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Chapter

Respiratory Syncytial Virus
Sattya Narayan Talukdar and Masfique Mehedi

Abstract

Respiratory Syncytial Virus (RSV)-driven bronchiolitis is one of the most common 
causes of pediatric hospitalization. Every year, we face 33.1 million episodes of RSV-
driven lower respiratory tract infection without any available vaccine or cost-effective 
therapeutics since the discovery of RSV eighty years before. RSV is an enveloped RNA 
virus belonging to the pneumoviridae family of viruses. This chapter aims to elucidate 
the structure and functions of the RSV genome and proteins and the mechanism of 
RSV infection in host cells from entry to budding, which will provide current insight 
into the RSV-host relationship. In addition, this book chapter summarizes the recent 
research outcomes regarding the structure of RSV and the functions of all viral 
proteins along with the RSV life cycle and cell-to-cell spread.

Keywords: RSV, RNA virus, RNA genome, replicative cycle, fusion protein, cell-to-cell 
spread, filopodia

1. Introduction

Human respiratory syncytial virus (RSV), despite being a human virus, was 
first isolated in 1955 from a chimpanzee with respiratory illness [1]. Since its first 
discovery, it did not take long to isolate RSV from infants with respiratory diseases. 
Indeed, serological studies verified the existence of RSV infection in infants and 
children [2, 3]. Now, RSV infection is a prominent cause of lower respiratory tract 
diseases (bronchiolitis and pneumonia) and hospitalization in children worldwide 
[4]. According to the most recent virus taxonomy, RSV now belongs to a new family 
Pneumoviridae of the order Mononegavirales [5].

2. RSV virion

RSV is an enveloped and cytoplasmic virus with non-segmented, negative-sense, 
single-stranded RNA genome [6]. RSV virions are known to bud out on the infected 
cell surface. The filamentous virion is up to 12 μm in length and 60 to 200 nm in 
diameter (Figure 1) [7–9]. RSV virions can be irregular-shaped spherical particles 
with a diameter ranging from 100 to 350 nm. Both filamentous and spherical virus 
particles mostly remain cell-associated [9].
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3. RSV strains

There are two RSV strains as RSV A and RSV B and are categorized on basis of 
genetic and antigenic differences [10]. However, mostly extensive antigenic and 
nucleotide sequence variation was observed between RSV A and RSV B, however, 
genetic as well as antigenic variability was also studied within the individual groups of 
RSV [11]. Multiple studies demonstrated the differences in viral replication between 
these two groups; specifically, RSV A replicated to higher titers than RSV B viruses 
in both cell culture and animal models [12–16]. In addition, RSV A infection is more 
virulent and severe than RSV B [17].

4. RSV RNA and proteins

The RSV genome is a single-stranded, negative-sense RNA whose length is 
ranging from 15,191 to 15,226 nucleotides [9]. The RSV genome contains ten genes in 
the order 3′-NS1-NS2-N-P-M-SH-G-F-M2-L-5′ that are transcribed sequentially into 
10 independent messenger RNAs (mRNAs) (Figure 2). Each RSV mRNA encodes a 
single major protein except for M2, which encodes two separate open reading frames 
(ORF) for M2–1 and M2–2 proteins, respectively [9, 18–20]. The M2–1 and M2–2 
ORF are located in the upstream and downstream parts of the mRNA, respectively 
[9]. Like many RNA viruses, RSV brings ribonucleoprotein (RNP) complex as a piece 
of transcriptional machinery for its genome transcription and replication inside the 
infected cell cytoplasm. The RNP complex consists of the viral genome, nucleoprotein 
(N), phosphoprotein (P), and RNA-dependent RNA polymerase [L) [21].

Figure 1. 
RSV virion. A photomicrograph of an RSV filamentous virion. The image was taken under electron microscope.

Figure 2. 
Schematic of an RSV genome. RSV genome is a negative-sense non-segmented single-stranded RNA. The genome 
contained 10 genes oriented from 3′ end: NS1, NS2, N, P, M, SH, G, F, M2 (M2–1 and M2–2), and L.
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4.1 Nucleoprotein (N)

The RNA genome is wrapped by N (391 amino acids) to create a nuclease-resistant, 
helical RNP complex called nucleocapsid (NC), and it functions as the template for 
both replication and transcription [22, 23]. RSV virus genome for replication does 
not follow the “rule of six” [24], which is common to most paramyxoviruses [25]. The 
three-dimensional (3D) crystal structure revealed a decameric, ribonucleoprotein com-
plex of N protein and RNA with 3.3 A° resolution and suggested N protein can function 
as a helicase to separate temporary double-stranded RNA during RNA synthesis [23]. 
As a decameric structure, every N subunit has a core region comprising two domains, 
N-terminal and C-terminal, which are linked by a hinge region and the RNA genome 
turns inside a basic surface groove located at the interface of N-terminal/C-terminal; 
specifically, every N subunit interacts with seven ribonucleotides of RNA [23].

4.2 RNA-dependent RNA polymerase (L)

The L protein (2165 amino acids) has three enzymatic domains including RNA-
dependent RNA polymerase (RdRp) domain, polyribonucleotidyl transferase domain 
which is essential for capping located in its N-terminal, and methyltransferase 
domain which is necessary for cap methylation located in C-terminal [26–29]. Viral 
mRNA undergoes a post-transcriptional modification before translation and meth-
yltransferase plays a significant role by catalyzing the methylation of cap structure at 
both N7- and 2′-O-positions because N7-methylation is vital for viral RNA translation 
and 2′-O-methylation is important for hiding viral RNA from the innate immunity 
system [30].

4.3 Phosphoprotein (P)

The P protein (241 amino acids) is a homotetrameric protein consisting of 
N-terminal domain, oligomerization domain, and C-terminal domain and it functions 
as a cofactor of RdRp and plays a significant role in transcription and replication by net-
working with other RSV proteins [31–35]. P protein functions as a multimodular adaptor 
for RNA synthesis by interacting with N-RNA, L, and M2–1 [36]. P can act as a chap-
erone for newly synthesized N (N0) protein by forming an N0-P complex that prevents 
the association of N0 with host RNA [37]. This protein is heavily phosphorylated by host 
kinase enzymes and it has 41 serine and threonine residues as potential phosphorylation 
sites; specifically, phosphorylation at residues T105, T188, T210, and S203 are essential 
for replication, and phosphorylation at residue S156 is vital for viral RNA synthesis [38].

4.4 RSV glycoproteins

As an enveloped virus, the RSV lipid envelope contains three transmembrane gly-
coproteins including a fusion (F) protein, an attachment glycoprotein (G), and a small 
hydrophobic (SH) protein; F and G proteins are essential for viral attachment and 
entry whereas SH protein is less likely involved in viral entry and budding [39, 40].

4.4.1 Fusion (F) protein

Fusion protein is a type 1 transmembrane protein (574 amino acids including a 
cytoplasmic tail domain of approximately 24 residues) involved in viral entry and 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/db1966dfe2354982bbd068dc889a9506
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


RNA Viruses Infection

4

assembly [39, 41]. Initially, F protein is synthesized as F0 protein and subsequently, 
F0 undergoes post-translational modification with multiple N-linked glycosylations 
depending on RSV strains [42]. To obtain fusion competence, precursor F0 protein 
(approximately 68–75 KDa) undergoes proteolytic cleavage by furin-like protease 
which cleaves two polybasic sites and removes a glycosylated peptide of 27 amino 
acids (Peptide 27 or Pep27) [43, 44]. This cleavage process occurs in the trans-Golgi 
network and then fusion protein transport to plasma membrane generating two 
subunits: one is amino-terminal F2 subunit (approximately 15–20 KDa) and another 
is carboxy-terminal F1 subunit (approximately 50–55 KDa) [45, 46]. A heterodimeric 
protomer is formed by F1 and F2 subunits covalently connected by disulfide bonds 
and three protomers combinedly form the matured trimeric form of F protein [47]. 
After trimerization, F protein exists as a prefusion conformation remaining approxi-
mately 12 nm above the membrane of the virus [48]. This prefusion conformation 
is not a stable form and undergoes a refolding process [6, 49]. This refolding process 
creates a more stable post-fusion conformation of F protein remaining approximately 
17 nm above the viral membrane [50, 51]. The sequence difference of F ectodomains is 
almost 5% between RSV A and RSV B and therefore, F protein undergoes less anti-
genic drift and gets preference for suitable vaccine candidates [52].

4.4.2 Attachment glycoprotein (G)

In RSV-infected cells, G protein can exist in two forms; one is a membrane-bound 
form responsible for viral attachment and another is a secreted isoform responsible 
for immune evasion [53, 54]. The membrane-bound form (298 amino acids) is a type 
2 integral membrane protein [55]. G protein has an amino-terminal cytoplasmic 
domain and a hydrophobic transmembrane domain; moreover, its ectodomain which 
undergoes post-translational modification with 4–5 N-linked glycans and 30–40 
O-linked glycans, has two mucin-like regions and heparin-binding domains [55–57]. 
The translation of secreted G protein starts at an alternative AUG (Met48) located 
in the transmembrane domain allowing the ectodomain to secrete from the cell [58]. 
Both membrane-bound and secreted forms of G proteins are thought to be involved 
in RSV pathogenesis [59]. The higher variation of the mucin-like domain caused two 
subtypes of RSV: RSV A and RSV B [60].

4.4.3 Small hydrophobic (SH) protein

SH glycoprotein is a small transmembrane protein (64 amino acids for RSV A 
and 65 amino acids for RSV B) attached by a hydrophobic signal-anchor sequence 
closer to the N-terminal with extracellular C-terminal orientation; in addition, this 
protein is considered as less immunogenic because of smaller size and lower abun-
dance during RSV infection [61]. It can exist in several forms including full-length 
form or post-translational modified form by glycosylation and phosphorylation 
[62]. Although its function is not clearly understood like other glycoproteins, several 
studies suggested SH protein can play an auxiliary role during viral fusion along with 
F glycoprotein; however, SH protein is not crucial for viral entry and syncytium for-
mation [63–65]. SH protein primarily amasses in the lipid raft membrane of the Golgi 
complex and endoplasmic reticulum; however, lower levels of SH protein are associ-
ated with the envelope of filamentous virus [40]. SH protein did not play an essential 
role during viral replication in cell culture but SH-deleted RSV infection caused 
10-fold lower titers in animal models [39, 66]. It can induce membrane permeability 
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and form pentameric ion channels suggesting its role as viroporins which are short 
(approximately 100 amino acids) membrane proteins forming oligomers to act as ion 
channels [67]. Moreover, SH protein is essential to activate the NLRP3 inflammasome 
[68, 69]. The role of SH protein on apoptosis is not clear because RSV infected A549 
cells produced TNF-α and cells were not sensitive to TNF-α-induced death but cells 
demonstrated a higher level of apoptosis after SH-deleted RSV infection indicating 
that RSV SH protein may affect the TNF-α pathway resulting in apoptosis delay by an 
alternative mechanism [70].

4.5 RSV matrix proteins (M and M2)

RSV has two matrix proteins including M protein and M2 protein [58].

4.5.1 M protein

M protein (256 amino acids) is a non-glycosylated protein located in the innermost 
part of the viral envelope [71]. It is the main protein responsible for viral assembly 
and budding by interacting with the cell membrane, viral envelope, and viral nucleo-
capsid [72, 73]. M protein has a zinc finger domain, two clusters of basic amino 
acids indicating a nuclear localization signal and two nuclear export signals and its 
N-terminal has lower hydrophobicity; in contrast, C-terminal has higher hydro-
phobicity [74]. M protein contains multiple phosphorylation sites and undergoes 
phosphorylation during infection but it is unclear whether these phosphorylations 
control its function [75]. During the early phase of infection, M protein is present in 
the host nucleus and inhibits host cellular transcription [76]. During the late phase of 
infection, M protein is mostly cytoplasmic, interacts with nucleocapsid, and inhibits 
the activity of viral transcriptase [77]. M protein is located in the cytoplasmic part 
of the plasma membrane-associated with the lipid rafts along with G and N proteins 
implying that lipid rafts can function as a platform for the assembly and budding of 
RSV [73]. M protein is active in a dimer form and the conversion of M-M dimer to 
oligomer is essential for viral assembly because the interference of dimer formation 
reduces viral filament maturation and budding [21].

4.5.2 M2 (M2-1 and M2-2) protein

M2–1 and M2–2 are nucleocapsid associated proteins [78]. RSV M2 gene has two 
overlapping ORFs as M2–1 and M2–2 [79]. The recent crystal structure of the M2–1 
(194 amino acids) protein has revealed its native tetrameric form with 2.5 Å resolu-
tion and each of its monomers contains three domains including zinc-binding, 
oligomerization, and core domains [80, 81]. M2–1 functions as a transcriptional 
anti-terminator and processivity factor [79, 82]. M2–1 did not affect genome and 
antigenome synthesis indicating that M2–1 is not involved in RNA replication 
[79, 83]. M2–2 protein (90 amino acids) acts as a regulatory factor switching from 
transcription to RNA replication because mRNA accumulation was intensely 
higher after 12–15 hours of infection and then flattened in case of wild-type virus 
infection but M2–2 knockout virus infection showed continued accumulation [80]. 
Another study showed M2–2 protein could negatively regulate transcription and 
positively modulate RNA replication because recombinant RSV infection without 
NS1 and M2–2 protein demonstrated ten times lower viral growth kinetics in the 
upper respiratory tract of infants [84].
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4.6 RSV nonstructural (NS) proteins (NS1 and NS2)

RSV NS proteins including NS1 (139 amino acids) and NS2 (124 amino acids) play a 
crucial role in interfering with host innate immunity by forming a “Nonstructural degra-
dosome complex” which can act as a proteasome-like complex that disintegrates a massive 
number of proteins involved in the innate immune system [85, 86]. Infection with NS1 
and NS2 single- and double-gene-deleted RSV demonstrated that both proteins function 
individually and jointly to accomplish the complete inhibitory effect on type I and III IFNs 
whereas NS1 has a more individual function [87, 88]. Both NS1 and NS2 target retinoic 
acid-inducible gene I (RIG-I) like receptors (RLRs), which are considered as host pattern 
recognition receptors for RIG-I and melanoma differentiation-associated gene 5 (MDA5) 
[89]. Both NS1 and NS2 induce multiple chemokines and cytokines like RANTES, IL-8, 
TNFα during viral infection [90]. RIG-I activation by ubiquitination is vital for stimulat-
ing antiviral response and tripartite motif-containing protein 25 (TRIM25)-mediated 
K63-polyubiquitination is essential for RIG-I activation [91]. NS1 protein inhibits RIG-I 
ubiquitination by interacting with TRIM25 and eventually suppresses type-I interferon 
(IFN) signaling [92]. Cytosolic NS1 can go to the host nucleus and interacts with the gene 
regulatory domains of immune response genes, which can control gene transcription and 
eventually modulates host response against RSV infection [93]. NS1 localized to mitochon-
dria inhibits type-I interferon (IFN) signaling by binding with mitochondrial antiviral 
signaling protein (MAVS) because the MAVS-RIG-1 complex is essential for type-I IFN 
activation [94]. NS1 also stimulates miR-29a expression, which affects mRNA coding for 
interferon alpha/beta receptor 1 (IFNAR1) [95]. NS1 enhances autophagy by the mTOR 
pathway, which is beneficial for RSV replication but inhibits apoptosis and multiple 
inflammatory cytokines and IFN-α [96]. Recombinant RSV (NS-deficient) infection 
showed that mostly NS1 (partially NS2) inhibits the maturation of Dendritic cells, which 
in turn activates B and T cell responses [97]. NS1 can also inhibit the anti-inflammatory 
effect of glucocorticoids [98]. The recent X-ray crystal structure of NS2 reveals that it has 
a unique fold that allows to target molecules different from NS1 and activates distinct IFN 
antagonism pathway compared to NS1 [99]. Recombinant RSV virus without NS2 showed 
lower viral growth indicating the role of NS2 in viral replication by evading host immunity 
[100]. The increased level of IFNβ was not as high when recombinant RSV without NS1 
or NS1/NS2 were applied suggesting that both NS1 and NS2 work together for interferon 
signaling suppression [84]. NS2 also plays a significant role in NF-κB activation, which can 
initiate a cascade by binding transcription promoters of several proinflammatory cyto-
kines along with IRF-3 and IFN-α/β [90]. In addition to innate immunity, NS2 interferes 
with adaptive immunity by suppressing CD8+ T-cell responses as a consequence of 
controlling type 1 IFN [101]. Mostly NS2 along with NS1 play a role in delaying apoptosis, 
which can enable prolonged RSV replication by activating 3-phophoinositide-dependent 
protein kinase (PDK)-RAC serine/threonine-protein kinase-glycogen synthase kinase 
(GSK) pathway [102]. In addition, NS2 plays a significant role in modulating cell morphol-
ogy, which causes the shedding of infected cells and the spreading of RSV virions [103].

5. Replicative cycle of RSV

5.1 Entry

RSV infection mostly occurs in the apical side of ciliated cells and type 1 
pneumocyte; however, several reports suggested the presence of RSV RNA in the 
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extrapulmonary sites and fluids, but more investigations are required [104–107]. 
RSV entry has two major phases; the first step is virion attachment to the host cell 
and the next step is the fusion of viral and host cell membranes in which host factors 
can involve in both or any individual phases [52]. Heparin-binding domain located 
between mucin-rich domains of G protein interacts with the unbranched disaccharide 
polymers specifically glycosaminoglycans (GAGs) connected to transmembrane 
proteins on the cell surface for the attachment observed in multiple cell culture stud-
ies [108–110]. Variation of G protein lacking heparin-binding domain showed viral 
attachment indicating the involvement of other regions of G protein during attach-
ment [108]. Negatively charged regions of heparin sulfate contribute mostly and 
iduronic acid-containing GAG contributes minimally to the attachment [111–113]. 
Heparan sulfate proteoglycans (HSGP) act as the receptor for G protein in cell lines; 
however, recombinant RSV without G protein showed its infectivity; in contrast, 
HSGP does not express in ciliated epithelial cells, but G protein is still essential for 
infection in vivo [114–116]. However, the apical side of ciliated cells, which is the 
major site of RSV infection lack heparin sulfate indicating the involvement of other 
host factors, specifically, fractalkine receptor CX3C-chemokine receptor 1 (CX3CR1) 
bind to CX3C motif of G protein for the attachment [117, 118]. CX3CR1 expressed on 
the ciliated cells, acts as the receptor of G protein by interacting with its CX3C motif 
and mutations in the CX3C motif of G protein reduces RSV infection in vivo  
[117, 119–121]. F protein is involved in the viral attachment because RSV lacking G 
and SH proteins grows in cell culture studies and it interacts with heparin sulfate like 
G protein causing attachment and subsequent infection [63, 122, 123]. Almost 50% 
infection was observed after heparinase treatment and without GAG synthesis while 
RSV has F protein suggesting the interaction of F with other host factors; particularly, 
F protein facilitates entry by interacting with intercellular adhesion molecule 1, insu-
lin-like growth factor 1, epidermal growth factor receptor, and nucleolin [124–127]. 
Host and viral membrane then fuse after attachment so that viral particles can enter 
the cytoplasm and this fusion process is pH-independent and insensitive to lysosomal 
acidification [128, 129]. RSV infection induces an actin mediated rearrangement fol-
lowed by plasma membrane blebbing and excess fluid uptake causing internalization 
of viral particles in a Rab5 positive macropinisome and this endocytic entry depends 
on the activation of F protein by a second proteolytic cleavage catalyzed by furin-like 
enzymes after endocytosis observed in A549 cell [130].

5.2 Transcription and replication

RSV replication and transcription are dependent on viral components including 
viral RNA, N, P, L, and M2–1 [131]. RSV utilizes its own machinery (RNP complex) to 
replicate in the host cytoplasm [132]. Inclusion body formation is a hallmark of RSV 
infection produced by multiple viral proteins including N, P, L, and M2–1 and this 
cytoplasmic structure is increased with RSV infection in epithelial cells  
[72, 133, 134]. Specifically, N and P proteins are important for inclusion body forma-
tion because the expression of these proteins with or without RSV infection showed 
inclusion body formation [135]. P protein can hijack host cell machinery by forming 
a complex with host phosphatase (PP1) and this P-PP1 complex dephosphorylates 
M2–1, as a result, P protein can recruit M2–1 protein in the inclusion body to facilitate 
viral RNA synthesis [136]. M protein is also reported to localize in inclusion bodies 
mediated by M2–1 protein [137]. The inclusion body is thought to be the first place 
where M protein interacts with the ribonucleoprotein complex and M protein is 
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involved in the release of RNP from inclusion bodies towards budding [138]. Host 
actin cytoskeleton and Hsp70 proteins are also observed in inclusion bodies, but their 
role is not clear yet and they perhaps facilitate viral machinery [139]. RSV infection 
causes vigorous stress on the host cell resulting formation of cytoplasmic stress gran-
ules, which are different from cytoplasmic inclusion bodies and these stress granule 
formations facilitates viral replication [140].

Both viral RNA replication and mRNA transcription start from the same single 
promoter in leader (le) region (44-nucleotide long) at the 3′ end of RSV genome 
and it produces methyl-guanosine capped and polyadenylated mRNA during tran-
scription and antigenome during replication [20, 141–143]. Each RSV gene has two 
conserved cis-acting elements including a gene start (gs) signal at the beginning and 
a gene end (ge) signal at the end [144]. The promoter of leader (Le) region at the 3′ 
end of RSV genome has two initiation sites, one is at position +1 or 1 U required for 
replication and another one is at position +3 or 3C required for transcription [145]. 9 
out of 10 gs signaling sequences are highly conserved whereas the tenth one has mini-
mal sequence difference in RSV genome [19]. During transcription, both gs and ge 
signaling sequences play significant role, specifically, gs signal provides direction to 
RNA-dependent RNA-polymerase (RdRp) for initiating RNA synthesis and ge signal 
provides direction to RdRp to polyadenylate and release the mRNA [146, 147]. Then 
RdRp connected to the template can initiate transcription again at the next gs signal 
and this process persists along RSV genome [144]. During replication, RdRp attaches 
a similar promoter sequence in le region, but it ignores ge signal and continues to pro-
ceed throughout the genome to produce an antigenome, which is a full-length posi-
tive-sense complement of RSV genome [145]. Viral genome and antigenome RNA are 
encapsidated in RSV nucleoprotein whereas viral mRNAs are not encapsidated [145]. 
Every nucleoprotein monomer interacts with 7 nucleotides of viral RNA and this 
complex forms a helical nucleocapsid acting as a template for the next RNA synthesis. 
This encapsidation is thought to increase RdRp activities to override ge signal during 
replication, therefore, encapsidation is the distinguishing factor between replication 
and transcription [23, 148, 149]. The trailer (tr) region (155-neucleotide long) at the 
3′ end of RSV antigenome has a promoter, which allows RdRp towards RSV genome 
synthesis [142, 143, 150]. The first 12 nucleotides of tr promoter are like those of the 
le promoter and the signal starts from position +1 and + 3 undergoes replication and 
transcription, respectively, but tr promoter cannot produce capped and polyadenyl-
ated mRNA because of lacking ge signal sequence adjacent to tr promoter [151, 152]. 
However, it is reported that tr promoter can initiate transcription of short RNA, 
which can inhibit cellular stress granules [153]. The concentration of ATP or GTP can 
determine the fate of replication and transcription at positions +1 (1 U) or position 
+3 (3C) observed at in vitro model, specifically, higher ATP concentration stimulates 
initiation from 1 U and evades initiation at 3C, in contrast, higher GTP concentration 
displays opposite effect [154]. Overall, L and P proteins form the core RdRp and L-P 
complex then form L-P-N and L-P-M2–1 complex to initiate replication and transcrip-
tion, respectively [79, 155].

5.3 Virion assembly and budding

Both assembly and budding of RSV occur at the apical side of ciliated cells [156]. 
RSV assembly is associated with lipid microdomain or lipid raft rich in cholesterol 
and sphingolipids; specifically, RSV filament formation observed in caveolin-1 and 
lipid-raft ganglioside GM1 rich regions of host cell surface membrane [157–159]. 
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RSV assembly into viral filament occurs at the cell surface requiring the activity 
of F protein cytoplasmic tail and M protein and this process are not dependent on 
actin polymerization [160]. However, Mehedi et al., showed the depletion of ARP2 
resulted in perturbation of RSV progeny virion on the infected cell surface, conse-
quently reducing viral shedding [8]. Viral assembly requires the activity of F protein 
cytoplasmic tail and M protein because both proteins accumulate in inclusion bodies 
cytoplasmic tail of F protein enables the release of the complex of matrix and RNP 
from inclusion bodies [161]. Although previous studies showed that three proteins 
including M, P, and F proteins are enough to create virus-like particles, a recent 
nuclear magnetic resonance study suggests that three novel interaction sites of M 
on P including site I in αN2 region, site II in 115 to 125 region and oligomerization 
domain where oligomerization domain is necessary for virus-like structure forma-
tion and virus release [137]. The incorporation of RSV proteins into lipid microdo-
mains during virus assembly can cause the interaction of F protein with host factors 
including caveolin-1, CD44, RhoA, causing microvillus-like projections essential for 
virus filament and syncytium formation [162, 163]. Actin cytoskeleton and actin-
associated pathways linked with PI3K and Rac GTPase are involved in RSV assembly 
[164]. M protein can bind DNA as well as RNA and it localizes into the nucleus 
mediated by importin-β1 nuclear import receptor, which forms a complex with 
guanine nucleotide-binding protein Ran and binds M protein amino acid 100–183  
[165, 166]. During the early phase of infection, nuclear accumulation of M protein 
was observed when M protein interacts with nuclear components mediated by 
its zinc finger domain resulting in the inhibition of host cell transcription [165]. 
During the later phase of infection, M protein undergoes phosphorylation induc-
ing nuclear export mediated by Crm1 by unmasking the nuclear export signal [78]. 
Therefore, M protein is thought to play a regulatory role as a transcription inhibitory 
factor by inhibiting viral transcriptase to facilitate RSV assembly and budding  
[77, 167]. RSV glycoprotein and RNP vesicles combined together prior to the 
filamentous virus formation and G protein recycling has been observed via clathrin-
mediated endocytosis, which might be connected with filamentous RSV formation 
[168]. RSV budding preferentially appears at the apical membrane of epithelial cells 
by an apical recycling endosome (ARE)-mediated apical protein sorting pathway 
[169]. RSV budding is independent of the endosomal sorting complex necessary for 
transport (ESCRT) mechanism controlled by ARE-associated protein, Rab11 family 
interacting protein 2 (FIP2) [170]. Recently, ARP2 is identified as a novel host factor 
of RSV budding and cell-to-cell spread [8].

6. RSV cell-to-cell spread

Although RSV progeny virions mostly remain cell-associated, virus shedding 
occurs from the infected cell’s surface and through cellular protrusions namely 
filopodia [8, 9]. RSV-induced syncytium (multinucleated cell) formation is a common 
feature of RSV infection in vitro. The syncytium involves the merging of infected 
cells with the adjacent uninfected cells, which allows the transfer of viral components 
from infected cells to the adjacent uninfected cells [171] (Figure 3). Mehedi et al., 
first showed that RSV uses a novel filopodia-driven cell-to-cell spread mechanism in 
the lung epithelial cells in vitro (Figure 4). It appears that RSV infection modulates 
cellular actin dynamics; particularly, actin-related protein 2/3 (ARP2/3) complex-
driven actin polymerization contributes to lamellipodium and filopodium formation 
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of cell motility. They showed the depletion of ARP2, a major constituent of the 
ARP2/3 complex resulted in a substantial reduction of RSV budding and filopodia-
driven cell-to-cell spread [8, 172–174].

Figure 4. 
Filopodia-driven RSV cell-to-cell spread. A549 cells were infected with RSV-WT (strain A) at a multiplicity of 
infection of 1. At 24-hour post-infection, cells were fixed, permeabilized, and stained for RSV F protein by using 
F-specific immunofluorescence (IFA) (green). F-actin was detected by rhodamine phalloidin staining (red). The 
image was taken under a stimulated emission depletion (STED) microscope.

Figure 3. 
RSV-induced syncytium (multinucleated cell) formation. A549 cells were infected with GFP-expressing RSV 
(RSV-GFP) at a multiplicity of infection of 1. At 48-hour post-infection, cells were fixed and imaged under an 
epifluorescence.
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