eicosanoid concentration was an indicator of other lipidic alterations in 
asthmatic subjects with aspirin intolerance [95]. Obese patients with insulin-resistant 
hypertriglyceridemic hypertension treated with statins showed increased plas-
malogen and PUFA levels and reduced PE and PG classes [96]. In obstructive sleep 
apnea patients, a five-lipid group comprising 25-cinnamoyl-vulgaroside, glycocholic 
acid, bilirubin, and two previously unreported lipid species changed significantly 
after continuous positive airway pressure treatment [60]. Canagliflozin treatment 
increased the amounts of prostaglandin E2 and resolvin E3 in the liver of obese mice 
used as a biological model to understand the NAFLD [97]. Saroglitazar, a PPAR 
α/γ agonist, protected patients against obesity, insulin resistance, and steatosis by 
reducing TG and modulating phospholipid levels. Meanwhile, Hepano, an Ayurveda 
formulation, did so by modulating phospholipids, Cer, and oxidized lipids [98]. The 
ELX/TEZ/IVA modulator therapy alters plasma SPH levels and Cer species in cystic 
fibrosis patients [62]. Systemic lupus erythematosus patients treated with antioxi-
dants displayed an ordered lipid conformation that contrasted with that of untreated 
patients [50]. The experimental drug J147 used to treat AD, reduced plasma FFA 
levels [99]. Donepezil, an anti-dementia drug, and the traditional Chinese medicine 
herbal decoction prepared to treat AD caused modifications in 15 types of com-
pounds derived from PC, SM, and LPC, which are now considered potential lipid 
biomarkers [100].

As noted in these works, the lipidome is highly sensitive to a wide range of stimuli, 
so there is vast potential for developing drugs that selectively target these modifica-
tions [2]. As Wolf and collaborators (2008) note, lipidomic tools offer a practical 
option for diagnosis and treatment monitoring in many diseases [101].
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2.6 Lipidomics in response to diet: we are what we eat

Recent literature shows a growing interest in lipidome modifications derived from 
the diet. Pomegranate seed oil and bitter melon extract modify the lipidomic profile 
of the cardiotoxicity induced by the anti-cancerous therapies showing anti-carcino-
genic or cardioprotective properties [102].

The effect of maternal diet supplementation with conjugated linoleic acids influ-
enced the contents of micro-elements in the cardiac tissue of newborns significantly 
[103]. Orange juice-derived nanovesicles modified the lipidome, decreasing TAG levels 
[104]. Tangeretin, a flavonoid present in some fruits, reduced body weight gain and 
ameliorated hepatic steatosis, lowering FFA, DG, TAG, Cer, and Chol levels, as detected 
by hepatic lipidomic analysis [105]. The diet supplemented with Lactococcus lactis 
(subsp. cremoris) increased glucose tolerance, developed less liver fat and inflamma-
tion, and decreased the oxylipin levels [106]. Moreover, in humans, phytosterol- and 
ω-3-supplemented milk reduced the LDL-GPL and LPC, inducing cardioprotection 
in persons with dyslipidemia and metabolic risk [107]. Salmon consumption induced 
selective incorporation of n-3 PUFA into PC lipids in human plasma, reducing cardio-
vascular disease risk [108]. Finally, herbal decoctions as in the traditional Chinese [109] 
and Asian [110] medicine resulted in an improved lipidomic profile in several human 
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The biological sample is obtained by noninvasive techniques such as blood and urine samples. Subsequently, 
the sample is analyzed by spectroscopic (NMR) and/or (mass spectrometry) techniques. Next, the results are 
compared with spectroscopic and/or spectrometric libraries. Soon, it will be possible to recognize the patients' lipid 
profile focused on the diagnosis or pharmacological treatment.
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diseases. Together, these findings show that diet's therapeutic effects on the lipidome 
are evident in various human diseases. Ultimately, a clinical-chemical-bioinformatics 
method is proposed, using recurrent chemical techniques such as NMR [111] and mass 
spectrometry [112] , for the study of the lipidome in various human diseases (Figure 2).

3. Conclusions and perspectives

We live well into the era of big data and the discovery of biomarkers in various 
diseases through omics tools, such as lipidomics, which are currently in progress. Omics 
data is becoming increasingly essential for the diagnostic study and monitoring of 
human diseases and even in animals of economic importance. Therefore, lipidomics is 
suggested as a "gold standard" technique for the clinical and therapeutic part of this new 
era in clinical medicine. Finally, we agree with Hyötyläinen and collaborators (2017) 
[113], who reported that the lipidomic test must become inexpensive, and its added 
value concerning health economics needs to be demonstrated in a prospective setting.
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PC phosphatidylcholine
LPC lysophosphatidylcholine.
NAFLD Nonalcoholic fatty liver disease.
DM diabetes mellitus.
STBM placental syncytiotrophoblast microvesicles.
PG phosphatidylglycerol.
GPL glycerophospholipids.
PI phosphatidylinositol.
PS phosphatidylserine.
PE phosphatidylethanolamine.
SM sphingomyelin.
Chol cholesterol.
LPE lysophosphatidylethanolamine.
LPI lysophosphatidylinositol.
HDL-C high-density lipoprotein-cholesterol.
DAG diacylglycerol.
TAG triacylglycerol.
FFA free fatty acids.
FC free cholesterol.
GPD1 glycerol-3-phosphate dehydrogenase.
CKD chronic kidney disease.
ACLF acute on chronic liver failure
CVD cardiovascular disease.
AA arachidonic acid.
EPA eicosapentaenoic acid.
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DHA docosahexaenoic acid.
PUFA polyunsaturated fatty acids.
LA linoleic acid.
ALA alpha-linolenic acid.
CAPOX capecitabine/oxaliplatin treatment.
VEN/OL venlafaxine and olanzapine treatment.
ENZA/AA enzalutamide/abiraterone treatment.
MetS metabolic syndrome.
15-LOX 15-lipoxygenase.
Cer ceramide.
dhCer dihydroceramide.
HexCer hexoseceramide.
Hex β-hexosaminidase.
GM2 disialotetrahexosylganglioside 2.
PPAR peroxisome proliferator-activated receptors.
AD Alzheimer’s disease.
TD Tay-Sachs disease.
ATGL adipose triglyceride lipase.
NRP not responder.
HETE hydroxy eicosatetraenoic acid.
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 of the genus 

Betacoronavirus.
SPH sphingolipids.
LPA lysophosphatidic acid.
mTLE-HS mesial temporal lobe epilepsy-hippocampal sclerosis.
CE cholesteryl ester.
CHD Coronary heart disease.
ELX/TEZ/IVA elexacaftor/tezacaftor/ivacaftor therapy.
GC-MS gas chromatography coupled with mass spectrometer.
NMR H1 proton nuclear magnetic resonance.
Q-trap linear trap mass spectrometer.
TLC thin layer chromatography.
HILIC hydrophilic interaction liquid chromatography.
ESI electrospray ionization.
MS/MS tandem mass spectrometry.
LTQ linear trap quadrupole mass spectrometer.
SIM selected ion monitoring.
QTOF quadrupole time-of-flight.
MRM Multiple Reaction Monitoring.
Triple Q triple quadrupole.
Q-orbitrap quadrupole-orbiting trap.
HRMS high-resolution mass spectrometer.
DESI desorption electrospray ionization.
TIMS thermal ionization mass spectrometry.
HPLC high-performance liquid chromatography.
UHPLC Ultra-HPLC.
nUHPLC nano-HPLC.
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