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Chapter

Joint Action of Herbicides on
Weeds and Their Risk Assessment
on Earthworm (Eisenia fetida L.)
Mohammad Taghi Alebrahim, Elham Samadi Kalkhoran

and Te-Ming Paul Tseng

Abstract

Frequent and intensive use of similar modes of action herbicides increases
selection pressure resulting in nature adapt and a number of herbicide-resistant
weeds. The most effective methods to prevent and delay herbicide-resistant weeds are
herbicide tank mixture and adjuvant mixed herbicides. This chapter intends to explain
the advantages of herbicide tank mixture and adjuvant mixed herbicides. In addition,
the models of estimated herbicide mixture interaction response have been explained.
Although herbicide mixtures have benefits, they may present risks leading to soil
pollution and affecting soil fauna such as earthworms. Therefore, we discussed the
negative effect of mixture herbicides on Eisenia fetida. On the other hand, various
models to calculate mixture herbicide toxicity on earthworms will be present in this
chapter.

Keywords: adjuvant, chemical control, earthworm, estimated model herbicide
mixture

1. Introduction

Heavy reliance on herbicides has increasingly raised environmental concerns
[1–3]. The selection pressure of herbicides resulted in nature adapting and eventually
developing herbicide-resistant and tolerant weeds biotype [4–7]. The most effective
tool to inhibit, delay, or control herbicide-resistant weeds is to substitute herbicides
with different modes of action [8, 9]. But numerous studies have been conducted that
simple switches do not delay the evolution of resistant weeds [10, 11]. Previous
studies have shown that combining multiple herbicide modes of action in tank mix-
tures is more efficient in managing weeds [10, 12]. Mixing various modes of action in
the mixture can control resistant weeds via broadening the selection pressure by
targeting multiple metabolic pathways and delaying the evolution of herbicide-
resistant weeds [13]. Ideal herbicide mixtures have proven beneficial over using a
single herbicide in improving control and broadening the weed control spectrum
[14, 15]. It contains active components with the same persistence and spectrum of
controlled weeds but through a different mode of action [16]. Tank mixing increases
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in a spectrum of controlled weeds or an extension of weed control over a more
extended period, which reduces production cost by saving time and labor, reduces the
number of machine entrances into the production area, fuel consumption, water use
to prepare the solution, and hours spent. This leads to lower soil compaction by
eliminating multiple field operations. Crop safety is improved by adopting a combi-
nation of selected herbicides with minimum doses rather than a single high amount of
one herbicide. The soil residues of persistent herbicides were decreased following the
application of the minimum levels of such herbicides [17]. It is presupposed that
herbicide tank mixtures with two or more herbicide partners behave and act inde-
pendently so that the presence of each one does not affect the activity of another or
may significantly modify the biological behavior of every herbicide in the mixture.
Regarding the herbicide tank mixtures, the activity of the applied combination can be
easily predicted as the sum of the activities related to each herbicide when applied
separately.

In some cases, the interactions often result in declining or enhancing the activity
of the combined herbicides compared with the sum. Practically, the herbicide
combinations exhibit more activity on target weed species and less on crops (higher
selectivity). However, the prediction of this issue is difficult since the behavior of each
herbicide in the mixture is mainly influenced by the presence of the other(s), and the
mixture activity may significantly vary depending on plant species, growth stage, and
environmental conditions. Multiple herbicides applied in the mixture have three
types of herbicide interaction: additive/neutral, synergistic, or antagonistic [18–20]
(Figure 1). Synergism is favorable when two or more herbicide mixtures perform
rather than the herbicides applied alone. It allows a lower application rate or fre-
quency of herbicide treatment [22], but finding a new synergy remains challenging. In
contrast, an antagonistic response is an interaction of two or more herbicides such that
the effect, when combined, is less than the predicted effect based on the activity of
each chemical applied separately. Antagonism is 2–3 times more common than syn-
ergy, especially when herbicides from different chemical families are combined [21].
Sometimes, synergism can be hypothesized based on mechanistic assumptions, as was
done by [23], who predicted the synergism between glufosinate and protopor-
phyrinogen oxidase inhibitors and confirmed it experimentally; but generally,
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Figure 1.
Schematic isobologram for additive, synergism, and antagonism response of herbicide interaction
(ED50 = herbicides doses, applied singly or in the mixture for 50% weed control) (modified from [21]).
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synergies are not predictable. A synergistic herbicide mixture for one species can also
be antagonistic or additive for another species [24]. Thus, herbicide synergies appear
to be rare and unpredictable. An additive/neutral response occurs when the observed
response of two jointly applied herbicides is statistically similar to the expected value
of the mixture. The interactions in herbicide mixtures can occur before, during, or
after utilizing the mixture, the mechanisms of which can be broadly grouped into
biochemical, competitive, physiological, and chemical categories [25]. This chapter
aims to explain the importance of herbicide mixtures for weed control and to clarify
the models to estimate combined herbicides’ effects. Meanwhile, discusses the risk
assessment of herbicide mixtures on the earthworm population.

1.1 Models used to estimate mixture herbicide interaction

The use of isobologram could determine the synergism and antagonism response
of the mixtures [26]. Isobologram is a two-dimensional graph. There are two dose
axes, x and y, in the mixtures. Herbicide A is the dose on the x-axis, and herbicide B is
the dose on the y-axis. The mixtures follow the additive response when mixtures do
not interact and present straight lines, and the analysis of this mixture is based on the
additive dose model (ADM) [27]. The mixtures may interact, and the performance of
combined herbicides is greater than that of herbicides applied alone. So, herbicides are
more effective than expected and followed synergism. It means using a lower dose of
combined herbicides to provide the same effect as herbicides applied alone. In con-
trast, if the efficacy of the herbicide mixture is less than that applied alone, then they
show antagonism [26].

The reference model uses to determine synergism, antagonism, and additive
response in the mixtures. Any consistent model must relate biological response to the
doses of two or more herbicides. Choice of the reference model is crucial as the
different models may produce different conclusions. The two most frequently
referenced models in the study of joint action will be referred to as the additive dose
model (ADM) and the multiplicative survival model (MSM) [28]. ADM assumes
additivity of doses, i.e., that one herbicide can be replaced, wholly or partly, by
another herbicide at equivalent doses. In contrast, MSM assumes that the expected
efficacy of herbicide mixtures can be calculated by multiplying the percent survivals
of the individual herbicides. Hence, a fundamental difference between the two models
is that ADM considers dose rates, whereas MSM considers effects. Both dose addition
and independent action should be helpful to approximations for defining the
predicted response in the absence of herbicide interactions. A widely known charac-
teristic of the ADM is that, for mixtures of two components, when the response
surface predicted by the model is plotted against arithmetic scales of the component
doses, the contours of equal response (i.e., isobols) are straight lines. At any particular
level of response, the relative potency of the components when acting alone estab-
lishes scales of equivalent doses. In terms of this effective-dose (ED) scale, if one
component of the mixture is replaced, wholly or in part, by the other, the predicted
response is unchanged. By contrast, the MSM does not generally give straight-line
isobols. The distinction between the ADM and MSM has not consistently been
recognized, and different analysis methods have been confused with other models.

A third reference effect, effect addition, has been proposed, although it predicts
implausible effects under certain realistic conditions [29, 30]. Therefore, it is unlikely
to be helpful in practice. Likewise, the evaluation of adjuvants does not elicit any
antagonistic or synergistic effects since there is no comparison with a reference effect,
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and it is the only so-called enhancement or potentiation effect [30]. There are various
types of herbicide mixtures, experimental designs, and used models. A single-dose
factorial design and multiple-dose factorial design are two main groups.

1.1.1 A single-dose factorial design

Two factors are involved in fixed-dose or single-dose experimental design. The
first factor is several herbicides (two herbicides), and the second factor is dose with
two levels (dose 0 and a nonzero dose). Overall, four treatments result in this design:
control (dose 0 of both A and B) (E0), a nonzero dose of A and dose 0 of B (EA), dose
0 of A and a nonzero dose of B (EB), and a single mixture dose corresponding to
nonzero doses of both A and B (EAB) [31].

Two nonzero doses justify certain model assumptions despite playing no role in the
subsequent derivation. Thus, the doses should be carefully selected since any claim
about an antagonistic or synergistic effect is only valid for the chosen doses. Syner-
gism or antagonism can influence dose selection so that the use of a full recommended
dose of each pesticide may mask potential synergism when trying to detect synergism
for two highly effective herbicides. In this case, pesticide dose reduction (e.g., by
50%) is a common solution. The statistical analysis of 2� 2 factorial design is based on
the ordinary or linear mixed two-way Analysis of Variance (ANOVA) model
depending on the experimental design [32]. It is assumed that fitting the two-way
ANOVA model leads to the four estimates of E0, EA, EB, and EAB. In this regard, the
subscript 0 refers to the control, A and B are considered as the separate effects of A
and B, respectively, and AB indicates their combined effect. Regarding the ordinary
two-way ANOVA, the estimates are simple treatment means for each group, while the
weighted mean for the linear mixed one. Comparing E0, EA, EB, and EAB through
pairwise comparisons does not demonstrate any antagonistic or synergistic effects
after fitting a two-way ANOVA model. An antagonistic or synergistic effect may be
reported where there is none. Further, the estimates can be used to derive the
predicted effect under the assumptions of dose addition and independent action.

1.1.1.1 Dose addition

The reference effect (Eadd) under the assumption of dose addition is defined as
follows [33]:

Eadd ¼ EA � E0ð Þ þ EB � E0ð Þ (1)

The definition in Eq. (1) may be justified as reflecting dose addition (even though
effects and not doses are added up) by supposing linear dose-response relationships
for the two pesticides [32]. Given the availability of only a single nonzero dose for the
two pesticides, it is not meant to assume any nonlinear dose-response relationships.
However, a linear dose-response relationship may often be assumed as a local
approximation to the true nonlinear relationship. This assumption can be justifiable if
amounts were chosen as the effective doses, which are not too extreme since the dose-
response relationship within a restricted dose range may be supposed to be approxi-
mately linear. Particularly, let yA = a0 + bAxA and yB = a0 + bBxB denote the simple
linear regression equations for the two pesticides with the response values of yA and
yB, as well as the doses of xA and xB, respectively. Then, the reference effect Eadd is as
follows:
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Eadd ¼ a0 þ bAxA–a0ð Þ þ a0 þ bBxB–a0ð Þ ¼ bAxA þ bBxB (2)

representing that the sum of effects is equal to that of doses after appropriate
scaling [34]. Each antagonistic or synergistic effect can be defined as the difference
(DDA) between the observed response (expressed as the difference from the control)
and predicted effect (Eq. (1)). Especially, the difference is considered as follows:

DDA ¼ EAB � E0 � Eadd ¼ EAB � E0 � EA � E0 þ EB � E0ð Þ ¼ EAB � EA � EB þ E0

(3)

Based on the definition of difference DDA in Eq. (3), the values significantly larger
and smaller than zero exhibit a synergistic and an antagonistic effect, respectively.
Testing the null hypothesis of no antagonistic or synergistic effect corresponds to
testing for no interaction in a standard two-way ANOVA model. Regarding reporting,
the difference must be accompanied by the corresponding standard error or 95%
confidence interval to allow for the uncertainty attached to the estimate.

1.1.1.2 Independent action

The reference effect (Eind) under the assumption of independent action is defined
as follows:

Eind ¼ E0 1�
E0 � EA

E0

� �

1�
E0 � EB

E0

� �

¼ E0
EA:EB

E0:E0

� �

¼
EA:EB

E0
(4)

as rephrasing in terms of the parameters in the two-way ANOVA model [35].
Similar to the dose addition, the reference effect only involves the three estimates
corresponding to the control group (E0) and the two separate effects of pesticides A
and B (EA and EB, respectively). In contrast to the definition of dose addition in
Eq. (4), which only includes contrasts (i.e., the differences relative to the control), the
definition in Eq. (3) relies heavily on the absolute level of the control group (E0).
Furthermore, any antagonistic or synergistic effect may be expressed as the discrep-
ancy between the observed and reference effect under the assumption of independent
action in the same way as for dose addition. The difference (DIA) is defined as follows:

DIA ¼ EAB � Eind ¼ EAB �
EA:EB

E0

� �

(5)

The difference DIA significantly below or above zero demonstrates an antagonistic
or synergistic effect, respectively. The difference should be reported with the
corresponding standard error or 95% confidence interval, which can be obtained by
using the delta method. The delta approach is a statistical technique for estimating the
standard errors of derived parameter estimates (i.e., the parameters that do not
explicitly feature the model parameterization) [18].

1.1.2 Multidose factorial designs

The multidose design is similar to the single-dose one except that a dose range is
selected for one or both pesticides, and mixture doses are obtained based on a com-
plete or incomplete two-way factorial design (Figure 2). The statistical modeling
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approach outlined for single-dose designs can be simply applied in multidose designs
by analyzing one mixture dose at a time in the separate statistical analyses
corresponding to fitting two-way ANOVA models. A multidose design can be consid-
ered as a collection of single-dose designs, and a design involving multiple mixtures in
single doses can be analyzed in the same way. However, this method may or may not
imply the suboptimal use of data depending on the type of response and experimental
design. Fitting a simultaneous model and borrowing strength across mixture doses
may improve the analysis in some cases [36].

1.1.3 Single-ray fixed-ratio designs

The single-ray mixture fixed-ratio design consists of several mixture doses so that
the two individual herbicides contribute to doses in a constant ratio (in a single ray),
which may be specified in terms of so-called actual or virtual proportions. Further, the
design involves the two rays corresponding to the individual, pure pesticides, utilized
in several doses. Determining total mixture doses is an important preliminary step in
planning a fixed-ratio mixture experiment. These doses can be used for subsequent
dose-response modeling. Ideally, this step requires prior knowledge about effective
doses. Therefore, it is assumed that ED50A and ED50B are available from the previous
experiment. The resulting relative potency of pesticide B relative to A is denoted ρ

(=ED50B/ED50A). For a given mixture fraction f ∈ [0, 1], which is respectively related
to virtual (mixture) proportions f and 1 � f, the corresponding actual mixture pro-
portions fA and fB (the relative potency of the pesticides A and B) can be calculated as:

fA ¼ fED50A= f ED50A þ 1� fð Þ ED50Bð Þð (6)

fB = 1 � fA. This approach for extracting the actual mixture proportions is referred
to as Hewlett’s criterion, which is optimal compared with the other methods [31]. For

Figure 2.
Factorial and fixed-ratio designs for binary mixture experiments (black and light-gray points illustrate fixed-/
single-dose and multidose factorial designs, respectively. The dark-gray lines reflect the rays in a fixed-ratio design
with five rays. In addition, three mixtures (virtual proportions of 25:75, 50:50, and 75:25) and two degenerate
mixture rays are observed for the individual pure pesticides (virtual proportions of 100:0 and 0:100). The dark-
gray points represent the amounts selected along the rays. The doses for the factorial and fixed-ratio designs hardly
overlap [33].
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instance, if the ED50 values of herbicides metribuzin and flumioxazin are respectively
equal to 17 and 153 μg cm�2 in a preliminary experiment, then, a virtual 50:50 mixture
(f = 0.50) corresponds to an actual 10:90 mixture by using Eq. (6) (with the actual
mixture proportions of 0.10 and 0.90 for metribuzin and flumioxazin, respectively).
The ED50 value under the assumption of dose addition, ED50add (expressed as a total
dose), can be obtained by using either actual or virtual mixture proportions as ED50A/
(fA + f ρ) = fED50A +(1 � f) ED50B [34]. Based on the actual proportions fA and fB, the
doses of A and B in the mixture can be respectively recovered as fAED50add and
fBED50add (they are needed for the practical application of the mixture). The resulting
ED50add and corresponding doses A and B are typically used to derive a dose series
through repeated twofold decreases and increases [37]. The number of doses should
be guided by the same considerations utilized for the ordinary dose-response curves of
single pesticides. Additionally, no preliminary experiments are carried out in some
cases. As an approximation, the relative potency can be estimated from the dose-
response data for pesticides A and B, obtained as a part of the ongoing mixture
experiment. However, it should be noted that the resulting doses for the mixture are
partly based on the estimates (which are based on the response data). The uncertainty
in these estimates is ignored in a standard statistical analysis. The data of three dose-
response curves can be used to assess synergistic and antagonistic effects on the dose
scale [38]. The presence of a shared control group (for dose 0) in dose-response
curves is an important prerequisite. This assumption is usually ensured by the exper-
imental design. It implies an indirect standardization relative to the control, which is
not unlike the use of differences relative to the control in the case of factorial designs.
A joint dose-response model should be fitted for continuous response data, while
dose-response models may be separately fitted for each ray concerning binomial and
count response data.

1.1.3.1 Dose addition for fixed-ratio designs

Three scenarios are distinguished depending on how similar or dissimilar the dose-
response curves are assumed. The assumptions have profound implications on how to
evaluate antagonistic and synergistic effects.

1.1.3.2 Identical lower limits and slopes: dose-response models

That imposing shared lower and upper limits and slopes for all three dose-response
curves often referred to as parallelism have been used for a long time. These models
involve only a single parameter for the common lower and upper limits, slope, and
three parameters for the ED50 (one for each curve). Accordingly, there are a total of
six model parameters. Under the assumption of dose addition, the estimated mixture
ED50 (ED50add) can be calculated by the linear combination of the ED50 values esti-
mated for individual pesticides as [33]:

ED50add ¼ f ED50A þ 1� fð ÞED50B (7)

by using the virtual proportions f and 1 – f [39]. It is important to realize that
ED50add is a derived estimate and consequently is determined with uncertainty like
other estimates. Further, Eq. (7) is equivalent to the commonly shown but less intui-
tive equation for dose addition in terms of so-called toxic units [33]:
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fAED50add

ED50A
þ
f BED50add

ED50B
¼

xA
ED50A

þ
xB

ED50B
¼ 1 (8)

where xA = fAED50add and xB = fBED50add are respectively considered as the total
doses of pesticides A and B in proportions fA and fB, leading to an effect corresponding
to ED50add. In the following, Eq. (8) is only utilized because of offering a much more
direct interpretation of dose addition [39].

Fitting the dose-response model(s) results in estimating ED50A, ED50B, and
ED50mix (expressed as total doses). Furthermore, both a difference and a ratio may be
used to examine departures from the assumption of dose addition. In any case, the
corresponding standard error or 95% confidence interval should be reported, the first
of which can be computed by employing the delta method. Particularly, the definition
of the difference is as follows [33]:

DDA ¼ ED50mix � ED50add (9)

An estimated difference significantly more or less than zero reflects an antagonis-
tic or synergistic effect. It is worth noting that ED50add and ED50mix, which do not
incorporate the uncertainty of both estimates, should not be compared [40]. The
ratio, combination, or interaction index is defined as follows [32]:

RDA ¼
ED50mix

ED50add
(10)

where a value significantly larger than 1 illustrates an antagonistic effect, while a
synergistic effect is detected when a value is significantly lower than 1. The use of
arbitrary cutoffs such as RDA < 0.8 and > 1.2 is not enough for declaring synergism or
antagonism, respectively, since the variation in RDA is ignored entirely. The utilization
of a difference in terms of logarithm-transformed estimated ED50 values corresponds
to the application of ratio RDA. These difference and ratio respectively expressed by
Eqs. (9) and (10) need not lead to the same results because of using various approx-
imations while calculating the corresponding standard errors based on the delta
approach.

1.1.3.3 Identical lower limits but varying slopes

In log-logistic and Weibull dose-response models, the approximations of estimates
for the slope parameter b and parameter e (ED50 in the log-logistic one) have recently
been established by supposing dose addition [41]. The approximations can be com-
pared with the parameters estimated for the fitted dose-response curve of the mix-
ture. Regarding the log-logistic model, this approach provides a framework for
comparing the observed ED50 for the mixture with the predicted ED50 under this
assumption. The approximation of ED50 coincides with Eq. (7) for the identical slope
scenario. In addition, a slight difference is observed in the approximations for the
identical and varying slope scenarios [42]. Thus, varying slopes may not warrant a
different analysis than for the earlier case of identical slopes and lower limits when
interest lies in ED50. In other words, Eqs. (7), (9), and (10) may still be applied for
assessing synergistic and antagonistic effects. However, a different definition of ref-
erence effect under the assumption of dose addition may be required for varying slope
scenario if interest is in other effective doses [42].
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1.1.3.4 Varying slopes and varying lower limits

The varying lower limits may be caused by the lack of absorption or solubility,
complicating the evaluation of synergistic and antagonistic effects. For example, the
assumption of dose addition needs to no longer correspond to the linear relationships
between effective doses (Eq. (7)) [43]. A crude approximation is obtained by suppos-
ing identical limits, which should be flagged during use. The literature has proposed
several approaches for handling varying lower limits or relevant varying upper limit
scenario. Further, many generalizations of existing dose-response models have been
suggested [44], often involving highly nonlinear regression models or additional
assumptions to present suitable predictions. However, the generalizations are not yet
readily available to practitioners. The estimation and quantification of departure from
the reference effect remain difficult. The utilization of an absolute effect level, which
is separately reached for both pesticides, can be addressed as an alternative. The
corresponding (relative) effective doses need not correspond to (relative) ED50,
although they are defined independently of the lower limit (as if the lower limit is zero
for both pesticides). This approach can provide a viable solution in pesticide science
since the control (dose 0) mostly corresponds to the highest response level. Differing
lower limits often occur for relatively high doses. The procedure previously described
for the case with identical slopes and lower limits can be employed in the case of
selecting the appropriate absolute effect level. However, the definition of the effective
dose under the assumption of dose addition may not be straightforward for the
varying slope scenario.

1.1.4 Independent action for fixed-ratio designs

In analogy with Eq. (4), the dose-response function for the mixture find under the
assumption of independent action is defined from the dose-response functions fA and
fB for individual pesticides as find:

f ind xð Þ ¼
fA xð Þ:f B xð Þ

fA 0ð Þ

(11)

for any dose x. The denominator can be the mean response level at dose zero for
each of the two individual pesticides, which should have the same upper limit by the
assumption. In many applications, in which the response values are pre-standardized
against the control [45], Eq. (11) reduces to simply being the product (e.g., standard-
ization means fA(0) = fB(0) = 1 in Eq. (11) find:

f ind xð Þ ¼ fA xð Þ � f B xð Þ (12)

With respect to mathematical form, the function find expressed by Eqs. (11) or
Eqs. (12) is not the same as the model functions fA and fB for individual pesticides.
Accordingly, log-logistic models for individual pesticides do not imply a log-logistic
model under the assumption of independent action. However, the upper limits of
function find and two individual functions are identical [41]. Furthermore, the lower
limit of find equals zero if one of the model functions fA and fB has a lower limit of zero.
The entire estimated dose-response curve for the mixture. The entire estimated dose-
response curve for the mixture can be compared with the predicted dose-response
curve under the assumption of independent action obtained from Eqs. (11) or Eqs. (12)

9

Joint Action of Herbicides on Weeds and Their Risk Assessment on Earthworm…
DOI: http://dx.doi.org/10.5772/intechopen.105462



through visual inspection or statistical tests such as two-sample t-tests or nonparamet-
ric equivalents (comparing fitted and predicted values dose by dose) [46]. The statis-
tical methods suppose the independence between fitted and predicted values, so they
are not entirely appropriate. In other words, the assumption of independent action is
amenable for predicting, not for quantifying antagonistic or synergistic effects in
terms of mean departures from the reference effect in the fixed-ratio ray design.

1.1.5 Multi ray fixed-ratio designs

In the case of an experimental design with multiple mixture rays (Figure 2), the
earlier methods for the identical and varying slope scenarios for ED50 may still be
implemented, repeating the analysis for each mixture ray. Since these separate
analyses share the same control group, some overlaps are detected in the used data,
although they may be acceptable [47].

1.2 Review of research on the effects of herbicides mixtures on weeds

We note in this section several research results that concluded additivity, antago-
nism, and synergism effects on weeds.

One of the most common herbicide mixtures is different graminicides with broad-
leaf herbicides mixture to broaden the weed control spectrum. The postemergence
application of various graminicides in a mixture with one or more broadleaf herbi-
cides often results in reduced efficacy of graminicides [48]. Antagonistic interactions
are probably due to morphological and physiological differences between grasses and
broadleaf weeds. Broadleaf weeds have meristems at the top of the plant, whereas
grasses have them at the base. On the other hand, this difference affects absorption
and mainly translocation of the foliar-applied herbicides, particularly the systemic
ones that are translocated and accumulated at the meristematic tissues of the plant
where they act. The herbicide amount translocated to its site of action can be declined
by the presence or concomitant translocation of another herbicide into the plant [48].
Increasing the ratio of graminicide to broadleaf herbicide in a mixture can alleviate the
antagonism of the graminicide [49]. Historically, ACCase inhibiting herbicide antag-
onism has been observed when applied in a mixture with broadleaf or sedge herbi-
cides, such as ALS inhibiting herbicides and photosystem II inhibiting herbicides
[19, 50]. Research by [19] showed that quizalofop (120 g ha�1) mixed with the full
labeled rate of halosulfuron at 53 g ha�1 could result in an antagonistic interaction for
weedy rice and barnyardgrass control. The interaction of herbicides in-tank mixing
depended on weed species. Noticeably, the highest dose of halosulfuron (53 g ha�1)
mixed with quizalofop followed an additive response on red rice (Oryza punctata)
28 days after treatment [51, 52]. Glufosinate antagonized the activity of clethodim on
a mixed population of annual grass species: large crabgrass and fall panicum (Panicum
dichotomiflorumMichx.), goosegrass (Eleusine indica L.) [53], and giant foxtail (Setaria
faberi Herrm.) [51]. However, [54] did not identify antagonism of glufosinate +
clethodim on barnyardgrass. Weed’s different responses to herbicide interactions may
be due to genetic, physiological, or morphological differences [25]. Antagonism of an
ACCase inhibiting herbicide can be reduced by increasing the rate of the ACCase
inhibitor to broadleaf herbicide in a mixture. The antagonism between bentazon and
quizalofop for control of barnyardgrass (Echinochloa crus-galli) can be overcome by
doubling the rate of quizalofop [55]. Antagonistic interactions may be attributed to the
increased metabolism of an herbicide in the presence of another. Based on the study
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results [56], the less efficacy of diclofop on various species following application with
hormone herbicides such as 2,4-D is ascribed to an enhancement in its metabolism
(complex formation) carboxylic group)) due to the presence of 2,4-D. The previous
studies revealed that the members of aryloxyphenoxypropionate and cyclohex-
anedione herbicides are more affected when mixing with systemic broadleaf herbi-
cides than the contact ones. The interaction of herbicide mixtures depends on dose
and growth stages. Glufosinate at 451 g ha�1 + clethodim at 76 g ha�1, an improvement
in control was observed over the individual herbicides for barnyardgrass and Johnson
grass (Sorghum halepense) control. In contrast, a reduction was observed for large
crabgrass (Digitaria sanguinalis) and no difference for broadleaf signalgrass [57].
Additionally, the extent of the interactions between combined herbicides is mostly
influenced by the growth stage of weeds. The post-emergence use of chlorsulfuron
and diclofop diminishes the efficacy of diclofop on Italian ryegrass (Lolium
multiflorum), the effect of which is more severe when the application is performed at
the three-leaf growth stage than the two-leaf one [58]. This issue may be related to a
reduction in detoxification ability compared with the younger plants, as well as their
thinner cuticle, which probably allows to retain, absorb, and translocate the greater
amounts of the utilized herbicides. In the research of [59], the antagonism effect was
observed when 28.5% nicosulfuron mixed mesotrione by ADMmodel on canola at 10,
17, and 40 days after treatment. An increased level of Reactive Oxygen Species (ROS),
produced by the mesotrione, may block the inhibitory effect of nicosulfuron on ALS
[55]. Clomazone at 760 g ha�1 + 1540 g ha�1 pendimethalin mixed with 1120 or
2240 g ha�1 propanil followed an antagonistic effect on yellow nutsedge (Cyperus
esculentus) at 28 days after treatment; however, the mixture of clomazone +
pendimethalin at 1145 g ha�1 with 4485 g ha�1 propanil showed a neutral response
[60]. An antagonistic response occurred in yellow nutsedge used as a control when
treated with 760 and 1540 g ha�1 of clomazone plus pendimethalin mixed with 1120
or 2240 g ha�1 of propanil at 28 DAT; however, 1145 g ha�1 of clomazone plus
pendimethalin mixed with 4485 g ha�1 of propanil resulted in a neutral interaction
[61]. Unlike yellow nutsedge, a synergistic response occurred when barnyardgrass
was treated with all rates of clomazone plus pendimethalin mixed with either rate of
propanil evaluated at 56 days after treatment.

An antagonistic effect of metribuzin with halosulfuron and metribuzin with
flumioxazin at the different dose and mixture ratios was observed on common
lambsquarters (Chenopodium album) and redroot pigweed (Amaranthus retroflexus)
and in potato biomass. On the other hand, the effect of metribuzin with flumioxazin
mixtures was antagonistic on potato maximum quantum efficiency (Fv/Fm) while
metribuzin with halosulfuron mixtures followed the additive model on Fv/Fm [62].
The mixture of chloridazon and clopyralid followed additive model on Portulaca
oleracea L., Solanum nigrum L., Amaranthus retroflexus L., and Chenopodium album L.
In contrast, desmedipham, phenmedipham, ethofumesate, and clopyralid mixtures
showed a synergistic effect on all species except P. oleracea at 80 and 90% response
levels. The binary mixture of desmedipham+ phenmedipham+ ethofumesate and
chloridazon represented additive effect on S. nigrum and A. retroflexus and followed an
antagonism effect on C. album and P. oleracea [63]. The greenhouse research investi-
gated by [64] showed the mixtures of mesosulfuron+ iodosulfuron + pinoxaden
followed synergism effect on wild oat (Avena fatua) and Phalaris minor. If oxadiargyl
+ rimsulfuron and metribuzin + rimsulfuron mixed with (25:75)% mixture ratio, a
high reduction of common lambsquarters (Chenopodium album) and redroot pigweed
(Amaranthus retroflexus) provided at potato emergence stage in the field [65].
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2. Herbicides with adjuvants

Historically, adjuvants are essential components for herbicide-resistant weeds
control. To improve herbicides’ performance or application objective, adjuvants are
used in the spray tank. These adjuvants are commonly added to the spray tank to
improve herbicidal activity or application characteristics [66]. According to the [67]
“adjuvants are the substances used with a herbicide to improve its performance.” In
the last definition, “adjuvants are already included in the formulations of some herbi-
cides available for sale. They may be purchased separately and added into a tank mix
before use” [68]. Generally, adjuvants have been developed to assist herbicides. They
allow mix and handle with herbicide active ingredients better, contact to target weed,
increase droplet coverage, and spray retention and droplet drying [66]. Adjuvants
diminish or even eliminate spray application problems [69] (e.g., drift reduction)
[70], enhance herbicide cuticle penetration and cellular accumulation [71], and
decline herbicide amount and total weed control costs. Furthermore, they lead to a
significantly greater herbicide efficacy [72] and consequently a lower total herbicide
concentration to achieve a given effect [73], as well as promoting the formulation’s
ability to kill the targeted species without harming other plants [74]. In terms of
environmental aspects, they can decrease herbicide leaching through soil profile [75].
However, adjuvant addition does not significantly improve control in some circum-
stances. Adjuvants can sometimes exhibit adverse effects such as declined herbicide
activity (antagonistic effects) [76], enhanced formulation ability to spread or persist
in the unwanted environment [77], and increased harmful effects on nontarget plants
and aquatic species [78]. Adjuvants are divided into activators, spray modifiers, and
utility modifiers [79]. Activators are components that change characteristic herbicides
such as viscosity and particle size, evaporation, etc. They improved herbicide activity,
spread, absorption into a tissue, rainfastness, and reduced herbicide
photodegradation. There are three categories of activators: surfactants, wetting
agents, and oils [79].

Surfactants are the most widely used and probably the most essential adjuvants
[80]. Surfactants can be classified into nonionic, cationic, anionic, and ampholytic
based on their ability to ionize the aqueous solution. Organosilicone and silicone
surfactants are two types of nonionic surfactants. Cationic surfactants, which have a
positive charge, often are not applied with herbicides, and anionic ones are rarely
utilized with herbicides. Ampholytic (amphoteric) have both positive and negative
charges, that is, in aqueous solution are capable of forming cations or anions. Wetting
agents increase solution spread on the leaves [79]. Oils increase herbicide uptake by
increasing the time of retention. They mixed with water via emulsifiers. Oils have
uniform droplet size (reduction of drift), decreasing spray evaporation and
rainfastness time, and increasing penetration into waxy leaves. They can be classified
as: crop oils, dormant oils, crop oil concentrates, vegetable oils, vegetable oil concen-
trate, modified vegetable oil, and modified vegetable oil concentrate. In addition,
spray modifiers are among the most important adjuvants, which influence the deliv-
ery and placement of spray solution [81]. They limit or alter the physicochemical
characteristics of spray solution, make herbicide spray easier to aim, reduce herbicide
drift in the air, and cause the spray to adhere to plants more readily. Spray modifiers
include thickening agents (i.e., invert emulsions and polymers), stickers, spreaders,
spreader stickers, foaming agents, humectants, and UV absorbents. Utility modifiers
are the third group of adjuvants, which help minimize handling and application
problems. They do not directly improve efficacy, although they widen the conditions
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in which an herbicide can be used or maintain the integrity of the spray solution. For
instance, utility modifiers diminish foaming, promote solubility, modify pH, or
decrease spray drift. Emulsifiers, dispersants, cosolvents, ammonium fertilizers, and
stabilizing, coupling, compatibility, buffering, and antifoam agents can be addressed
as the types of modifiers.

2.1 Review of research on the positive effects of adjuvants mixture herbicides on
weeds

Adjuvants can be especially effective in increasing the biological activity of many
herbicides [82]. Previous studies reported that density, viscosity, surface tension,
contact angle, droplet size, and droplet evaporation of the spray solution could change
with the addition of adjuvants to the spray solution [83]. The activity of tribenuron-
methyl significantly enhances following the use of NIS (20% isodecyl alcohol
ethoxylate + 0.7% silicone surfactants), an anionic surfactant (25.5% alkyl ether sul-
fate sodium salt), and vegetable oil (95% natural rapeseed oil with 5% compound
emulsifiers) on Sinapis arvensis,Tripleurospermum inodorum, Papaver rhoeas, and C.
album. Further, only minor differences are observed among the tested adjuvant [84].
The character of foliar surfaces such as cuticle, stomata and trichomes number, leaf
position, angle, and leafage is different in various weed species that affect retention
and deposition of herbicides [85]. COC (crop oil concentrate), NIS, MSO (methylated
soybean oil), and COC-DRA (crop oil concentrate-drift retardant adjuvant) with
lactofen increased the spray solution viscosity by 4.3, 2.6, 3.6, 7.5, respectively.
Lactofen containing COC, NIS, MSO (methylated soybean oil), and COC-DRA
increased viscosity by 4.3%, 2.6%, 3.6%, and 5.7%, respectively, compared with
lactofen alone [86]. Methylated seed oil (MSO) and NIS promote the foliar absorption
and efficacy of many herbicides such as primisulfuron, rimsulfuron, imazethapyr,
quinclorac, and several graminicides for grass weed control [87]. Nonionic surfactants
improve glyphosate absorption by 20 times greater, and spray drop is spread 200-fold
more than when no adjuvant is added [88]. Furthermore, some researchers reported
the strong effect of mineral and vegetable oil on clodinafop-propargyl and diclofop-
methyl + fenoxaprop-p-ethyl on Lolium multiflorum, Avena ludoviciana, and Phalaris
minor [89]. Seed-oil-based crop oils and organosilicone adjuvants combined with
halosulfuron lead to 100% control of Cyperus rotundus L. at 8 weeks after treatment
(WAT) compared with a combination of halosulfuron with the nonionic or paraffin-
based crop oil adjuvants (<90% control) [90]. The measurement of ED50 and ED90

showed that Citogate (0.1 and 0.2%) increased sulfosulfuron efficacy [91].
Generally, environmental agents affect the efficacy of the mixture of herbicides

with adjuvants. In the mixture, rain shortly after utilizing herbicides is among the
most detrimental issues for performance. Given that the rainfastness of herbicides
increases by applying adjuvants, the effect should be considered when selecting an
adjuvant [92]. A study [93] represented a shorter critical rain-free period following
the addition of an OSL adjuvant to glyphosate. This decline can be attributed to the
lower liquid surface tension of glyphosate caused by the OSL (Organosilicone) adju-
vant and the subsequent promotion of the stomatal infiltration of glyphosate into the
plant. The conventional adjuvants produced slower absorption of the 14C-glyphosate,
as the maximum absorption was not achieved until at least 24 h in redroot pigweed,
remaining similar until 72 h [88]. The effect of the vegetable oil on tribenuron-
methyl’s rainfastness was significantly lower than that of the surfactants with rain at

13

Joint Action of Herbicides on Weeds and Their Risk Assessment on Earthworm…
DOI: http://dx.doi.org/10.5772/intechopen.105462



1 h, while no significant differences among the three adjuvants were observed when
rain occurred at 2 and 4 h [84].

2.2 No or negative interaction between herbicides and adjuvants

Adjuvants can significantly enhance the effect of an herbicide, while they fail to
increase control and cause harmful effects on nontarget plants in some circumstances
(antagonistic effect). Several studies have revealed that A. theophrasti is more con-
trolled by adding AMS (ammonium sulfate) into herbicides; however, the control of
other species such as C. album is not always improved [94]. The combination of
sethoxydim and halosulfuron with COC or MSO is antagonistic to smooth crabgrass
(Digitaria ischaemum (Schreb.) ex Muhl.) [76]. Flumioxazin does not damage wheat
or cabbage except after adding silicone adjuvant, which enhances the retention of the
spray solution [95]. Adjuvant addition slows down degradation and elevates the level
of phenmedipham residue in the soil [77]. The addition of nonionic surfactants to
dicamba plus glyphosate tank mixture not only decreased contact angle and surface
tension but also droplet size [96].

3. Risk assessment of mixture herbicides on soil: emphasis on earthworm
(Eisenia fetida L.)

Continuous application of herbicides may lead to soil pollution and affect soil
fauna [97]. Generally, herbicides applied alone and in mixture negatively influenced
nottargeted animals [98]. As soil inhabitant animals, earthworms might be affected,
although the site of action herbicides is not targeted toward animals. They are
bioindicators for determining herbicide and heavy metals pollution in soil due to their
high sensitivity to soil pollution [99, 100]. The Eisenia fetida is currently used as test
species in ecotoxicology [101]. There are many methods of testing the toxicity of
chemicals to earthworms. Tests include two kinds: a paper contact toxicity and an
artificial soil test. A simple paper contact toxicity test is described as an optional initial
screen to indicate those substances likely to be toxic to earthworms in soil and which
will require further more detailed testing in artificial soil. The artificial soil test gives
toxicity data more representative of the natural exposure of earthworms to chemicals
[102]. On the base of LC50, for the contact test, the concentration of the test substance
is expressed in mg cm�2. For the artificial soil test, it is expressed in mg kg�1 (dry
weight). The LC50 of a reference substance should be occasionally determined to
ensure that the laboratory test conditions are adequate and have not changed signifi-
cantly. Only contact filter paper and artificial soil tests adopt mortality (LC50) as the
toxic endpoint in all acute toxicity test methods and have received the most attention.
The screening test (filter paper contact test) involves exposing earthworms to test
substances on moist filter paper to identify potentially toxic chemicals to earthworms
in the soil. The artificial soil test involves keeping earthworms in samples of precisely
defined artificial soil to which a range of concentrations of the test substance has been
applied. Mortality is assessed 7 and 14 days after application. One concentration
resulting in no mortality and one resulting in total mortality should be used. The
mortality in the controls should not exceed 10% at the end of either test. Only contact
filter paper and artificial soil tests exposure protocols using mortality (LC50) as the
toxic endpoint and E. fetida as the test species have received the most attention, with
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the latter being adopted by both [101] and European Economic Community [102] in
Europe and the United States Environmental Protection Agency in the United States.

As mentioned before, additive, synergism, and antagonism are three types of
herbicide interactions. Concentration addition (CA) and independent action (IA) are
two common reference models for determining mixture toxicity.

3.1 Concentration addition (CA)

The toxicity of herbicide mixtures with a similar mode of action is estimated by
concentration addition (CA) [103], which has extensively been used for herbicides,
and is most straightforward [104]. Generally, CA assumes additivity of toxicity that
components will not interact with each other in the mixtures, and the relative potency
is equal to the sum of singly potencies [105].

3.2 Independent action

The independent action model (IA) is used for components with the dissimilar
mode of action on the organism. They act independently. The toxicity of the total
mixture is calculated by the expected effects of each component [106].

3.3 Interaction models

Physical, chemical, and biological interactions of herbicides do not account for by
CA and IA models. MIXTOX is an empirical model that determines how much mix-
ture toxicity results deviate from CA and IA model predictions [107]. MIXTOX con-
sidered a difference between synergism and antagonism based on concentration and
mixture ratios along with deviations [108]. Therefore, experimental design for
MIXTOX is considerable due to covering all concentration and mixture ratios [109]; to
date, MIXTOX has been used with binary mixture toxicity [110]. The median-effect/
combination index (CI) is a method used by [111] to expound chemical interactions. It
quantitatively determines the mixtures interactions at various concentrations and
mixtures ratios. Pollution interaction is developed by [112].

The response to toxic exposure of E. fetida in artificial soil and filter paper tests was
estimated using the median-effect equation, as described by [112]:

f a
f u

¼
D

Dm

� �m

(13)

where D is the concentration, Dm is the concentration for 50% effect (50% mor-
tality rate), f a is the fraction affected by concentration D, f u is the unaffected fraction
(f a = 1 -f u), and m is the coefficient of the sigmoidicity of the dose-response curve:
m = 1, m > 1, and m < 1 indicate hyperbolic, sigmoidal, and negative sigmoidal dose-
response curves, respectively. Therefore, the method considers both the potency (Dm)
and shape (m) parameters. If Eq. (14) is rearranged, then:

D ¼ Dm f a 1� f a
� �� �

�1=m (14)

The Dm and m values for each pesticide are easily determined by the median-effect
plot: x = log (D) versus y = log (f a/f u) which is based on the logarithmic form of
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Eq. (14). The median effect plot, m is the slope, and log (Dm) is the x-intercept. The
conformity of the data to the median-response principle can be readily manifested by
the linear correlation coefficient (r) of the data to the logarithmic form of Eq. (14).

These parameters were then used to calculate concentrations of the pesticides and
their combinations required to produce various effect levels according to Eq. (14);
combination index (CI) values were then calculated according to the general
combination index equation for n chemical combination at 10%, 50%, and 90%
mortality rate:

CIð ÞX ¼
X

n

j¼1

Dð Þj

Dxð Þj
¼

X

n

j¼1

Dxð Þ1�nf
D½ �j

Pn

1
D½ �

Dxð Þj f
ðf axÞ j

1�ðf axÞ j

(15)

where n(CI)x is the combination index for n chemicals at x% effect level; (Dx)1_n
is the sum of the concentration of n pesticides causing x% mortality rate of the

earthworms in the mixture,
D½ �j

Pn

1
D½ �
is the proportionality of the concentration of each

of n pesticides causing x% mortality rate in combination; and Dxð Þj f
ðf axÞ j

1�ðf axÞ j
is the

concentration of each pesticide causing x% mortality rate. From Eq. (15), CI < 1,
CI = 1, and CI > 1 indicate synergism, concentration addition, and antagonism,
respectively. Where cmix and E (cmix) are the total concentration and total effect of the
mixture, respectively. E (ci) denotes the effect of the ith component with the concen-
tration of ci in the mixture.

ECð ÞX,mix ¼ ð
X

n

i¼1

pi
ECx,i�CIx comp

(16)

CIx comp is the computed combination index value for the mixture at the x level of
effect (x%) from the experimental toxicity curve of the mixture [113].

3.4 Review of research on the effect of mixtures of herbicides on Eisenia fetida

The study of herbicide mixtures on Eisenia fetida is rare. The (50:50) and (25:75)%
mixture ratios of metribuzin plus halosulfuron and metribuzin plus flumioxazin pro-
vided higher toxicity than the other mixture ratios (100:0) and (0:100)% on earth-
worm biomass, respectively. Isobologram demonstrated metribuzin plus halosulfuron
and metribuzin plus flumioxazin followed an antagonistic effect meaning that the
mixtures retracted the action of the herbicide in the earthworms relative to a concen-
tration addition (CA) reference model. Earthworms exposed to a mixture of
metribuzin plus halosulfuron and metribuzin plus flumioxazin showed that increased
exposure time decreased the LC50 in filter paper and artificial soil tests on Eisenia
fetida mortality. The binary mixture experiments demonstrated for both experiments
an apparent antagonistic effect on two types of tests [114]. Antagonistic effects are
detected from many mixtures because the compounds in the mixture may stimulate
the metabolism of each other, leading to affected absorption in the organism [115].
Synergistic effects become significantly dangerous to soil organisms once the mixture
toxicity is much greater than its predicted level [116]. Principles of concentration
addition model to assess the impact of triazine herbicides on organophosphate
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insecticide toxicity to the earthworm Eisenia fetida. Atrazine and cyanazine also
increased the toxicity of chlorpyrifos 7.9- and 2.2-fold, respectively. However, sima-
zine caused no toxicity to the worms and did not affect chlorpyrifos toxicity in binary
mixture experiments. The uptake of chlorpyrifos into the worms was reduced when
found in binary mixtures with atrazine, so an increased uptake cannot be considered
an explanation. The synergistic effects might be linked to increased biotransformation
of the original phosphorus-sulfur bond into a phosphorus-oxygen bond characteristic
of oxon derivatives [117]. Atrazine disrupts photosynthesis, which may induce cyto-
chrome P450 and general esterase activities in E. fetida [117]. Cytochrome P450 has an
essential role in metabolism [5, 118]. These enzymes break down pesticides by either
increasing or decreasing the toxicity of other pesticides depending on whether the
resulting metabolites are more or less toxic than their parent compounds [119].

Several herbicides (acetochlor, anilofos, flutamone, pretilachlor, S-metolachlor,
and terbutryn) were very toxic in contact toxicity but were low in soil toxicity testing
[120]. The mixture of tribenuron methyl (TBM) plus tebuconazole (TEB) showed an
antagonistic effect on the earthworms in filter paper and artificial soil tests. In the
chronic toxicity experiment, both high concentrations of TBM and TEB, single or
combined, induced oxidant stress in the earthworms, and the cellulase activity was
inhibited in the earthworm exposed to high concentrations of TBM at the early 35
exposure period. However, both pesticides did not damage the DNA of earthworms in
all treatments [99]. Both acute and chronic toxicity tests play an essential role in the
risk evaluation of pesticides to earthworms. They are considered valuable for
predicting the responses of soil organisms to pesticides [121]. An antagonistic effect
was observed the binary mixture of butachlor plus λ-cyhalothrin at all effect levels in
artificial soil test, while it shows synergism effect in filter paper test [122]. In the
research of Chen et al., [122], the binary mixture of butachlor plus atrazin showed
moderate synergism at the highest effect levels. An additive and slightly synergism
were observed at <0.2 fa in artificial soil test. The mixtures of atrazine plus exhibited
a synergism response in filter paper and artificial soil tests on Eisenia fetida mortality.
Yang et al. [123] reported the combination of acetochlor plus chlorpyrifos followed a
synergism response at 4:1 and 3:2 combination. An antagonistic response was
observed the combination of 2:3 and 1:4 of clothianidin plus acetochlor, while a dual
additive/antagonist response showed at 4:1, 1:1, and 3:2 combination on Eisenia fetida
mortality. The most strongly synergistic reported at phoxim plus butachlor plus λ-
cyhalothrin combination at the all range. The mixture of atrazin plus butachlor plus
cadmium exhibited a slight synergism on Eisenia fetid mortality [124].

4. Conclusion

Herbicide resistance is a pervasive challenge in intensive agriculture. Applying
multiple modes of action can help to manage herbicide-resistant weeds. Herbicide
mixture is a powerful tool to prevent, delay, and control herbicide-resistant weeds.
The choice of the most appropriate mixture is crucial and is based on herbicide
components, formulation, and weed species. The reference models used to determine
the interaction of herbicide and the use of isobologram can illustrate the synergism,
additive, and antagonism responses by the ED scale. Another method to manage
herbicide-resistant weeds is utilizing adjuvant. Adjuvants are the best tool for
improving herbicide performance and optimizing herbicide application. In addition,
the adjuvant can overcome antagonist response in the tank mixture. Despite the
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positive effect, the synergism response in high doses can influence the soil animals
such as earthworms. Therefore, growers need knowledge of the management strate-
gies to maximize the long-term benefits of herbicide mixture and reduce weed shifts
to difficult-to-control and herbicide-resistant weeds.
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