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Tropical Soil Humus
Mabicka Obame Rolf Gael, Musadji Neil-Yohan  
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Abstract

In strongly weathered tropical soils, humus and humic substances (HSs) appear to 
play an important role in soil fertility because they represent the dominant reservoir 
and source of plant nutrients. As the refractory organic carbon form of soil, HSs play 
a vital role in the atmospheric CO2 sequestration. Detailed classification of humus 
forms in tropical ecosystems and the dynamics and function of humus are still poorly 
understood. Nevertheless, in tropical environment many studies indicated that it is 
very difficult to differentiate between tropical humus, at least in normally drained 
soil. Moders, mulls, and Amphimull are the dominant humus forms in the topsoil of 
tropical environment. Knowing the mechanisms of formation, the dynamics and the 
methods of characterization of humus in tropical zones are a scientific challenge. This 
chapter aims to share recent findings from a broad humus in tropical soil and research 
related to this theme.
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1. Introduction

Soil organic matter (SOM) is a main reservoir and source of plant nutrients, which 
controls soil’s fertility in tropical soil. It also plays a major role in various soil functions 
in influencing soil chemical and physical properties and carbon storage [1]. Although, 
in tropical soils, SOM represents only about 1% of the soil mass, the humus is one 
of the most important fractions of these soils. Approximately 60–70% of organic 
matter in soil is composed of humic substances (HSs) [2]. As the refractory organic 
carbon form of soil, HSs play a vital role in the atmospheric CO2 sequestration [3]. 
Previous studies summarized the benefits of soil humus and several functions have 
been assigned to them. These functions include physical, chemical, and biological 
control, retention of nutriments, metal complexation, and carbon storage [4]. Humus 
composition in an essential characteristics of HS in SOM [5]. Traditionally, HSs are 
separated into humic acid (HA), fulvic acid (FA), and humins (HN) based on the 
solubility characteristics of each fraction, and the humus composition is an essential 
characteristic of HS in SOM.

Humification is a global process that is implemented in soils [6, 7]. This process of 
transforming precursors of humification and polymerization of oligomer and mono-
mer molecules into dark-colored, high-molecular-weight macromolecules has been 
described in terms of organic chemistry [8], environmental dynamics [9, 10], and 
various zonal soils dynamics., parent rock, vegetation, soil organisms [11, 12]. The 
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humus profile comprises different scales, which may be integrated: regional climate. 
Detailed classification of humus forms has been made for over a century in temperate 
regions, whereas, in tropical ecosystems, the dynamics and function of humus are 
still poorly understood.

Although previous works have studied the dynamics and function of humus 
forms in tropical forest ecosystems, however, these aspects are still poorly under-
stood [5, 13, 14].

The aim of this chapter is to review the current state of knowledge on humic 
substances in tropical soil, with special emphasis on data concerning humus forms, 
the factors that control.

2. Humus forms in tropical soil

The humus form reflects the processes of heterotrophic decomposition, nutrient 
cycling and release [15–17], soil microbial and faunal activity [18, 19], stabilization 
of soil organic matter, and release of carbon dioxide CO2 [19, 20]. Humus forms are 
thus crucial to the functioning of a forest ecosystem, being a key indicator of plant-
soil interactions [21]. Under temperate forests, the humus has been studied for over 
a century, and its three main forms, mull, moder and mor, are well established [22]. 
In tropical environment, a few investigations have studied the dynamics and func-
tion of humus forms [14, 23, 24]). Amphimulls exhibit mixed features of moders 
and mulls and are widely represented tropical forest ecosystems (Figure 1) [14, 25]. 
Dabin [26] indicated that it is very difficult to differentiate between tropical humus, 
at least in normally drained soils, on the basis of morphological characters, since we 
are most often dealing with Mull-type humus with very thin, if not nonexistent, litter, 
which rests on a mineral horizon where the humus is well decomposed and strongly 
incorporated. The main criteria are related to the intensity of humic accumulation, 
which is manifested by the color of the horizon, possibly by its structure, and by the 
humic penetration in depth [26]. In tropical environments, [14] has evidence that 
humus forms are more varied and depend on parent rock, litter quality, and mil-
lipede activity. For instance, these authors observed two different humus forms in 
secondary forests in North Grande-Terre (Guadeloupe): a calcareous Amphimull and 
a Dysmull (Figure 1). The first is characterized by a 1.5 cm-thick OH horizon, which 
has a granular structure and consists of fecal pellets of millipedes. The second has a 
7 cm-thick root mat [14]. In tropical humid lowlands, [5] has shown that forest soils 
generally exhibit the mull humus type and transitions to moder due to the favorable 
conditions for litter decomposition. According to [27], a great diversity of humus 
form was found in Atlantic forest (Mesotrophic Tropical Mull, Tropical Ologotrophic 
mull, Eumoder, Moder-Mull Dysmoder, Mesotrophic Mull), which is a reflection of 

Figure 1. 
Representative humus profiles showing Main humus forms identified in tropical soils adapted from [14, 24]. 
These humus forms reflects the processes of heterotrophic decomposition, nutrient cycling and release, soil 
microbial and faunal activity, stabilization of soil organic matter, and release of carbon dioxide CO2.
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the complex environmental conditions. In accordance with recent study in tropical 
environment, the classification of humus forms resulted in the identification of three 
humus systems: Mull, Moder, and Amphimull [24]. The attribution to an Amphimull 
system depends on the quality of the A horizon.

3. Humus horizon structure and composition

In tropical soils, humus horizons present some specific characteristics related to 
decomposition rate and nutrient absorption. For example, [27] found a dark color 
horizon between organic superficial layers and the first organic-mineral horizon. This 
horizon, which is of biological origin, was named Ai and had a significant amount of 
roots [27]. Moder humus forms are characterized by a structured with a juxtaposition 
of organic and mineral grain, named miA [24]. In opposition, [24] indicated that 
large organic mineral aggregates are found in Mull humus forms. Amphimull system 
displayed distinct characteristics similar to that of moder due to the formation of an 
OH horizon one the one hand and similar to that Mull system due to the presence of 
organo-mineral part [24]. Others studies indicated that fine roots have been found 
between horizon OF, which plays a role the development of the humus [14, 23].

4. Factors influencing humus form development in tropical environment

Humification, as well as litter decomposition, is primarily microbially mediated 
process, mainly controlled by site-specific variables such as temperature, soil water 
regime, pH, and available nutrients [5]. Biotic and abiotic factors can affect the 
development of the humus profile by constraining the dynamics of its humus hori-
zons, leading to consequences for the global carbon cycle, climate change mitigation, 
and forest productivity (Figure 2) [28–30]. However, what drives the morphological 
organization and characteristics of humus horizons in tropical forests is still poorly 
understood [14, 23, 24].

At the regional scale, due to the effects of temperature and moisture, climate is 
the best predictor for the decomposition rate and consequently for the formation of 
humus forms [27]. In tropical environment, the length of the dry season governs the 
processes of humification [31]. Among these factors, soil moisture is a major factor 
affecting microbial activity [32]. Previous studies focused on the effects of differ-
ent soil moisture content on the quantitative and qualitative characteristic of humic 
fraction, showed that humic fractions decreased with increasing soil moisture [33]. 
The chemical composition of plant tissues has implications for the recalcitrance of the 

Figure 2. 
Factors controlling humus formations in tropical soils.
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litter material and thus for humification processes in soils [34–36]. In tropical forests, 
many authors associated humus forms to litter quality and by the composition of soil 
macrofauna rather than by edaphic properties [5, 14, 27] has shown that both the 
litter quality and specific peculiarities are responsible for the humus forms in tropi-
cal environment (Figure 3). For example, [5] in a study carried out in different land 
cover in tropical environment showed that there is considerable variability in overall 
chemical composition of the various plant tissues of tropical forest trees in tropical 
soil (Figure 2).

Besides the litter quality, the soils physical and chemical properties (Figure 2) 
also played an important role in humus forms development [24, 27]. Soil texture 
is important for humus build-up [24]. These authors showed in recent study that 
sandy and clayey textures showed pronounced differences in thickness, occurrence, 
and attributes of humus horizons. In effect, in Amazonian forest, Mull and Amphi 
represent the dominant humus forms in clayey sites while Amphi forms are found in 
both sandy and clayey textures, but predominate in clayey ones [24]. This difference 
could potentially be explained by the activity of earthworms [37] and enchytraeids 
[38, 39] in clayey and sandy soils, respectively. The presence of fine particles encour-
ages good soil structure resulting in the formation of aggregates, enhancing soil 
moisture and aeration, and so favors specific faunal development and a consequent 
Mull humus form [24]. These results confirmed previous data indicating that humus 
forms are driven by soil texture differentiation [40, 41]. However, without a study 
including fauna manipulation and an assessment of structure stability, caution must 

Figure 3. 
Formation of tropical humus. These processes are controlled by different factors adapted from [26].
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be applied. Because, biological activity could be similar between soil textures but less 
visible in sandy condition [24]. Regarding vegetation, [14] highlighted an accumula-
tion of organic matter in humus horizons of secondary tropical forests compared with 
natural forests, which also occurred in forest restoration in bauxite mining areas in 
the Amazon [42]. For instance, grassland soils are known to possess relatively large 
amounts of humic acid (~70%) compared with fulvic acid (~30%), whereas forest 
soils have vice versa [43].

The formation of humic substances (i.e., humification) is primarily a microbially 
mediated process [5]. In tropical environment, humus forms are determined by the 
composition of soil macrofauna rather than by edaphic properties [12]. In tropical 
forest soils, where faunal-mediated mixing between plant/microbial necromass and 
soil is intense [44]. Animal microbial in the soil fauna are known to influence SOM 
content in particular in humid climates where HS contributes to the soil moisture and 
nutrients. Many authors associated microbial and soil animal communities to humus 
forms [14, 22, 44] showed that mull is associated with high plant, biodiversity, and 
productivity. Conversely, mor has low productivity and biodiversity and organic lay-
ers (OL, OF, and OH) are well identified. Moder, which is an intermediate position, 
both is characterized by a high level of biological activity [14] showed that tropical 
semi-evergreen forests, as temperate forests, the activity of endoanecic earthworms 
gives mull humus profiles, whatever the quality of the litter [5] showed that in bio-
logically active soils with high earthworm population, the mull humus type develops 
in L-A h horizons only. Many studies have shown that in tropical environments, 
humus forms contribute to diagnosing both the forest succession and the restoration 
of degraded areas [14, 24]. For instance, [14] highlighted an accumulation of organic 
matter in humus horizons of secondary tropical forests compared with natural 
forests, which also occurred in forest restoration in bauxite mining areas in the 
Amazon [42]. This accumulation in humus horizons indicates a collapse in the process 
of organic matter decomposition and incorporation, which results in a decrease in the 
stabilization of carbon in the soil, as suggested by [42] and [45].

5. Chemical nature of soil humified fractions

The primary contributors to SOM are various plant tissues, which are highly 
variable among tropical tree species [5]. The chemical composition of the secondary 
resources (soil fauna and microorganisms) is even more complex, but these sources 
are quantitatively less important than plants in surface layers of tropical forest soils 
(Figure 4) [46]. So, the structure, nature, chemical composition, and stages humi-
fication of the organic material determine molecular size and chemical structure of 
humic substances [47]. Humic substances in soils consist of heterogeneous insoluble 
macromolecular compounds, which form complexes with soil mineral surfaces and 
metal cations [48]. According to their solubility in aqueous solution at different pH 
values, humic substances can be divided into three main fractions, namely humic acid 
(HA), fulvic acid (FA), and humin [5].

Stevenson and Olsen [8, 49] studied the humus composition in tropical soils and 
showed that the bulk of the organic matter in most soils consists of a series of HA, 
FA, and humin. These authors have found that humified fraction from SOM had high 
content of insoluble fraction and predominance of fluvic acids. Moreover, the chemical 
nature of humic and fluvic acids varied with the soil depth. The HA concentration was 
higher at top soil [49]. The highest biological activity on the surface probably promotes 
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the formation of condensed alkali-soluble humic substances with greater stability [50]. 
Studies carried out in Ivory Coast and Senegal showed that fluvic acid content attains 
and sometimes even exceeds that of humic acids [31]. Using CPMAS 13C NMR analysis, 
[5] showed the presence of carboxyl fraction groups, aromatic carbon, and O-alkyl 
carbon in plant tissue of tropical forest. Among them, O-alkyl carbon was shown to be 
higher (75%) in wood or roots than leaf litter (50%). Moreover, carboxyl and aromatic 
carbon are low and represent about 5–10% and 10–15%, respectively, of total carbon.

Figure 4. 
Carbon distribution of some primary resources of tropical forests according to CPMAS13C NMR spectroscopy 
adapted from [5].
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6.  Characterization of humic substances: a varied methodological 
approach

In chemical terms, organic matter consists of three fractions of humic substances 
(HSs): humin, fulvic acids, and humic acids [51]. The humic substances eventu-
ally form between 80 and 90% of all SOM and consist of heterogeneous molecular 
compounds containing different functional groups [52]. Humic substances (HSs) 
have received attention from scientists in a wide variety of disciplines [53]. The main 
precursor of an ecosystem approach for the study of HS in soils has been provided by 
the work of [48, 54, 55].

Basic information on HS could be accessed through the chemical characterization 
of SOM. So far, the study of HS composition has been carried out under the action of 
strong oxidants (alkaline solution) or heat to determine the single structural units. 
Alkaline extraction remains the most common method for detecting the solubility of 
HS from soil, according to the International Humic Substances Society (IHSS) [56]. 
Other extraction procedures using organic solvents are used [57].

Recent methods such as spectroscopic such as infrared, electron spin resonance, 
and nuclear magnetic resonance (NMR), microscopic, pyrolysis, ionization tech-
niques have also enabled to elucidate various structural characteristics of humic 
acids, and NMR has recently brought about considerable progress in the study of 
humic acids [47, 51, 58]. [51] used infrared spectroscopy and nuclear magnetic 
resonance (NMR) to characterize humic and fluvic acids in aggregates collected from 
areas under different crop and soil management systems in Brazil. These methods 
allowed new aspects of research in organic soil chemistry and have been extensively 
used to quantify the proportions of functional groups as well as the aliphatic and 
aromatic contents of HS. In an review, [59] stated that the CPMAS technique pro-
vides a quantitative measure of aromatic, paraffinic, carboxylic acids, and other 
groups in fulvic acids (FA) and humic acids (HA). Using solid-state 13C spectroscopy, 
[5] showed that there is considerable variability in the overall chemical composition 
of the various plant tissues of tropical forest trees (Figure 4). Due to the increasing 
demands for rapid and quantitative assessments of soil organic matter quality, ther-
mal analysis techniques are a unique means to characterize the complete continuum 
that comprises soil organic matter. Among the most common thermal techniques, 
Rock-Eval pyrolysis [60, 61] has been increasingly applied to geologically recent 
sediment and soils [58, 62–65]. Details of the application of Rock-Eval to soils are 
provided elsewhere [58, 62, 64, 66, 67]. Rock-Eval provides information on quantity 
and quality of organic matter without sample preparation. It also gives information 
on stoichiometric of organic carbon [58, 68]. Disnar et al. [58] provided essential 
information on the amount and composition of tropical SOM. In addition to infor-
mation on the abundance of SOM, Rock-Eval provides insight into the composition 
of SOM and even into its structure [58, 65]. In a recent review on pioneering works 
on SOM, [53] pointed out the great value of RE pyrolysis for soil scientists.

7. Humics substances and metal micronutrients

Humic substances are able to form stable complexes with metal micronutrients, 
due to the presence in their structure of oxygen-, nitrogen- and sulfur-containing 
functional groups [69]. Organic associations of the metals play an important role in 
storing and stabilizing SOM [e.g. 70, 71]. In the case of Fe, highly stable HS complexes 
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mainly involve O-containing groups (carboxylic and phenolic groups) [72, 73]. More 
recently, it was shown that carboxylic acids in aliphatic domains are also involved 
in Fe(III)-HS complexation [74]. Stability and solubility of the complexes are both 
affected by pH and molar ratio between micronutrients and HS [75, 76]. [77] showed 
that pH controls Fe-humic substances complexes stability and/or solubility. Therefore, 
the presence of insoluble complexes may explain plants growth in calcareous soils 
characterized by limited Fe availability [78]. The stabilization of amorphous Fe oxides 
HS, which limited Fe availability, has been reported in previous studies [77, 79]. This 
is the result of co-precipitation of the poorly crystalline Fe phases and its maintenance 
for a long period in this form [77, 79]. This form would increase Fe reservoir for plant 
nutrition. [80] reported that the ability of HS to complex Fe can also be important 
for phosphorous nutrition, since phosphate can be bound to HS by Fe bridges. This 
process would increase phosphate availability; in fact, complexation of Fe by ligands 
released by plant roots could promote uptake of both nutrients.

HSs are known to be redox reactive and capable of chemically reducing metals 
including Fe3+ [81, 82]. Very acidic pH values cause the reduction of Fe3+ conversely, 
this reduction process is limited by formation of Fe3 + -HS complexes. Bioreduction 
of minerals soils can be accelerate by HS dissolved and solid-phase due to shuttling 
electrons from bacteria to oxide surfaces [83].

As recently reviewed by [47], the classical view on Al-humus complexes is based 
on complexation of Al3+ and Fe3+ ions by carboxylic and phenolic groups of humic 
substances. The degree of “metal–humus” complexation is quantified by ratios of Al, 
C, and Fe determined in pyrophosphate extracts. Although Al3+ and Fe3+ ions doubt-
lessly form complexes with carboxylic and phenolic groups [84].

8. Future challenges to humus analysis in tropical soil

Tropical environments share some similarities at the global scale (high produc-
tivity, rapid nutrient turnover, highly weathered soil, and low soil pH), but they 
also exhibit wide variation in soils and associated plant communities. In particular, 
different tropical regions possess distinct geological histories and plant communi-
ties [85]. Variation in climate, geology, and topography can cause diverse patterns 
and processes of plants, soils, and their interactions [86]. Similarly, the patterns of 
decomposition process reflected in humus form are highly variable. Most humus 
studies have been conducted in Amazonian forests [14, 24, 44], few studies have 
focused on humus in tropical soils in Africa in general and the Congo basin in 
particular. SOM humification and soil C accumulation are sensitive to climatic and 
local environmental fluctuations and changes in land use and soil management [87], 
comparison between tropical regions can provide variation in plant species, soil 
types, and availability of nutrients with which to investigate roles of soils and func-
tions in tropical environment. Such knowledge is indispensable for the establishment 
of a sustainable management of the carbon budget maintaining or even improving at 
the same time major humus functions. In African tropical regions, previous studies 
focused on classification of humus forms. However, quantitative characteristic of 
humic substances is poorly studied. These studies can help to assess the role of humic 
substances in fertility and carbon sequestration in these very sensitive ecosystems.

Complexity of HS and their remarkable properties in agricultural applications 
has attracted and continues to attain the attention of many investigators, bringing 
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over the years new knowledge on their structure, physicochemical, and biological 
properties. The effects of HS on plant growth depend on the source, concentration, 
and molecular weight of humic fractions and mainly on different chemical. Since 
humus substances might be a source of nutriments for plants, increasing tropical soil 
OM stocks are also beneficial for soil fertility in these regions known to be poor in 
nutrients. Many efforts to identify if it is mainly the chemical structure in terms of 
compounds or the molecular weight of HSs to influence plant growth and develop-
ment must be carried out. The influence of soil humus in contributing to improve soil 
quality in its physical stability and capacity to provide nutriments to plants can also be 
studied.

Regarding tropical soil, humic substances can act as carbon, nitrous oxide, and 
others greenhouse gases sink playing a role in climate change. This role depends on its 
quality, quantity, and interaction with soil organo-mineral. Understanding chemical 
composition structure of humic substances in an ever-evolving environment (changes 
in land use, agricultural practices, climatic or edaphic conditions, etc.) is essential. 
To this purpose many research groups are addressing these scientific challenges while 
striving to overcome scientific knowledge gaps in these mechanisms.

The effect of HS in improving nutrient assimilation and plant metabolism is well 
recognized. Previous studies indicated that humic fraction increases cell growth, 
metabolism, and nitrate uptake [88, 89]. [90] has reported that root architecture and 
nutrients uptake are directed affected by humus, enhancing plant yield. In tropical 
countries, soils are poor in nutrients leading to the excessive use of fertilizers whose 
prices are constantly increasing [91]. In order to give the best route for this enormous 
amount of residues, what are humic substances, new technologies are needed, which 
in turn could help farmers to cope with the high cost of imported fertilizers.

On the methodological level, analytical techniques such as fluorescence, electron 
spin resonance, and size exclusion chromatography at high pressure are not yet 
applied to study humic substances in tropical soil. These techniques can be applied 
to investigate the molecular changes of humic molecules when in interactions with 
metals and organic compounds, for example.

9. Conclusions

The dynamics and function of humus forms in tropical forests are still poorly 
understood. The aims of this chapter were to review new approach tools, methods for 
qualitative and quantitative evaluation of humus in tropical environment attempting 
to provide a better understanding of humus forms in tropical. Diverse tools and meth-
ods for qualitative and quantitative evaluation of humus coming from diverse sources 
have been adopted so far to express transformation processes. For the characterization 
of humus and humic substances, the analytical techniques are applied. Mull, moder, 
and Amphimull are the dominant humus forms in the topsoil of tropical ecosystems. 
They differ by the distribution of organic and mineral-organic horizons. The quantity 
and quality of humic substances formed in soil depend on biotic and abiotic factors. 
The role and importance of organic matter in soils, and in particular of humus in 
tropical soils, have been proven. However, few studies have been undertaken in Africa 
in general and in the forests of the Congo Basin, which is the second largest carbon 
reservoir in the world. This is why the study of humus in these ecosystems must be 
carried out.
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