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Chapter

Stability of Algorithms in Statistical
Modeling
Alexander A. Kronberg and Tatiana K. Kronberg

Abstract

In this paper, we investigate algorithms stability for calculation of
multidimensional integrals using the statistical modeling methods. We considered
issues of the algorithms optimization and we give sufficient conditions for the stabil-
ity. We apply our approach to both calculation of integral from the regression func-
tion and the moments integral calculation. In all our numerical experiences, we used
the mt19937 pseudorandom number generator.

Keywords: statistical modeling, pseudorandom numbers, optimal density, integral
estimation, Monte Carlo methods

1. Introduction

One of the main problem of the statistical modeling method (the Monte Carlo
method) is the problem of quality for pseudorandom numbers. In the paper, we
consider a task of multidimensional integrals calculation by the statistical modeling
method and give sufficient conditions for the stability of this task to quality of
pseudorandom numbers. Included results of various numerical experiences with the
mt19937 pseudorandom number generator. In our work, we discuss important issues
of algorithms optimization in the statistical modeling. In particular, we apply the new
approach to the following: a task of finding of integral functionals from solution of
boundary-value problems for both the linear [1] or nonlinear [2] elliptic equations
(the estimations are given near to a boundary).

The paper is organized as follows: In Section 2, we give the sufficient conditions of
stability. Calculation of an integral of very large dimensions is discussed in Section 3.
Rare events effect is the subject of Section 4. In Section 5, we describe calculation of
integral moments. In Section 6, we apply our approach to calculate an integral of the
regression function. In Section 7, we give the conclusion of our studies.

2. Sufficient conditions of stability

Let

I ¼
ð

D

f xð Þdx (1)
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be the Riemann integral. Here D is a domain of the s-dimensional Euclidean space
Rs. If the dimension s is large enough then we must use a statistical modeling method.
In this case, our integral has form of the mathematical expectation for a random value
η ¼ f ξð Þ=p ξð Þ:

ð

D
f xð Þdx ¼

ð

D
p xð Þ f xð Þ

p xð Þ dx ¼ E
f xð Þ
p xð Þ ¼ Eη: (2)

Here p xð Þ is a density of random variable ξ∈D. We put p xð Þ 6¼ 0 for f xð Þ 6¼ 0, and
we say that there exists integral

ð

D
∣f xð Þ∣dx:

A variance of the random value η:

σ2 ¼ varη ¼ Eη2 � Eηð Þ2 ¼
ð

D
p xð Þ f xð Þ

p xð Þ

� �2

dx� I2 ¼
ð

D

f 2 xð Þ
p xð Þ dx� I2: (3)

We estimate the mathematical expectation Eη by the sum
PN

i¼1ηi=N, where ηi are

independent realizations of the random value η. Suppose σ2 is finite, and N is large
enough; then from the classical central limit theorem, it follows that the random value
PN

i¼1ηi=N has distribution close to the normal distribution with a mathematical

expectation I, and mean-square deviation σ=
ffiffiffiffi

N
p

. This property above is useful to
estimate error, e.g., using the 3σ rule. So we have

I � 1

N

X

N

i¼1

ηi

�

�

�

�

�

�

�

�

�

�

≤
3σ
ffiffiffiffi

N
p (4)

with probability 0,997, approximately.
Let us ηi be realizable sampling values; then the value σ is estimated as the

following:

σ2≈
1

N

X

N

i¼1

η2i �
1

N

X

N

i¼1

ηi

 !2

: (5)

Suppose Eη4 is finite and in Eq. (3) we replace the σ by its approximate value. Then
it changes the estimation of error in calculation of the integral in order of O 1

N

� �

.

In practice, when we simulate random variables ξ, we receive simulation with
some density q xð Þ instead of simulation with the origin density p xð Þ. Now, we
investigate the stability of the theoretical estimation Eq. (2). Let us consider the
following expression:

ð

D
p xð Þ f xð Þ

p xð Þ dx�
ð

D
p xð Þ q xð Þ

p xð Þ dx ¼
ð

D

f xð Þ
p xð Þ p xð Þ � q xð Þð Þdx≤

≤ ε

ð

D

∣f xð Þ∣
p xð Þ dx,

(6)
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where ε ¼ sup
x∈D

∣p xð Þ � q xð Þ∣. By I jf j=pð Þ denote the integral
Ð ∣f xð Þ∣

p xð Þ dx. The both

values ε and I jf j=pð Þ provide the guaranteed proximity of the real estimation to the
theoretical one of the integral.

Example 1. The inequality Eq. (6) is reduced to the equality if D ¼
D1∪D2,D1∩D2 ¼ ∅. For x∈D1 we get p xð Þ � q xð Þ � ε>0, and f xð Þ � 0 in D2. If the
condition I jf j=pð Þ ¼ þ∞ holds, then the error of the real estimation of the integral will
be infinity for any ε>0.

Hence, a quality of pseudorandom variables (i.e., smallness of ε) does not yet
guaranties the smallness of the error in general, as the integral I jf j=pð Þ have to be both
finite and not very great in magnitude.

Suppose we simultaneously make the estimations for both I jf j=pð Þ and the origin
integral Eq. (2) using the same density p xð Þ. Then we need to ask boundedness of the

integral
Ð

D
∣f xð Þ∣
p2 xð Þ dx to get the guaranteed stability of the estimation for the integral

I jf j=pð Þ, and so on. The qualitative comparison of simulation with both densities p1 xð Þ
and p2 xð Þ can be provided not only by a magnitude of the variance estimation (here
we do not pay attention to the complexity of random values simulation) but also

magnitudes of both the integrals I jf j=p1
� �

and I jf j=p2
� �

. On the other hand we have
the Schwarz inequality:

ð

D

f xð Þ
p xð Þ p xð Þ � q xð Þð Þdx≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

D
p xð Þ � q xð Þ½ �2dx

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

D

f 2 xð Þ
p2 xð Þ dx

s

: (7)

The sufficient condition for the estimation to be stability is that
Ð

D
f 2 xð Þ
p2 xð Þ to be finite

and not very great. The Schwarz inequality is reduced to the equality if and only if

λ
f xð Þ
p xð Þ ¼ p xð Þ � q xð Þ, (8)

where λ is a real number. From the above we get

q xð Þ ¼ p xð Þ � λ
f xð Þ
p xð Þ ,

ð

D
q xð Þdx ¼

ð

D
p xð Þdx� λ

ð

D

f xð Þ
p xð Þ dx:

(9)

Therefore, the equality in Eq. (7) is reached under the necessary condition
Ð

D
f xð Þ
p xð Þ dx ¼ 0, when

Ð

Dp xð Þdx ¼
Ð

Dq xð Þdx ¼ 1.

Example 2. The condition above is realized, e.g., if

D ¼ �1, 1½ �, D1 ¼ �1, 0½ �, D1 ¼ 0, 1½ �,
f xð Þ ¼ �1 inD1, f xð Þ ¼ 1 inD2, p xð Þ ¼ p �xð Þ:

Let us ηk be f ξð Þ=p ξð Þ½ �k. Now we consider an estimation:

Eηk ¼
ð

D

p xð Þ f xð Þ
p xð Þ

� �k

dx ¼
ð

D

f k xð Þ
pk�1 xð Þ dx, k≥ 1: (10)
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This expectation is actually estimated by the integral:
Ð

Dq xð Þ f xð Þ=p xð Þ½ �kdx:
ð

D

f k xð Þ
pk�1 xð Þ dx�

ð

D
q xð Þ f

k xð Þ
pk xð Þ dx ¼

ð

D
p xð Þ � q xð Þ½ � f

k xð Þ
pk xð Þ dx≤

≤ ε

ð

D

∣f k xð Þ∣
pk xð Þ dx:

(11)

The last integral is assumed to be a finite, and not very large. These conditions are
desirable. In Eq. (11) the equality is reached like to the Example 1.

For all cases above, the stability will be observed if ∣f xð Þ=p xð Þ∣ ≤M< þ∞ for not
very great M. From the Schwarz inequality we have:

ð

D

p xð Þ � q xð Þ½ � f
k xð Þ
pk xð Þ dx ¼

ð

D

p xð Þ � q xð Þ
pβ xð Þ � f k xð Þ

pk�β xð Þ dx≤

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

D

p xð Þ � q xð Þ½ �2
p2β xð Þ dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

D

f 2k xð Þ
p2 k�βð Þ xð Þ dx

s

,

(12)

where β is a real number. We get a family of proximity measures for the
distribution densities:

ð

D

p xð Þ � q xð Þ½ �2
p2β xð Þ dx: (13)

For β ¼ 0, 5 we obtain expression

χ2 p, qð Þ ¼
ð

D

p xð Þ � q xð Þ½ �2
p xð Þdx:

(14)

that is well known in the mathematical statistics.

For β ¼ �0, 5 we get
Ð

D p xð Þ � q xð Þ½ �2p xð Þdx and have the obvious inequalities

ð

D
p xð Þ � q xð Þ½ �2p xð Þdx≤ sup

x∈D

p xð Þ �
ð

D
p xð Þ � q xð Þ½ �2dx,

ð

D
p xð Þ � q xð Þ½ �2p xð Þdx≤ sup

x∈D

p xð Þ � q xð Þ½ �2
ð

D
p xð Þdx ¼ sup

x∈D

p xð Þ � q xð Þ½ �2:

In Eq. (6) the equality is satisfied if and only if

p� q

pβ
¼ λ

f k

pk�β
, p� q ¼ λ

f kpβ

pk�β
, (15)

i.e., the necessary condition is
Ð

D
f k xð Þ

pk�2β xð Þ dx ¼ 0: This is realized in the Example 2.

Let us remark that for k ¼ 1 and β ¼ 1 we have
ð

D

p xð Þ � q xð Þ
p xð Þ f xð Þdx ¼

ð

D

p� q
ffiffiffi

p
p � f

ffiffiffi

p
p ≤

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

D

p� qð Þ2
p

dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

D

f 2

p
dx

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 p, qð Þ
q

� Eη2:
(16)
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We assume that integrals
Ð

D f xð Þ þ εi xð Þ½ �dx are known and the subintegral func-
tions f xð Þ þ εi xð Þ>0 close to a function f xð Þ≥0. Suppose also

1� δ1 εið Þ< f xð Þ
f xð Þ þ εi xð Þ < 1þ δ2 εið Þ,

J fð Þ � δ3 εið Þ≤ J f þ εið Þ≤ J fð Þ þ δ4 εið Þ, δj ! 0, as εi ! 0, j ¼ 1, 2, 3, 4:
ð

D
q xð Þ f xð Þ

p xð Þ dx ¼
ð

D
q xð Þ f xð ÞJ f þ εið Þ

f xð Þ þ εi xð Þ dx ¼ E η̂,

(17)

where the random value η̂ has a form:

η̂ ¼ f ξ̂
� �

J f þ εið Þ
f ξ̂
� �

þ εi ξ̂
� � : (18)

Here ξ̂ is distributed with the density q xð Þ. Keeping the above factors in mind we
get the following:

J fð Þ � δ3½ � 1� δ1½ �≤ η≤ 1þ δ2½ � J fð Þ þ δ4½ �;

i. Regardless of q xð Þ, i.e., regardless of quality of a pseudorandom number
generator we have E η̂ ! J fð Þ, varη̂ ! 0, asε ! 0;

ii. All moments E η̂k of the random variable are finite.

Let we calculate
Ð

D
∣f xð Þ∣
p xð Þ dx using the density

p1 xð Þ ¼ ∣f xð Þ∣
I jf j=pð Þp xð Þ ,

then the estimation variance equals to zero.
Suppose we calculate the integral

Ð

Df xð Þdx with the density p1 xð Þ. In this case it

would be interesting to know both the values
Ð

D
∣f xð Þ∣
p1

dx and
Ð

D
f 2

p21
dx.

Proposition 1. I jf j=p1
� �

¼ I jf j=pð Þ.
Proposition 2. I f 2=p21

� �

¼ I2 jf j=pð ÞI p2ð Þ.
Now we consider the density

p2 xð Þ ¼ f 2 xð Þ
p xð ÞI f 2=p

� � :

Using the density above for the estimation of the integral
Ð

D
f 2

p dx we obtain the

estimation variance equals to zero.
Further we estimate the integral

Ð

Df xð Þdxwith the density p2: η̂ ¼ f ξ2ð Þ=p ξ2ð Þ, ξ2 is
distributed with p2 xð Þ. Suppose η ¼ f ξð Þ=p ξð Þ, ξ is distributed with p xð Þ; then
I f 2=p2
� �

¼ I f 2=p
� �

.

Proposition 3. varη ¼ var η̂.
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Proposition 4.
Ð

D

f xð Þ
p xð Þ dx

" #2

≤ volDð Þ �
Ð

D

f 2 xð Þ
p2 xð Þ dx,where volD is the volume of the

domain D.

Proposition 5. If volD ¼ 1, p3 xð Þ ¼ f 2 xð Þ
I f 2ð Þ , η3 ¼ f ξ3ð Þ

p ξ3ð Þ , where ξ3 is a random variable

distributed with the density of p3 xð Þ; η4 ¼ f ξ4ð Þ
p ξ4ð Þ , where ξ4 is a random variable

distributed with the density of p xð Þ � 1, then varη3 ¼ varη4.
In actual practice normalization constants are usually unknown for both p1 xð Þ and

p2 xð Þ. But using densities close to them we can get the approximate equalities in the
Prepositions 1, 2, 3.

Now we consider

I fð Þ ¼
ð

0, 1½ �10

x1x2 … x10dx1 … dx10, (19)

where the integration domain D ¼ 0, 1½ �10 is the 10-dimensional unit cube, the
subintegral function f xð Þ is equals to x1x2 … x10: To realize algorithms of the statistical
modeling at a computer it is necessary to set a number N of realizations for random
variable η ¼ f ξð Þ=p ξð Þ, where ξ is distributed with the density p ξð Þ. In fact we realize
the discrete set of numbers ξi, i ¼ 1, … ,N, which we can consider to be realizations
of some distribution qN xð Þ.

In all our numerical computations we use the pseudorandom number generator:
generator type mt19937 [3]. For s ¼ 10, p xð Þ � 1 we have

I fð Þ ¼ 1=2ð Þ10≈9, 7656 � 10�4, I f=pð Þ ¼ I fð Þ,
I f 2=p
� �

¼ I f 2=p2
� �

¼ 1=3ð Þ10≈1, 6935 � 10�5,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=3ð Þ10 � 1=2ð Þ20
q

≈3, 998 � 10�3:

Table 1 shows the empirical estimations Î and σ̂ for I and σ, respectively. Taking
p xið Þ ¼ 3x2i over each coordinate we get

I f 2=p
� �

¼ 1=3ð Þ10, I f=pð Þ ¼ ∞, I f 2=p2
� �

¼ ∞,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=3ð Þ10 � 1=2ð Þ20
q

:

The value σ is the same as one for p xð Þ � 1.

N Î σ̂

1,000,000 9, 785 � 10�4 3, 991 � 10�3

9,000,000 9, 768 � 10�4 4, 001 � 10�3

81,000,000 9, 766 � 10�4 3, 997 � 10�3

100,000,000 9, 765 � 10�4 3, 995 � 10�3

Table 1.
The results of numerical calculations for the integral Eq. (19) with the uniform density.

6

Applied Probability Theory - New Perspectives, Recent Advances and Trends



For N ¼ 100000000 the computer code outputs an error because of machine zero

divide. The reason of this event is η ¼Q10
1 1= 3

ffiffiffi

α3
p

i

� ��

, where αi are the pseudorandom

numbers with the uniform density in 0, 1ð Þ [3]. If the formulas of random numbers
simulation generate division by very small numbers then such formulas are one more
source of the algorithms instability in the statistical modeling. As seen in Table 2 the
value of integral I fð Þ is successfully estimated, but the empirical estimations of σ̂ are
sufficiently different from the theoretical value σ. This result is explained by the

following: Eη4 ¼ ∞, I f=pð Þ ¼ ∞, I f 2=p2
� �

¼ ∞: Taking p xið Þ ¼ 2, 6x1,6i we obtain

σ≈1, 223 � 10�3, I f=pð Þ≈0, 67556, the finite value of Eη4, and I f 2=p2
� �

¼ ∞. Although

the last estimation is infinite, but Table 3 shows that both values I fð Þ and σ̂ are
successfully calculated. The value of σ̂ is very close to σ.

3. Integrals of very large dimensions

We are coming now to the question of calculation of an integral

I fð Þ ¼
ð

∞

0

…

ð

∞

0

e� x1þx2þ…þxsð Þdx1dx2 … dx10 ¼ 1 (20)

with the distribution density p xð Þ ¼ λse�λ x1þx2þ…þxsð Þ. For λ≥ 2, the estimation
variance η is infinity. For 0< λ< 2, the variance will be finite. For λ> 1, we obtain

I f=pð Þ ¼ ∞ and I f 2=p2
� �

¼ ∞. However, as seen in Table 4, the results of calculations
for N ¼ 10000 allow us to make the conclusion below. If we have the pseudorandom
generator of the high quality and a good p xð Þ then we can calculate the very high
dimensional integrals.

N Î σ̂

1,000,000 9, 766 � 10�4 3, 276 � 10�3

9,000,000 9, 754 � 10�4 3, 619 � 10�3

81,000,000 9, 765 � 10�4 3, 759 � 10�3

100,000,000 Inf nan

Table 2.
The results of numerical calculations for the integral Eq. (19) with the density p xið Þ ¼ 3x2i .

N Î σ̂

1,000,000 9, 769 � 10�4 1, 212 � 10�3

9,000,000 9, 760 � 10�4 1, 220 � 10�3

81,000,000 9, 766 � 10�4 1, 223 � 10�3

Table 3.
The results of numerical calculations for the integral Eq. (19) with the density p xið Þ ¼ 2, 6x1,6i :
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4. Special integrals

Let us consider the following class of the integrals:

ð

0,þ∞½ Þs
f x1, x2, … , xsð Þdx1dx2 … dxs, (21)

We define the behavior of the subintegral function as follows: f x1, x2, … , xsð Þ to be
[label = ()]

1.close to 1 in the cube 0, a½ �s as 0< a< 1;

2.much less than unit as a< xi < b, b≥ a;

3.equil to zero as b≤ xi <∞.

Note that very often the integration of functions can be reduced to the linear
combination of the integrals similar to Eq. (21) using various replacements of variables.

Below, let us perform a theoretical and numerical analysis how to integrate a model
function from our class. The model function is assumed to be f � 1 as 0≤ xi ≤ a,

otherwise f ¼ 0. We take both distribution densities set p1 xið Þ ¼ λe�λxi , 0≤ xi <∞

and p2 xið Þ ¼ ωþ 1ð Þ 1� xið Þω, 0≤ xi < 1 to be examined. Our goal is to determine
what of two densities provides the best accuracy of the integral computation with
given model function.

If we simulate a random point ξ ¼ ξ1, … , ξsð Þwith densities p1 xið Þ ¼ λe�λxi then the
integral estimation is given by

ηs ¼
Y

s

i¼1

λeλξi ,

varηs ¼ Eη2s � Eηsð Þ2 ¼ 1

λ

ð

a

0

eλxdx

2

4

3

5

s

� as ¼ eλa � 1

λ2

� �s

� as:

(22)

Testing the variance varηs for the extremum over λwe get the minimum condition

λaeλa � 2eλa þ 2 ¼ 0: (23)

λ s Î σ̂ σ

1,01 1000 0,999 0,320 0,324

1,01 10,000 0,995 1,39 1,31

1005 20,000 1004 0,807 0,805

1003 40,000 0,994 0,649 0,658

1001 80,000 0,991 0,605 0,661

Table 4.
The results of numerical calculations for the integral Eq. (20).
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Let A be λa; then the equation Eq. (23) is reduced to

AeA � 2eA þ 2 ¼ 0: (24)

The equation above has the unique root at A≈1, 593620. It follows that λmin ¼ A=a.
For such λmin the relative error with the 3σ rule is given by

3σ
ffiffiffiffi

N
p

as
¼ 3

eA � 1
� �s

A2s � 1

 !0,5

=
ffiffiffiffi

N
p

: (25)

Suppose N ¼ 9 � 106, s ¼ 10, λ ¼ A=a; then the theoretical value of the relative

error is approximately 8, 72 � 10�3. The numerical estimation of the relative error is

approximately 8, 69 � 10�3 as a∈ 0, 1; 0, 001½ �. Thus, the numerical estimation of one
gives a good fit to the predicted value over a wide range of a.

Now we discuss the use of the density p2 xið Þ ¼ ωþ 1ð Þ 1� xið Þω. First, we estimate
the second moment of a random value ηs:

Eη2s ¼
1� 1� að Þ1�ω

1� ω2

" #s

: (26)

The parameter ω is chosen to be A=a; then the expression above is rewritten as
follows

Eη2s ¼
1

1� A2=a2
1� 1� að Þ1�A=a
� 	

� �s

: (27)

Let us consider Eη2s as a ! 0:

lim
a!0

Eη2s ¼ lim
a!0

a2

a2 � A2 1� 1� að Þ1�A=a
� 	

� �s

¼

¼ � lim
a!0

a2

A2 1� 1� að Þ 1� að Þ�A=a
� 	

� �s

¼ � lim
a!0

a2

A2 1� 1� að Þ 1� að Þ�1=a
h iA


 �� �s

¼

¼ � lim
a!0

a2

A2 1� 1� að ÞeA
� �

� �s

¼ � lim
a!0

a2

A2 1� eA
� �

� �s

� eA � 1
� �

A2 a2
� �s

:

(28)

Comparison between Eqs. (22) and (28) allows to make the following conclusion.
If w is chosen to be A=a then the asymptotics of variances, as a ! 0, are the same in
the densities set of p1 xið Þ, p2 xið Þ. In the numerical simulation the relative accuracy of

≈8, 68 � 10�3 is reached as N ¼ 9 � 106, s ¼ 10,ω ¼ A=a, a∈ 0, 01; 0, 001½ �.
Let us turn now to the integral

I fð Þ ¼
ð

0, 1½ �10

f x1, x2, … , x10ð Þdx1dx2 … dx10, (29)
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where

f x1, x2, … , x10ð Þ ¼
1, 0≤ xi ≤ 1=4,

0, otherwise:

�

(30)

We put p xð Þ � 1; then I fð Þ ¼ I f=pð Þ ¼ I f 2=p
� �

¼ 1=4ð Þ10≈9, 5367 � 10�7: For

N ¼ 640000 all realizations are turned out to be equal to zero, i.e., q640000 xð Þ ¼ 0 as
0≤ xi ≤ 1=4. In this case, we have

ð

0, 1½ �10

p xð Þ f xð Þ
p xð Þ dx�

ð

0, 1½ �10

q640000
f xð Þ
p xð Þ dx ¼ 1=4ð Þ10 � 0 ¼ 1=4ð Þ10: (31)

In accordance with N, the realizations numbers of ηi are turned out to be equal to 1
as N ¼ 810000; equal to 3 as N ¼ 4000000; equal to 15 as N ¼ 16000000.

We now take p xið Þ ¼ ωþ 1ð Þ 1� xið Þω in the unit cube 0, 1½ �10 ω> 1ð Þ. Such choice

provides the gross realizations of points in 0, 1=4½ �10 and as consequence, we get
benefit in quality of random values (simultaneously, we have decrease of the estima-
tion variance, and as consequence decrease of the statistical error with the 3σ rule.)
Table 5 shows the calculations results for N ¼ 9000000. Note that σ̂ reaches the

minimum as ω ¼ 5. In this case, we have p̂ xð Þ ¼ 6 1� xð Þ5, I f=p̂ð Þ ¼ I f 2=p̂
� �

≈3, 49 �
10�11: Making the more detailed research for both ω ¼ 5 and the theoretical value

σ≈5, 83 � 10�6 we get the results represented in Table 6. If the function

w Î rule “3σ”

3 9, 53 � 10�7 8, 61 � 10�9

4 9, 58 � 10�7 6, 36 � 10�9

5 9, 55 � 10�7 5, 82 � 10�9

6 9, 55 � 10�7 6, 49 � 10�9

7 9, 51 � 10�7 8, 06 � 10�9

Table 5.
The results of numerical calculations for the integral Eq. (29) at various ω values.

N Î σ̂

640,000 9, 61 � 10�7 6, 15 � 10�6

810,000 9, 56 � 10�7 6, 00 � 10�6

1,000,000 9, 51 � 10�7 5, 91 � 10�6

4,000,000 9, 52 � 10�7 5, 74 � 10�6

16,000,000 9, 55 � 10�7 5, 84 � 10�6

Table 6.
The results of numerical calculations for the integral Eq. (29) at ω ¼ 5.
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f x1, x2, … , x10ð Þ close to some constant in 0, 1=4½ �10 and small out of this interval then

we can advise to use p̂ ¼ 6 1� xð Þ5 to calculate the integral in 0, 1½ �10.

5. Moments calculation

We are now concerned with the following issue: to find the kth moments of a
random value τ with the distribution density p xð Þ:

Eτk ¼
ð

b

a

xkp xð Þdx: (32)

In fact we have realizations of the random value ξ with a distribution density q xð Þ.
With p xð Þ replaced by q xð Þ in Eq. (32) we get an error

ð

b

a

xkp xð Þdx�
ð

b

a

xkq xð Þdx ¼
ð

b

a

xk p xð Þ � q xð Þ½ �dx: (33)

Suppose b ¼ ∞ and ξmax are the maximum value of the random variable over the

all realizations for fixed N; then value of ξmax gives shift
Ð

∞

ξmax
xkp xð Þdx that increases

both monotonically and without limit. The condition q xð Þ ¼ 0 as x> ξmax determines
the lower limit of the last integral.

Many solutions of the boundary-value problems for the elliptic and parabolic
Equations [4, 5] have a form of the expectations for the random value moments.
Meaning of these expectations is the first exit time of the Wiener process trajectories
to the domain boundary.

Let a domain be the three-dimensional ball with the radius r ¼ 1 and the Wiener
trajectories start from the ball center; then a function of distribution of the first exit
time for the Wiener trajectory is, in particular, given by [5].

F tð Þ ¼ 1þ 2
X

∞

k¼1

�1ð Þk exp �k2π2t=2
� �

, t∈ 0,þ∞½ Þ: (34)

From the above, we obtain the distribution density:

p tð Þ ¼ 2
X

∞

k¼1

�1ð Þkþ1
μk2 exp �μk2t

� �

, μ ¼ π2=2: (35)

Assuming τ is distributed with this density and calculating the expectation of the
kth moment we get

Eτk ¼
ð

∞

0

tkp tð Þdt: (36)

In Table 7, we put the calculations results for N ¼ 1000000. The kth moment
expectation can be represented in a form.
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Eτk ¼
ð

∞

0

q xð Þtk p tð Þ
q tð Þ dt, (37)

where q tð Þ is some density in 0,∞½ Þ. Taking q tð Þ ¼ λ exp �λtð Þ, for λ ¼ π2=2 we get
that the number of realizations ξi > 1 will be almost twice as small as in the case of the
modeling with the original p tð Þ. In this situation we should obtain degradation of the
estimation for the high moments. The calculations results with q tð Þ for N ¼ 1000000
are represented in Table 8. However, in realizations at a computer we get the obvious

Moment Simulation Theory

1 3, 304 � 10�1 3, 333 � 10�1

2 1, 553 � 10�1 1, 556 � 10�1

3 9, 848 � 10�2 9, 841 � 10�2

4 8, 076 � 10�2 8, 063 � 10�2

5 8, 291 � 10�2 8, 193 � 10�2

6 9, 843 � 10�2 9, 969 � 10�2

7 1, 319 � 10�1 1, 414 � 10�1

8 2, 070 � 10�1 2, 293 � 10�1

9 4, 518 � 10�1 4, 182 � 10�1

10 7, 286 � 10�1 8, 474 � 10�1

11 9, 021 � 102 4, 251 � 103

12 1, 183 � 103 1, 637 � 104

13 8, 389 � 103 6, 634 � 104

Table 7.
The results of numerical calculations for the moments by the first way.

Moment Simulation

5 8, 188 � 10�2

6 1, 013 � 10�1

7 1, 468 � 10�1

8 2, 247 � 10�1

9 3, 950 � 10�1

10 8, 283 � 10�1

18 2, 833 � 103

19 1, 056 � 104

20 5, 118 � 104

Table 8.
The results of numerical calculations for the moments by the second way.
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improvement in quality of the moments estimation for all k from 5 to 20. Consider the
choice of modeling strategy with regards to the variance. Suppose ξ and η be estima-
tions of the statistical modeling for a value J, i.e., Eξ ¼ Eη ¼ J with the variances of
σ21 ξð Þ, σ22 ηð Þ and the realizations of ξ ¼ ξ1 þ … þ ξNð Þ=N, η ¼ η1 þ … þ ηNð Þ=N. It
would seem that for σ1 ξð Þ< σ2 ηð Þ the real estimation of ξ will be occurred close to the
origin value of J. But this statement does not need to be always true. Without loss of
generality it can believed that J ¼ 0. Additionally, if N is large enough then ξ, η are
chosen be normal random variables with N 0, σ1ð Þ and N 0, σ2ð Þ, respectively. The
following theorem holds.

Proposition 6. Let ξ, η be normal random variables, and ξ � N 0, σ1ð Þ, η � N 0, σ2ð Þ
then P ξj> jηjð Þ ¼ 2

π
arctan σ1

σ2
:

Proof:

Pjξ>jηj ¼ 1

σ1
ffiffiffiffiffi

2π
p

ð

0

�∞

e
� y2

2σ2
1 dy

1

σ2
ffiffiffiffiffi

2π
p

ð

y

0

e
� x2

2σ2
2 dxþ 1

σ2
ffiffiffiffiffi

2π
p

ð

yj j

0

e
� x2

2σ2
2 dx

8

>

<

>

:

9

>

=

>

;

þ

þ 1

σ1
ffiffiffiffiffi

2π
p

ð

∞

0

e
� y2

2σ2
1 dy

1

σ2
ffiffiffiffiffi

2π
p

ð

y

0

e
� x2

2σ2
2 dxþ 1

σ2
ffiffiffiffiffi

2π
p

ð

yj j

0

e
� x2

2σ2
2 dx

8

>

<

>

:

9

>

=

>

;

¼

¼ 2

σ1
ffiffiffiffiffi

2π
p

ð

∞

0

e
� y2

2σ2
1 dy

2

σ2
ffiffiffiffiffi

2π
p

ð

y

0

e
� x2

2σ2
2 dx

8

<

:

9

=

;

¼ 4

2πσ1σ2

ð

∞

0

e
� y2

2σ2
1 dy �

ð

y

0

e
� x2

2σ2
2 dx:

Using Taylor expansion

e
� y2

2σ2
2 ¼

X

∞

n¼0

�1ð Þn y2n

2nσ2n2 n!
,

we get

ð

y

0

X

∞

n¼0

�1ð Þn x2n

2nσ2n2 n!
dx ¼

X

∞

n¼0

�1ð Þn y2nþ1

2nþ 1ð Þ2nσ2n2 n!
,

ð

∞

0

X

∞

n¼0

�1ð Þn y2nþ1

2nþ 1ð Þ2nσ2n2 n!
e
� y2

2σ2
1 dy ¼

X

∞

n¼0

�1ð Þn 1

2nþ 1ð Þ2nσ2n2 n!

ð

∞

0

y2nþ1e
� y2

2σ2
1 dy ¼

¼
X

∞

n¼0

�1ð Þn 1

2nþ 1ð Þ2nσ2n2 n!
� 2

nþ1σ2nþ2
1 n!

2
: ∗ð Þ

Note that the last equality is obtained with the help of the formula:

ð

∞

0

x2nþ1e�px2 dx ¼ n!

2pnþ1
, p>0:

In our case, p is 1
2σ21
. We continue the equalities chain which is broken at (*):
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∗ð Þ ¼
X

∞

n¼0

�1ð Þn 1

2nþ 1ð Þ
σ2nþ2
1

σ2n2
¼
X

∞

n¼0

�1ð Þn σ21
2nþ 1ð Þ

σ1

σ2


 �2n

¼

¼ 2

π

X

∞

n¼0

�1ð Þn σ1=σ2ð Þ2nþ1

2nþ 1
¼ 2

π
arctan

σ1

σ2
:

For the k-moment calculation we take

qk tð Þ ¼ λkþ1tke�λt

k!
, λ ¼ π2

2

and get the results shown in Table 9.

6. Integral from the regression function

Now, we consider the issue of calculation of an integral

ð

D

f xð Þdx, (38)

where the function f xð Þ has no an analytical expression. Suppose there exists a
random variable ξ x,wð Þ such that its expectation is equals to Eξ x,wð Þ ¼ f xð Þ for some
fixed x. The random variable ξ x,wð Þ may be realized neither as result of the physical
measurements or some calculations (e.g., using the modeling statistical method). In
this case the optimal density is given by [6].

Moment Simulation

1 3, 297 � 10�1

2 1, 556 � 10�1

3 9, 842 � 10�2

4 8, 066 � 10�2

5 8, 194 � 10�2

6 9, 968 � 10�2

7 1, 414 � 10�1

8 2, 293 � 10�1

9 4, 181 � 10�1

10 8, 474 � 10�1

18 4, 251 � 103

19 1, 637 � 104

20 6, 634 � 104

Table 9.
The results of numerical calculations for the moments by the third way.
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p xð Þ ¼ f xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ
p , (39)

where d xð Þ is the variance of the random variable ξ x,wð Þ. Note that one should
use the optimal density from [1] if complexity in calculations (experimental
measurements) is much different from each other for any x. We determine the

parameter λ from the condition
Ð

D

f xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ
p

dx ¼ 1: Really in practice, we find a

priori or a posteriori approaches to both f xð Þ and d xð Þ. By f xð Þ and d xð Þ denote these
approaches. Then the approach to the optimal p xð Þ will look like

p xð Þ ¼ f xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ

q and

ð

D

f xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ

q dx ¼ 1: (40)

The parameter λ is often turned out to be find enough complicity [6]. If the domainD
is the interval 0,H½ � for small H then it is suppose to use the quasioptimal density p xð Þ.

Example 3. We now consider the following issue: Suppose f xð Þ ¼ x, d xð Þ ¼
1=x, D ¼ 0,H½ �. The optimal density is given by

p xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=xþ λ
p ¼ x

ffiffiffi

x
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
ffiffiffi

x
p þ 1

p � c � x3=2: (41)

We take the quasioptimal density in the form p xð Þ ¼ 5H5=2x3=2=2: In this case, for
p xð Þ � 1 the estimation variance of the random value η ¼ f x,wð Þ=p xð Þ:

varη ¼
ð

H

0

d xð Þp xð Þdxþ
ð

1

0

f 2

p xð Þ dx� I2 (42)

is equals to ∞. Taking p xð Þ ¼ 2x=H2 we get varη ¼ 2=H: But if the function f xð Þ
was precisely known for the same density p xð Þ then varη ¼ 0: If we choose the

quasioptimal density p xð Þ ¼ 5H5=2x3=2=2 then the estimation variance of η is equals to

17H4=12þ 4= 15Hð Þ. For H ! 0 the variance behaves approximately as 4= 15Hð Þ. It is
much the better than 2=H. For H ¼ 1 the estimation variance with the density p xð Þ ¼
2x=H2 is equals to 2, and the estimation variance with the quasioptimal density p xð Þ is
equals to 101/60.

Suppose we practically realize calculation of the integral Eq. (38) with d xð Þ ¼ 1=x;

then one should discard the interval 0, δ½ � and to calculate
ÐH
δ
f xð Þdx because of the

values ∣ξ x,wð Þ∣ can be the intolerably large. Also one should replace f xð Þ by f̂ xð Þ:

f̂ xð Þ ¼ 0, 0≤ x≤ δ,

x, δ< x≤H:

�

(43)

The shift is
Ð

δ

0

xdx ¼ δ2=2 and choosing δ � 1=
ffiffiffiffi

N4
p

we get the total error δ2=2þ

3σ=
ffiffiffiffi

N
p

of oder O 1=
ffiffiffiffi

N
p� �

.

In applications the estimation variance for the integral functionals (e.g., field
flow calculation neither across the arc or the surface) from the solutions of the
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boundary-value problems for both the linear [1] or nonlinear [2] elliptic equations is
of interest. For the above variance is d xð Þ � B=x2, f xð Þ≈a0 þ a1xþ a2x

2 þ … , where

x is the distance to the domain boundary. Suppose f xð Þ≈a1xþ a2x
2 þ … ; then the

optimal density is given by

p xð Þ ¼ a1xþ a2x
2 þ …

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=x2 þ λ
p : (44)

The quasioptimal density has the form p xð Þ ¼ 3x2=H3 for small H in 0,H½ �. In
applications, this case is of our main interest. Taking δ ¼ 1=

ffiffiffiffi

N4
p

like in the Example 3

we get the asymptotics of decrease for the total error as O 1=
ffiffiffiffi

N
p� �

.

Suppose d xð Þ � B=x2, f xð Þ≈a0 þ a1xþ a2x
2 þ … , and a0 6¼ 0 then there is no

density kind of p xð Þ ¼ wþ 1ð Þxw, x∈ 0,H½ � with the finite variance. The density

p xð Þ ¼ ∣f xð Þ∣=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ
p

will be give the estimation with the infinity variance. Instead

of calculation of the integral
Ð

H

0

f xð Þdx we will be calculate the integral
Ð

H

δ

f xð Þdx. For

this integral we already can choice the quasioptimal density with the finite variance of

the estimation: p xð Þ ¼ 2x= H2 � δ2
� �

. For δ � O lnN=
ffiffiffiffi

N
p� �

the total error will have the

asymptotics O lnN=
ffiffiffiffi

N
p� �

.

Example 4. Suppose d xð Þ ¼ 1=x2, f xð Þ ¼ 1, H ¼ 1; then the asymptotics of the
variance with the quasioptimal density has kind of �2, 5 � ln δð Þ.

In conditions of Example 4, choice of the optimal density in the form

p xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� δ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p , x∈ δ, 1½ � (45)

yields the following result: the estimation variance will have asymptotics
�2 � ln δð Þ for δ ! 0.

Remark. If we know that a value of f xð Þ in the interval 0, δ½ � close to the number f 0

, then in Eq. (43) to use

f̂ xð Þ ¼ f 0, 0≤ x≤ δ,

x, δ< x≤H,

�

(46)

more efficiently and also to take
Ð

H

0

f xð Þdx≈f 0δþ
Ð

H

δ

f xð Þdx:

7. Conclusion

In the paper we describe the sufficient conditions of the stable calculations for the
multidimensional integrals by the Monte Carlo method. We get the results of numer-
ous numerical computations using the mt19937 pseudorandom number generator.
The article results can be also useful in the practical solution of the boundary value
problem, for both the elliptic and parabolic equations. The earlier suggested approach
to the optimal choice of the density [1, 6] often needs to solve a complicated second-
ary task. In the paper we suggest the approach to choice of the quasioptimal densities
that is of considerable interest in applied problems solution.
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