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Chapter

Toxicological Interaction Effects of 
Herbicides and the Environmental 
Pollutants on Aquatic Organisms
Mahdi Banaee

Abstract

Although herbicides are designed to remove or control weeds, pollution of water 
ecosystems with herbicides could have adverse effects on aquatic animals such as fish. 
The effect of herbicides on nontarget organisms may be different than expected, as 
herbicides may interact with another environmental contaminant. Since there are  
different contaminants in the water, fish may live in the cocktail of xenobiotics, 
including herbicides. Therefore, herbicides alone and in combination with other pol-
lutants could affect fish physiology. Thus, the interaction of environmental contami-
nants with pesticides may create a situation in which a chemical affects the activity of 
a pesticide; that is, its effects increase or decrease or produce a new effect that neither 
of them creates on its own. These interactions may occur due to accidental misuse 
or lack of knowledge about the active ingredients in the relevant materials. This 
study aimed to review the effects of herbicides alone and in combination with other 
xenobiotics on various aspects of fish biology. In this study, different biomarkers were 
reviewed in fish exposed to herbicides.

Keywords: biomarkers, herbicides, aquatic ecosystems, xenobiotic, aquatic animals

1. Introduction

The agricultural revolution is the starting point for using various types of  
pesticides and synthetic and chemical fertilizers to increase agriculture crops’ volume 
and maintenance [1–3]. Thus, the development agriculture industry has caused an 
increase in the pollution of aquatic ecosystems with agrochemicals. Pesticides, includ-
ing herbicides, are pollutants that can be found in the water around agriculture fields. 
Herbicides are usually used to control weeds and unwanted plants in agriculture 
farms, fruit gardens, aquaculture ponds, and urban green spaces [3, 4]. Herbicides 
may enter water ecosystems when used or after being applied. Penetrating herbicides 
into surface and groundwaters may occur through the drainage of agriculture farms 
during spraying or after that [5]. Although herbicides may enter water bodies through 
the drainage of agricultural fields, they can also be used to control weeds in pools or 
lagoons. Therefore, they can affect water ecosystems directly or indirectly [4].
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Studies showed that herbicides could be detected in the drinking water. For 
example, concentrations of glyphosate in drinking water in the United States and 
Australia were 700 μg L−1 and 1000 μg L−1, respectively [6].

Tracing some herbicides, such as atrazine, acetochlor, and 2,4-D, in groundwater 
[7], streams [8], river [9], lake [10], marine ecosystems [11], and estuaries [12] 
indicates that herbicides are highly mobile. Toxicological data showed that more 
than 99% of pesticides never affect target organisms. In other words, a significant 
part of pesticides is released into the environment and influences nontarget organ-
isms [13]. Therefore, the different concentrations of herbicides can impact aquatic 
organisms’ health. Similar reports indicate that even humans and pets are exposed 
to herbicides.

Although herbicides’ chemical structure is designed to affect weeds, they could 
have toxicity effects on aquatic animals. Herbicides are lipophilic compounds that can 
easily cross biological barriers and penetrate animals’ bodies. The physiological and 
behavioral changes in aquatic animals exposed to herbicides indicate that herbicides 
have a potentially toxic effect on nontarget animals. We could observe toxicity effects 
after aquatic organisms’ exposure to herbicides.

Herbicides may be absorbed via gills, skin, or intestinal epithelium. Next, they 
may enter the blood and distribute it in the various tissues by circulating blood. 
Although herbicides may be repelled in the urine and feces, they may be reached 
into the liver via the blood circulation system and metabolized in the hepatocytes by 
detoxification enzymes. A significant part of herbicides may conjugate with a nonen-
zyme antioxidant such as glutathione and excrete quickly. Other part of metabolites 
may be repelled through renal and digestive systems; however, reactive oxygen spe-
cies (ROS) and some metabolites produced during detoxification remain in animals’ 
bodies. These metabolites and ROS may be conjugated with nonenzyme antioxidants 
and removed or may be neutralized by antioxidant enzymes. Reactive oxygen species 
production in the detoxification process of herbicides can induce oxidative stress 
in aquatic organisms. This phenomenon would occur if detoxification mechanisms 
in the liver work very well or animals are exposed to a sublethal dose of herbicides. 
Otherwise, various toxicity effects would be detected in organisms challenged by 
herbicides.

This chapter aims to illustrate toxicology herbicides to fill gaps in information 
about the toxicity effects of herbicides on aquatic animals. In this chapter, we try 
to provide documentation on the effects of herbicides on various aspect of aquatic 
animals’ biology. In addition, we will discuss the interaction of other xenobiotics with 
herbicides.

2. Interaction of herbicides with other xenobiotics

The natural aquatic ecosystems usually contain various xenobiotics that can 
affect fish [14, 15]. In other words, fish may live in the cocktails of different pollut-
ants [16, 17]. Thus, fish must be able to survive and resist a range of environmental 
pollutants [18].

Furthermore, various contaminants may interact with each other [19, 20]. 
Interaction between pollutants includes additive effects and synergic or antagonistic 
effects. In the additive and synergistic effects, toxicity and bioavailability of xenobi-
otics are increased. In contrast, in the antagonistic situation, one or more pollutants 
reduce toxicity and bioavailability of other xenobiotics [21, 22].
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Tabche, et al. [23] studied the combined effects of paraquat and lead (Pb) on the 
liver of Oreochromis hornorum. They found that paraquat and lead had synergistic 
effects on fish. A synergic effect of microplastic on paraquat toxicity was shown in 
common carp (Cyprinus carpio) by Nematdoost Haghi and Banaee [22]. Also, Xu,  
et al. [24] displayed that exposure of goldfish (Carassius auratus) to paraquat and Pb 
caused activation of detoxification enzymes in the hepatocytes. The effect of iron 
oxide nanoparticles (γ-Fe2O3) and glyphosate on the liver of Poecilia reticulata was 
assayed by de Lima Faria, et al. [25]. Changes in the biochemical parameters were 
detected in the crayfish (Astacus leptodactylus) exposed to glyphosate and chlorpy-
rifos [26, 27]. Bonifacio, Zambrano and Hued [28] displayed that co-exposure to 
glyphosate and chlorpyrifos changed blood biochemical parameters in Cnesterodon 
decemmaculatus.

3. Biological response of aquatic organisms to herbicides

Therefore, to understand the herbicide effects on aquatic life, herbicide’s anecdote 
is told since primarily its entered aquatic ecosystems, in this chapter. Then, it is said 
about herbicide’s fate in animal’s body to its excretion.

After draining herbicides in water ecosystems, they could penetrate the cellular 
membrane and cytoplasm. These chemical toxicants may influence cell permeability, 
ion transport, electron transport, and enzyme activities associated membrane. Next, 
herbicides could disrupt the cellular organelles’ functions, which may lead to induce 
apoptosis, cell necrosis, or activation of the tumorigenesis in cells. Thus, herbicides 
could affect different functions of the biological membrane.

But the question that may be on readers’ minds is whether animal cells are defense-
less against herbicides? No!

4. Detoxification and metabolism of herbicides

In two phases, herbicides may be converted into excretable metabolites in hepa-
tocytes of aquatic animals. Maternal compounds combine with oxygen and oxidize 
in the primary phase (Phase I), known as the biotransformation step. Then, oxidized 
metabolites are conjugated with water-soluble polar biomolecules in the cell (Phase II). 
Next, herbicides’ metabolites may be excreted through urine or bile [29].

Active compounds as reactive oxygen species are often produced during detoxifi-
cation that could cause the oxidation of macromolecules. However, a cellular anti-
oxidant defense system could neutralize reactive oxygen species (ROS) and inhibit 
peroxidation reactions. There is a balance between ROS and cellular antioxidant 
defense capacity in normal conditions. If this balance is collapsed and ROS levels are 
more than cellular antioxidant defense potential, oxidative stress would occur. ROS 
attacks macromolecules in this situation, leading to severe histopathological damage 
to vital tissues.

The disruption in the detoxification enzymes’ function may occur in the fish 
exposed to herbicides. Therefore, defects in the function of the detoxification sys-
tem can make fish vulnerable to the toxicity of herbicides. A significant decrease in 
mitochondrial cytochrome content was reported in Oreochromis niloticus exposed to 
pendimethalin [30]. Zhang et al. [31] assayed mitochondria-immune responses in 
zebrafish, Danio rerio following challenge with dinoseb. They reported a significant 
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decrease in the expression of genes involved in mitochondrial respiration and cellular 
detoxification [31].

We know very well that exposure of fish to xenobiotics such as herbicides could 
cause an imbalance between ROS contents and cellular antioxidant defense capacity 
[32]. Therefore, exposure of fish to herbicides could lead to oxidative stress. Damage 
to membrane phospholipids decreases the cellular chance of survival and increases 
apoptosis and necrosis rates. Disruption in the cellular membrane’s physiological 
function also affects metabolism, biochemical hemostasis, gene expression, and DNA 
replication in the cells [15]. In the following, we want to explain the effects of herbi-
cides on aquatic animals in more detail.

Involvement of cellular detoxification and biotransformation systems to remove 
xenobiotics may reduce its ability to detoxify herbicides. Therefore, the toxic effects 
of herbicides on fish would be increased if the detoxification mechanism was 
collapsed.

5. Oxidative stress

The oxidative stress in fish exposed to herbicides can be attributed to ROS. 
Furthermore, ROS production during the detoxification of other xenobiotics may 
further contribute to oxidative stress due to herbicide exposure.

Like other vertebrates, the antioxidant defense system of fish includes antioxidant 
enzymes and nonenzyme antioxidants. Therefore, change in the antioxidant enzyme 
activities and nonenzyme antioxidant contents are biomarkers that show activation 
of the antioxidant defense system against ROS. Pereira, Fernandes and Martinez [33] 
showed that hepatic antioxidant enzymes activated after exposure of Prochilodus 
lineatus to clomazone. Oxidative damage was seen in the hepatocytes of O. niloticus 
and Geophagus brasiliensis after treatment with mesotrione herbicide [34].

Changes in the antioxidant enzyme activities indicated oxidative stress in the gills 
and liver of tetra fish (Astyanax altiparanae) exposed to atrazine [35]. Moraes, et al. 
[36] found that oxidative stress occurred in the teleost fish (Leporinus obtusidens) 
after exposure to clomazone and propanil.

Otherwise, interaction of ROS with vital macromolecules such as DNA, lipids, 
proteins, etc., can lead to their peroxidation. Thus, these macromolecules may be lost 
their biological functions, and their metabolites may disrupt the cellular hemostasis.

In the assessment of oxidative damages, a measure of malondialdehyde, protein 
carbonyl, oxidized thiol groups, and 7,8-dihydro-8-oxoguanine (8-oxo-dG) is routine.

Malondialdehyde is a more critical metabolite produced during lipid peroxidation. 
Therefore, a significant increase in malondialdehyde contents in the target cells indi-
cates oxidative stress. Moreover, an increase in the malondialdehyde expedites cascad-
ing reactions of lipid peroxidation. Protein carbonyl is known as a metabolite of 
protein oxidation. Furthermore, increasing the peroxidation rate of thiol groups can 
be a physiological response to ROS increase at the cellular level. A significant decrease 
in the total antioxidant and increase in the protein carbonyls and malondialdehyde 
contents were reported in the liver and brain of hybrid surubim (Pseudoplatystoma sp) 
exposed to glyphosate and roundup [37].

Also, a significant increase in 7,8-dihydro-8-oxoguanine (8-oxo-dG) contents is a 
biomarker of nucleic acid oxidation and gene damage.

However, other biomarkers can be used to detect oxidative stress indirectly. We 
will describe each of them in the following sections.
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6. Neurotoxicity

Studies showed that xenobiotics could often influence nerve systems. Therefore, 
this is a problem in distinguishing the primary neurotoxicity agent in fish when 
exposed to herbicides combined with other pollutants. Thus, if we observed neuro-
toxicity response in fish, evaluation of the additive or synergistic effects of xenobiot-
ics on herbicides’ toxicity should be a priority.

Peroxidation of phospholipids that cover nerves can disrupt transport of neural 
signals or information processing in neural centers. Also, herbicides can change 
neurotransmitters’ biochemical structure or disable enzymes involved in biosynthesis 
or biodegradation of neurotransmitters.

Moraes, et al. [36] found that exposure of teleost fish (L. obtusidens) to clomazone 
and quinclorac decreased acetylcholinesterase (AChE) activity in the brain, while 
AChE activity increased in muscle tissue after exposure to clomazone, propanil, and 
metsulfuron-methyl. Similarly, the inhibition of AChE activity was reported in the 
brain of teleost fish (L. obtusidens) exposed to herbicides clomazone and propanil 
[36]. Thanomsit et al. [38] could design a monoclonal antibody-ACHE that is used to 
detect acetylcholinesterase activity in the brain of fish exposed to herbicides. Thus, 
they could measure AChE activity in the brain of hybrid catfish, Nile tilapia, and 
climbing perch [38].

One of the consequences of neurotoxicity is the occurrence of behavioral changes 
in aquatic animals exposed to herbicides.

7. Behavioral response

Changes in the behavior of animals may be related to disrupting nerve systems or 
muscle spasms. Previous research showed that exposure to aquatic animals to her-
bicides could alter the behavior and rate of their response to environmental stimuli. 
Herbicides can affect the relationship between hunters and prey. Also, exposure to 
animals to herbicides may change animals’ romantic, reproductive, and parenting 
behaviors. Thus, changes in feeding behavior can decrease the growth performance of 
organisms exposed to herbicides [39].

Faria et al. [25] documented that changes in the behavior of fish exposed to 
herbicides had a significant relationship with changes in the monoaminergic neu-
rotransmitters in the brain. They found that a significant increase in dopamine (DA), 
serotonin (5-HT), and a decrease in norepinephrine (NE) could change the explor-
atory and social behaviors of zebrafish following exposure to glyphosate.

Butyrylcholinesterase (BChE) is known as pseudocholinesterase. Fluctuations in 
the BChE activity may change the behavior of aquatic animals. A significant change in 
the BChE activity was observed in freshwater fish Labeo rohita exposed to Roundup® 
[40]. Geetha [40] found that increased BChE activity could relieve the Roundup® 
induced stress in fish.

8. Genotoxicity and gene damage

The genotoxicity effects of herbicides may be due to the interaction of ROS with 
DNA [41]. Exposure to herbicides and their metabolites may degrade DNA or adduct to 
DNA structure. The DNA damage to erythrocytes, liver, and gills was detected by comet 
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assay in the O. niloticus and G. brasiliensis exposed to Mesotrione [34]. DNA damage was 
reported in the European eel (Anguilla anguilla) exposed to Roundup® (glyphosate-
based) and Garlon® (triclopyr-based) [42]. Ruiz de Arcaute, Soloneski and Larramendy 
[41] observed that exposure of C. decemmaculatus to dicamba could cause micronuclei 
and DNA single-strand breaks in circulating blood cells. Similar results were observed 
in the P. lineatus [43], C. auratus [44], and C. decemmaculatus [45] exposed to Roundup, 
atrazine, and glyphosate, respectively. DNA damage and genotoxicity were detected in 
the egg of silver catfish (Rhamdia quelen) exposed to 2,4-D and glyphosate [46].

Enhancement or depression in the mRNA expression of enzymes involved in 
detoxification and biotransformation of xenobiotics was reported in fish exposed to 
herbicides. For example, Velki, et al. [47] reported a significant increase in Ces2 gene 
expression in the zebrafish embryos following the exposure to 2.15 μM diuron for 
96 h. Exposure to Roundup and other glyphosate changed gene expression patterns in 
the reproductive tissue of Japanese medaka fish (Oryzias latipes) [48].

Increased genetic defects and neoplasia in fish embryos and larvae can be caused 
by exposure to xenobiotics [49], including herbicides. Also, mutation due to exposure 
of fish to herbicides may lead to tumor generation.

9. Blood biochemical parameters

Moreover, the rapture of cellular membranes may cause the release of cytoplas-
mic contents or organelles into intercellular fluid such as serum. Hence, assessing 
biochemical parameters in serum can indicate the stability of cellular membranes 
after exposure to herbicides [32]. Geetha [40] demonstrated that exposure to 
Roundup® could affect the balance of plasma electrolytes and transaminase activ-
ity in L. rohita [40]. The disruption in biochemical hemostasis was reported in the 
crayfish exposed to glyphosate and chlorpyrifos [26, 27].

The increase in the serum enzyme activities and changes in the blood biochemi-
cal parameters were observed in C. carpio exposed to paraquat [22]. Similar results 
were detected in C. carpio following glyphosate [50]. A significant change in glucose, 
cholesterol, and triglyceride levels in the blood may be due to elevated energy needs to 
alleviate the cytotoxic effects of herbicides.

10. Suppression of the immune system

Exposure to xenobiotics can suppress immune system functions by increasing 
corticosteroid hormones. A significant increase in corticosteroid hormones can affect 
cytokine gene expression. Thus, an increase in inflammation response can depress 
immune system power.

Maddalon, et al. [51] showed that glyphosate herbicide could induce immunotoxic-
ity by interfering with the hormonal pathway and biosynthesis of cytokines and neu-
ropeptides. Also, Acar, et al. [52] displayed that changes in the immune-related genes 
could mitigate immune functions in Nile tilapia (O. niloticus) exposed to glyphosate.

11. Reproductive disorders

Some herbicides can disrupt reproduction physiology. Herbicides may act as 
endocrine disruptors. They can block hormone receptors or induce changes in enzyme 
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function involved in hormones’ biosynthesis. Furthermore, some herbicides may 
act as analogs of natural hormones. Reproduction products may be denatured after 
animals’ exposure to herbicides. Therefore, the rate of fecundity, fertility, and survival 
of embryos may be collapsed. This phenomenon can also affect the hatchling rate and 
percentage of larvae survival. Decreased adaptability of larvae to environmental condi-
tions may be the reason for the reduced survival rate after exposure to herbicides [53].

Yusof, Ismail and Alias [54] found that exposure of Java medaka (Oryzias javani-
cus) to glyphosate reduced fertility, hatching eggs, and larval survival. Furthermore, 
Zebral, et al. [53] discovered that Roundup exposure changes the diapausing pattern 
of Austrolebias nigrofasciatus embryos. Thus, Roundup could affect the survival of A. 
nigrofasciatus embryos. Decreased fecundity rates were also observed in A. nigrofascia-
tus breeders exposed to Roundup. Also, Dehnert, Karasov and Wolman [55] displayed 
that 2,4-D exposure could reduce zebrafish and perch survival rates during larval 
stages. They explained that a decrease in the survival rate of larvae could be due to the 
toxicity effect of 2,4-D on the development and function of neural circuits underlying 
the vision of larval fish. Moreover, Dehnert et al. [56] revealed that the application of 
2,4-D to control Eurasian watermilfoil (Myriophyllum spicatum) in aquatic ecosystems 
could threaten fish survival.

12. Growth dysfunction

Previous studies showed that herbicides could decrease growth performance 
in aquatic animals. A significant weight reduction may be related to disruption in 
nutrient absorption in digestive systems. Deficiency in the assimilation of vital 
macromolecules can alter energy budgeting. As a result, animals have to consume 
energy storage in the liver and muscles to supply their needs. Therefore, weight loss 
and general weakness, anorexia, were often reported in the aquatic animals exposed 
to herbicides [39].

13. Hemotoxicity

Herbicides could change white blood cell (WBC), red blood cell (RBC) counts, 
and hematological indexes such as hemoglobin and hematocrit contents in fish. These 
phenomena can be related to hematopoietic tissue damage. Moreover, disruption in the 
blood circulation systems may occur in fish exposed to herbicides. Hemolysis of eryth-
rocytes, a decline in erythropoietin levels, and histopathological damage to hemato-
poietic organs can reduce blood cell counts in animals exposed to herbicides. Pereira, 
Fernandes and Martinez [33] declared that changes in the hematological parameters 
could be due to the toxicity effects of clomazone on the hematopoietic tissue of fish P. 
lineatus. Exposure of P. lineatus to clomazone changed hematological parameters after 
96 h. Moreover, Merola, et al. [57] showed that exposure of zebrafish to pendimethalin 
could cause blood congestion, impair blood flow, and reduce heartbeat.

14. Histopathological damage

Histopathological injuries could be related to oxidative damage to the cellular 
membrane of fish exposed to herbicides. Furthermore, apoptosis and cellular necrosis 
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may intensify histopathological damages in various tissues of fish exposed to herbi-
cides. Destro, et al. [35] found that atrazine exposure could damage the liver tissue 
of tetra fish (A. altiparanae). They showed that the histopathological damage in the 
liver was due to an increase in lipid peroxidation. Moreover, Nassar, Abdel-Halim and 
Abbassy [30] reported histopathological damage in the gills and liver of fish exposed 
to the herbicide pendimethalin.

15. Bioaccumulation of herbicides

The bioaccumulation of xenobiotics is directly related to their bioavailability. 
Therefore, environmental pollutants that may increase the bioavailability of herbi-
cides can significantly impact their bioaccumulation capacity in aquatic animals.

Furthermore, the half-life of herbicides in water ecosystems can also affect their 
bioaccumulation capacity. The half-life of herbicides in the various environments 
is different. Herbicides in environmental conditions can be quickly degraded into 
various metabolites. Some herbicides are durable in the environment. The break-
down rate of herbicides depends on their chemical structures and environmental 
conditions [20].

Therefore, the probability of their bioaccumulation in the body of aquatic animals 
is also high. Various authors reported the bioaccumulation of herbicides in aquatic 
animals. Tyohemba et al. [10] measured the bioaccumulation of various herbicides 
in African mud catfish (Clarias gariepinus), and Mozambique tilapia (Oreochromis 
mossambicus) inhabited Lake St. Lucia, South Africa. They detected phenoxy-acid 
herbicides, acetochlor, atrazine, and terbuthylazine in the muscle tissues of fish 
[10]. The analysis of fresh fish tissues collected from four markets in Nanning City, 
Guangxi Province, China, showed that the bioaccumulation of atrazine, acetochlor, 
metolachlor, and their metabolites could be worrying [58]. Furthermore, herbicides 
have also been found in fish and seafood [59, 60]. Therefore, the bioaccumulation of 
herbicides could threaten consumers’ health.

16. Conclusion

We tried to present an overview of herbicides’ toxicity in this chapter. However, 
we must update our information because newborn pollutants could be found in water 
ecosystems that can affect herbicides’ half-life, toxicity, and bioavailability. Overall, 
if we want to discuss the effects of herbicides alone or in combination with other 
xenobiotics, we should be well known of their toxicity mechanisms and pathways 
and how they can affect the physiology of aquatic animals. Therefore, if we find the 
source of herbicide pollution, we can prevent their destructive effects on fish before 
penetrating aquatic ecosystems. Also, if we cognize about biotransformation and 
detoxification of herbicides, we can better manage the adverse effects of herbicides 
on fish. Therefore, studies on toxicity, bioavailability, and interaction of herbicides 
with other pollutants can be useful in recognizing the physiological response of fish 
exposed to herbicides.
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