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Abstract Recent developments of multivariate smoothing methods provide a rich
collection of feasible models for nonparametric multivariate data analysis. Among
the most interpretable are those with smoothed additive terms. Construction of
various methods and algorithms for computing the models have been the main
concern in literature in this area. Less results are available on the validation of
computed fit, instead, and many applications of nonparametric methods end up in
computing and comparing the generalized validation error or related indexes. This
article reviews the behaviour of some of the best known multivariate nonparamet-
ric methods, based on subset selection and on projection, when (exact) collinearity
or multicollinearity (near collinearity) is present in the input matrix. It shows the
possible aliasing effects in computed fits of some selection methods and explores
the properties of the projection spaces reached by projection methods in order to
help data analysts to select the best model in case of ill conditioned input matrices.
Two simulation studies and a real data set application are presented to illustrate
further the effects of collinearity or multicollinearity in the fit.

Keywords Additive models · CART · Collinearity · MARS · Multi-layer
perceptron · Projection pursuit regression

1 Introduction

Although multicollinearity (that is, near collinearity) or collinearity up to numeri-
cal precision is rare in most statistical applications, it frequently occurs in explor-
atory data analysis or in data mining, where many and redundant variables are
often included in the modelling phase. On the other hand, it is seldom convenient
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to apply pre-processing strategies like principal component analysis or variable
selection, in order to achieve a full rank input matrix. In the first case, it is well
known that the axes determined by the first principal components are not necessary
the best axes for the successive modelling phase, e.g. classification or regression,
since the principal component analysis maximizes an objective function which
only depends on the input data and is different from the criteria minimized in clas-
sification and regression, which also depend on the target data. For what concerns
variable selection, in many applications it is better to use a combination of all the
input variables rather then choosing a subset of variables. For example, in quality
control, a weighted average of the control variables is preferable to the ones with
the highest correlations with the response.

It is the goal of this paper to show that projection methods should be preferred
in presence of multicollinearity or collinearity among nonlinear multivariate mod-
els which are often applied in data mining and in regression problems when the
form of the relationship between a dependent variable and multiple predictors is
not known a priori. As a matter of fact, models with smooth univariate additive
terms (or basis functions) may present instability in the fitting process when the
input matrix is bad conditioned. Instability is referred to contributions of variables
to the additive model. These contributions become very sensitive to the order of
variables and may fluctuate wildly as predictors are added to or removed from the
model. Unstable contributions of variables cause difficulty in identifying individ-
ual additive terms and impact the interpretation of the additive feature. Projection
methods, which are characterized by multivariate basis functions, do not share this
instability. Coefficients estimated for each additive term, as long as estimation of
functions themselves, when not fixed, do not depend on the order of variables.
Moreover, both estimates are insensitive to small random error in the dependent
variable, avoiding difficulty in identifying basis functions.

As described in Buja et al. (1989) the generalized additive models (GAM) pres-
ent great instability and arbitrariness in the fitting process when the predictors are
collinear since results reached by the backfitting algorithm depend on the order
in which variables are presented. In this paper an example is reported in which
results differ not only for the coefficients given to each basis functions, but also
for variables included in the model, since some variables are given zero degrees
of freedom. By means of further data sets it is also illustrated the behaviour of the
backfitting algorithm in GAM when multicollinearity is present in the input matrix
and outlined the differences between the aliasing effects produced by backfitting
in multivariate adaptive regression splines (MARS).

Projection methods like projection pursuit regression (PPR) and the multi-layer
perceptron (MLP) are not affected by collinearity since these models first perform
a nonlinear transformation from the space of the inputs to a new space, which is
the projection step, and then a linear transformation from this new space, which
is the modelling step. In Ingrassia (1999) it is demonstrated that in the new coor-
dinate systems, if the nonlinear transformation is a sigmoidal one, the points are
uncorrelated even if the original inputs are correlated. In Ingrassia and Morlini
(2005) it is proved that the optimal dimension of the projection space (in terms of
trade off between bias and variance) may be larger than the dimension of the input
space, when the input matrix is collinear or multicollinear. In this paper it is shown
that this is not always the case for PPR, where the nonlinear transformation is a
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smoother and not a sigmoidal one. The dimension of the projection space depends
on the degree of smoothness given to the function and in same instances a projection
space larger than a certain dimension cannot be reached by the algorithm.

It is worth noting that GAM have a stronger motivation as data analytic tools
than neural networks and PPR, since each variable is represented separately in the
mapping function. These models retain an important interpretation feature of linear
models: once they are fitted to data, the coordinate functions can be plotted sepa-
rately to examine the roles of the variables in predicting the response. However, in
presence of collinearity or multicollinearity, this interpretation feature may be lost
since the nature of the effect of one variable on the response may change depend-
ing on the order of variables in the model. In this case, the researcher interested in
model and variable selection besides prediction should prefer a fitting algorithm
working in a new coordinates system rather than in the original one.

The paper is organized as follows. Section 2 briefly reviews GAM and the
backfitting algorithm. Section 3 introduces the concepts of concurvity and approx-
imate concurvity and outlines theirs link with collinearity and multicollinearity. In
section 4 a brief description of MARS is provided and, drawing from the results of
De Veaux and Hungar (1994) and Buja et al. (1989) , the different behaviour of the
backfitting algorithm in GAM and MARS is shown. Section 5 introduces projection
tools like PPR and the MLP and analyses and compares these models in presence
of collinearity. The properties of the projections realized by these two methods and
the way for determining the optimal dimension of the projection space are also
investigated. For PPR, the stability of the backfitting algorithm even in presence of
collinearity is motivated. Section 6 focuses on two numerical examples while in
section 7 the methods are applied on a real data set from satellite images. Section
8 provides concluding remarks.

2 Generalized additive models and the backfitting algorithm: a brief review

Drawing from scatterplot smoothers for a response and a single predictor, there are
a number of possibilities for estimating the regression surface in the p-variate case.
Even if the most straightforward is through the use of a p-dimensional scatterplot
smoother, due to problems like the well-known curse of dimensionality (Friedman
and Stuetzle 1981), the metric assumptions to find neighbourhoods in two or more
dimension and the very expensive computational requirements, surface smoothing
techniques are in practice not very useful in the multivariate setting. Among all
nonparametric multivariate approaches aimed at estimating a regression surface,
the additive modelling and the projection tools seem to be the most frequently
exploited in practice, since they can be easily implemented by using existing soft-
ware. GAM and the PPR are implemented in the software package S-Plus while
neural networks are implemented in a number of dedicated software or toolboxes
related to packages like Matlab or SPSS.

In the regression setting, a generalized additive model (Hastie and Tibshirani
1986, 1990) has the form:

E(Y |X1, X2, . . . , X p) = G


a +

p∑
j=1

f j (X j )


 ,
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where Y is a univariate response variable, X j (j = 1,. . ., p) are p explanatory vari-
ables, the f j are unknown univariate smooth functions and G(·) is the inverse of
the link function. In the following G(·) will be assumed to be the identity function.
To avoid nonidentifiable constants in the model it is required that

E
(

f j (X j )
) = 0 j = 1, . . . , p.

This implies that E(Y) = a (assuming the identity link function). Many smoothers
require a choice of a smoothing parameter: if the parameter is selected by using
the y-values as, for example, in crossvalidation, then the resultant smoothers are
nonlinear. If this parameter is chosen a priori then the resultant smoothers may
become linear. The present paper in concerned with the linear smoothers and their
use in the backfitting algorithm.

Given observations xi , yi , (i = 1, . . ., n), a linear smoother can be written as
a linear map S j : Rn → Rn defined by ŷ = S j (y). Every smoother matrix S j (j=
1,. . ., p) in the additive model depends on the points xi j (i= 1,…, n), as well as the
particular smoother, but not on y.

If the following criterion C, that is a penalized residual sum of squares, and λ j
(j= 1, . . ., p) smoothing parameters are specified for the problem:

C(a, f1, . . . , f p) =
n∑

i=1


yi − a −

p∑
j=1

f j (xi j )




2

+
p∑

j=1

λ j

∫
f ′′j (t j )

2dt j , (1)

each of the function f j in the additive model is a cubic spline in the component X j
with knots at each of the unique values of xi j , i= 1,…, n. The degrees of freedom
of the model depend on the values of the λ j .

If other univariate regression smoothing techniques such as, for example, poly-
nomial, natural cubic splines, B-splines, or regression splines are used, the functions
f j become an expansion in basis functions and the criterion minimized is the usual
sum of squares error. The additive model is then more interpretable since results in
a parametric fit. Once the additive model is fitted to data the p coordinate functions
can be plotted separately to examine the roles of the variables in predicting the
response. The degrees of freedom of the model are equal to the number of basis
functions. Assuming we use k basis functions for each f j (for example, using a
natural cubic spline, k is equal to the number of selected knots plus one, while
using a B-spline or a regression spline, k is equal to the number of selected knots
plus the degree of the spline), the additive model can be fit directly by solving a
system of kp linear equations, without the use of an iterative scheme. For large
k and p, however, backfitting is considered as a numerically stable alternative to
solving a large system of equations and it is the default fitting algorithm for addi-
tive models in S-Plus. The backfitting algorithm (Hastie and Tibshirani 1990) is a
Gauss–Seidel iterative method which consists of the following step:

1. Set â = 1
n

n∑
i=1

yi .

2. Initialize: f̂ j = f̂0
j = 0, j= 1, . . ., p.

3. Cycle: j = 1, . . ., p, 1, . . ., p, . . .,
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f̂ j ← S j


y− 1â −

∑
k �= j

f̂k




f̂ j ← f̂ j − 1

n
1
′
f̂ j

until the individual functions do not change or change less then a pre-specified
threshold. It is worth distinguishing between successive and simultaneous iteration
schemes, usually also referred to as Gauss–Seidel and Jacobi iterations, respec-
tively. The first scheme updates one component at a time, based on the most recent
components available. In contrast, the Jacobi scheme forms a complete new set of
updates from a complete old one. The difference between the two approaches can
be formalized as follows:

Gauss–Seidel: f̂new
j ← S j


y− â1−

∑
k< j

f̂ new
k −

∑
k> j

f̂ old
k


,

Jacobi: f̂new
j ← S j


y− â1−

∑
k �= j

f̂old
k


.

It is the Gauss–Seidel scheme that makes GAM vulnerable to ill condition-
ing in the input matrix, as it will be shown in the next section. Given the S j n× n
smoothing matrices and the n-dimensional vectors f j (j= 1, . . ., p) with components
f j (x1 j ), f j (x2 j ), . . ., f j (xnj ), the system of normal equations solved by backfitting
is:




I S1 S1 · · · S1
S2 I S2 · · · S2
...

...
...

. . .
...

Sp Sp Sp · · · I







f1
f2
...

fp


 =




S1y
S2y
...

Spy


 , (2)

where I is a n × n unit matrix. If the criterion minimized is the cost function (1),
then each S j is the appropriate cubic spline smoother matrix, depending on λ j . For
fixed knots regression splines, B-splines or natural cubic splines, each of the S j
are orthogonal projectors onto a small subspace of Rn and have the form

S j = B j (Bj
′B j )

−1Bj
′,

where the sub design matrices B j are generated by the appropriate basis spline func-
tions. Note that in GAM, since the constant term is given by â = (1/n)

∑n
i=1 yi ,

in each B′j is not present the first basis function corresponding to the constant
component. Properties of a smoothing matrix are given in Buja et al. (1989) and in
Hastie et al. (2001, chapter 5). For polynomials and splines the S j are symmetric,
positive semidefinite and hence have a real eigen-decomposition. For polynomials,
B-splines, regression splines and natural cubic splines, the eigenvalues are 0 or
1 only, with corresponding eigenspaces consisting of the space of residuals and
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fits, respectively. For smoothing splines the eigenvalues depend on λ j while the
eigenvectors look approximately like polynomials of increasing degree and are not
affected by changes in λ j . Since in GAM the constant term is separated and each of
the smooth terms is adjusted to have zero mean, the first eigenvalue is always one
and corresponds to the function linear in X j which is never shrunk. With respect to
the smoother matrix S in a univariate analysis (here the subscript j is not necessary),
in an additive model the smoother is implicitly redefined to S j = S − 1 × 1′/n
and S j has eigenvalue zero for the vector of constants (while in a one dimensional
analysis S has eigenvalue 1 for the vector of constants). The other eigenvalues are
real positive values decreasing from 1 to 0.

3 Exact and approximate concurvity in GAM

While the term collinearity refers to linear dependencies among predictors which
lead to degeneracy in the system of equations in a multiple linear model, the term
exact concurvity (Buja et al. 1989) has been used to describe – exact – nonlinear
dependencies which lead to degeneracy in GAM, that is to the existence of infinite
solutions. Formally, for the general smoother-based normal equations, concurvity is
defined as the existence of a nonzero solution g = (g′1 . . . g′p)′ of the corresponding
homogeneous equations




I S1 S1 · · · S1
S2 I S2 · · · S2
...

...
...

. . .
...

Sp Sp Sp · · · I







g1
g2
...

gp


 =




0
0
...
0


 . (3)

If such a g exists, and if f = (f ′1 . . . f ′p)′ is a solution of (2), then so is f+βg for
any β and thus infinitely many solutions exist. In a more intuitive way, concurvity
may be thought as the existence of collinearity between (nonlinear) transforms of
predictors. Collinearity between predictors is defined as the existence of a nonzero
vector b = (b1 . . . bp)

′ such that
∑p

j=1 b j x j = 0, with x j = (xi j . . . xnj )
′. Simi-

larly, for GAM where each smoother is an orthogonal projection, we can associate
with predictor x j a linear space V j of transformations and define concurvity to hold
if there exist non trivial g j ∈ V j such that

∑p
j=1 g j = 0.

In the context of exact concurvity, Theorems 2 and 5 in Buja et al. (1989) are
of fundamental importance. The first Theorem states that the normal equations (2)
are always consistent for polynomials and spline smoothers. The second one states
that, for the same class of smoothers, exact concurvity can only occur if there is
a linear dependence among the eigenspaces of the S j corresponding to eigenvalue
+1. So, for these smoothers, collinearity implies exact concurvity:

p∑
j=1

b j x j = 0→
p∑

j=1

g j = 0

since polynomials and splines preserve constants and linear fits.
In contrast to the treatment of linear systems in literature, where nondegener-

acy is usually assumed and a solution to the equations system cannot be achieve –
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unless the input matrix is transformed in a full rank matrix or a generalized inverse
is defined – the backfitting algorithm in GAM always converges to a solution. The
solution to which the algorithm converges depends, besides the initializations f0j
(j= 1,. . ., p), on the order of the input variables. This is worked out explicitly for
the two smoothers case, that is p = 2, in Buja et al. (1989). The dependency of
the results on the order of variables is, of course, an undesirable property which
leads to an unjustified arbitrariness of the backfitting algorithm in the choice of
the solution. What it will be shown by numerical examples in the next section is
that the solutions may differ not only in the coefficients of each basis functions
but also in the degrees of freedom given to each basis function. If basis function
related to a variable j are given zero degrees of freedoms, not all variables are
included in the final model and the backfitting algorithm makes a sort of variable
selection, the variables being arbitrarily included in the model depending on the
order in which they are presented. In order to overcome the problem, the modified
algorithm proposed in Buja et al. (1989) should be used. This algorithm extracts
the projection parts from the smoothers and, drawing an analogy with the linear
regression case, essentially solve the problem of concurvity by reparameterizing
the normal equations to obtain a full rank model (Eubank and Speckman 1989).

While exact concurvity is unlikely, but it is predictable for symmetric smoo-
thers with eigenvalues in [0, 1] since it can only be an exact collinearity among
the untransformed predictors, approximate concurvity may cause harm too, in that
some or all of the estimated basis functions are likely to be unstable. Approximate
concurvity is defined as the existence of an approximate minimizer of the penal-
ized least squares criterion which leads to approximate nonlinear additive relations
among the predictors (Buja et al. 1989). As multicollinearity in the linear regres-
sion setting, approximate concurvity causes difficulties in separating effects in the
model with the consequence that the parameter estimates may be poor. However,
it does not describe degeneracy in a technical sense (that is, the solutions to system
(2) are not infinite and the form of the fit is not fully predictable from the model
and the design) unless the following two conditions are satisfied:

1. the p predictors lye exactly on a lower dimensional manifold, for example, a
curve for two variables,

2. the additive functions defining the manifold are preserved by the respective
smoothers.

For linear smoothers approximate concurvity maybe caused by multicollinear-
ity (or ill conditioning) in the input matrix. If all the S j are projectors approxi-
mate concurvity causes numerical problems in the backfitting algorithm but do not
lead to degeneracy in a technical sense. The result is different when it comes to
smoothing splines smoothers, for which the matrices S j may have a great number
of eigenvalues close to 1. For these smoothers approximate concurvity may lead
to degeneracy if the above two conditions are satisfied. For all smoothers the risk
of numerical problems in the Guass Seidel algorithm and unstable estimates of
the basis functions gets higher as long as the mapping function gets more flexible.
Approximate concurvity for linear smoothers is the same in spirit as the prospective
cocurvity defined in Gu (1992): by construction, the decomposition

∑
j f j (X j ) is

well defined on its domain I ; however, when the additive functions are estimated
from the data, information comes from the design points (I)0= [xi ], i=1,. . .,n, and
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observed concurvity occurs when the restriction of the estimated f ′j s to (I)0 are
nearly collinear. Decomposition is thus not well defined on the restricted domain
(I)0. The problem with approximate or observed concurvity is that it is not foresee-
able. In order to detect it the model must be checked by carrying out retrospective
diagnostics [see Gu (1992)] or by analysing the degrees of freedom of the linear part
of the smoothers in the modified algorithm proposed in Buja et al. (1989) Another
diagnostic tool proposed by Donnel et al. (1994) is the additive principal compo-
nents (APCs) analysis of the predictor variables. Smallest ACPs amount to data
description in terms of approximate implicit equations:

∑
j f j (X j ) ≈ 0 with the

smallest variances of
∑

j f j , subject to some normalizing constraint. The minima
variances characterization lead to solutions to an eingenproblem that generalizes
linear principal components. Eigenvalues l= var

∑
j f j measure the strength of

additive degeneracy. They are nonnegative and, by definition (see Donnel et al.
1994), below 1. An ACP with zero eigenvalue reveals the presence of exact con-
curvity in the predictor variables. As long as the approach proposed by Gu (1992)
this is a retrospective analysis since the additive functions must be estimated before
diagnosing approximate concurvity.

An example of observed concurvity caused by ill conditioning of the input
matrix is reported in the second simulation study of section 6. A second example
is the real data set application of section 7.

4 MARS and collinearity: a comparison with GAM

Regarding the backfitting algorithm used to fit MARS (Friedman 1991) a study by
De Veaux et al. (1993) and De Veaux and Hungar (1994) show that the algorithm
exhibits problems in choosing among predictors when multicollinearity is present.
These problems are somehow different from the dependence of the solutions on
the order of variables. Let briefly introduce MARS and the procedure used to fit
the model. The model is an expansion in piecewise linear basis functions, of the
form (xi j − t)+ and (t −it xi j )+ where

(xi j−t)+=
{
xi j − t if xi j > t

0 otherwise and (t−xi j )+=
{

t−xi j if xi j < t
0 otherwise (4)

t ∈ {
x1 j , x2 j , . . . , xnj

}
is the knot and j= 1, . . ., p. The model building strategy

is like a forward stepwise linear regression using functions (4) and their products.
The model has the form:

ŷ = β0 +
M∑

m=1

βmhm(X) (5)

where each hm is a function in the set of the functions (4) or a product of two
or more such functions. So, interaction between variables is explicitly allowed.
Given a choice for the hm , the coefficients βm are estimated by minimizing the
residual sum of squares, that is, by standard linear regression. The more difficult
part, however, is the construction of the functions hm . Starting with the constant
h0=1, all the 2 np functions (4) and their products are possible candidates at each
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stage of the backfitting algorithm. It is added to the model the basis function that
produces the largest decrease in a cross-validated criterion or in the penalized resid-
ual sum of squares. The process continues until the model contains some preset
maximum number of terms. Usually the final model overfits the data and so a back-
ward deletion procedure is applied. As shown in De Veaux and Hungar (1994), if
two predictors are both correlated with themselves and with the response, at some
stage of the forward selection procedure, MARS may be forced to choose between
placing a knot on one of these predictors. The choice may be somewhat arbitrary
if both results in roughly the same error or used criterion value. The choice has
potentially strong impact on the choice of all further variables and knot selections
and thus on the final model as well. This is a result of the tree structure in MARS.
In an extreme case it may happen that a much better model would result if the other
predictor had been chosen. The backward step, which follows the forward phase
and aims to produce a model with comparable performance but fewer terms, is also
vulnerable to multicollinearity, especially in the additive case (when no interaction
is allowed) since over-fitting is avoided by reducing the number of knots rather
than via a smoothness penalty.

Some of the effects of collinearity in the construction of final model are the
same in MARS and GAM. For example, only some of the input variables may
be represented in the final model and the interpretability of the final model when
one correlated predictor is chosen over another, becomes a difficult task. Indeed,
instability of the backfitting algorithm is due to its Gauss–Seidel scheme in GAM,
and results depend on the order of variables. In MARS, at every stage, all vari-
ables are considered, and thus the order of variables has no impact on the final
model, but the tree structure makes MARS vulnerable to the subset of variables
considered. If, for example, variable X1 is selected in an early stage and a new
variable correlated with X1 is introduced in a second analysis, it may happen that
this variable is selected instead of X1, since both result in the same value of the
criterion minimized. A second difference regards the distinction between collin-
earity and multicollinearity. This distinction has no impact in MARS since the
arbitrariness in the selection process depends on the bivariate correlations rather
than on the conditioning of the input matrix (arbitrariness may also occur if there
is a single high correlation coefficient in the input correlation matrix). On the other
hand, as it will be also shown by the numerical example in section 6 and the real
data set application in section 7, this distinction is of great importance in GAM.
Collinearity causes concurvity and thus the linear part of the solution to which the
backfitting converges to inevitably depend on the order of variables. Multicollin-
earity may cause concurvity or approximate concurvity. Approximate concurvity
always leads to poor parameter estimates but may cause dependency of the results
on the order of variables only if smoothing splines smoothers are used

5 Projection methods and collinearity

Projection pursuit regression and the MLP belong to the class of methods having
the following form

ŷi =
M∑

m=1

wmφm(a′mxi )+ w0
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where the am (m = 1, . . ., M) are p-vectors of unknown parameters, normalized
to have unit length, the wi are unknown coefficients and xi = (xi1 . . . xip)

′. These
methods simultaneously project the data in an M-dimensional space (when p is
large, usually M is far less than p) and model the features (which are linear com-
binations of the inputs) in this new input space. The key difference between them
is that the PPR uses nonparametric functions to model the derived features while
MLP uses a far simpler sigmoidal function. Like GAM, these are linear expansion
of basis functions and thus are additive but in derived features of the input vari-
ables and not on the single variables X1, . . ., Xp. Without loss of generality, in the
following we can set w0 = 0.

These models perform the following transformations:

1. a nonlinear transformation from R p to RM given by the functions φm , that is x
→ φ1(a′1xi ), . . . , φM (a′M xi ), which is the projection step;

2. a linear transformation from RM to R1 according to w1, . . ., wM , which is the
modelling step.

In other words, these models operate a linear regression or discrimination on a
suitable nonlinear transformation of the input data. The suitability of the non linear
transformation is guarantee since the projection step and the modelling phase are
faced simultaneously and the dimension M of the projection space and the vec-
tors am are optimized in a supervised manner, according the target values t. The
mapping function realized by a PPR can be also written in the form:

ŷi =
M∑

m=1

gm(a′mxi ) (6)

where the functions gm are estimated along with the directions am using some
flexible smoothing method. In S-Plus these functions are running mean smoothers
with fixed or cross-validated span values, as suggested in the original paper by
Friedman and Stuetzle (1981). Given the training data, the model is fit seeking the
approximate minimizer of the error function

N∑
i=1

(
yi −

M∑
m=1

gm(a′mxi )

)2

(7)

over functions gm and direction vectors am , m = 1,. . ., M. Starting from just one
term (M =1), given the direction vector a1, the running mean smoother is applied
to the derived variable zim = a′mxi to obtain an estimate of g1. On the other hand,
given g1, we want to minimize the error function (7) over a1. A Gauss–Newton
search is applied for this task, which is a quasi-Newton method where the part of
the Hessian involving the second derivatives is discarded (Friedman 1984). These
two steps, estimation of g1 and a1, are iterated until convergence. For the other
terms, the model is built in a forward stage-wise manner, adding a pair (gm, a′m)
at each stage. After each step the gm from previous step are readjusted using the
backfitting procedure. Note that the running mean smoothers are not symmetric
and thus collinearity in the matrix Z = (zim) of the derived variables does not
imply concurvity. The number of terms M, which determines the dimension of the
projection space, is estimated as part of the forward stage-wise strategy. Having fit a
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model with a large number of terms, the model with M components is retained if the
next model with (M+1) terms does not appreciably have an improved performance.
Since the running mean smoother can be expressed as follows

gim = wm

∑
k zkm

ns
,

k = max

(
i − ns − 1

2
, 1

)
, . . . , i − 1, i, i + 1, . . . , min

(
i + ns − 1

2
, n

)

with the value of the span s between 0 and 1, the coefficients wm determine the
importance of each term in predicting the output and can be used in estimating the
dimension M as well as the value of the error function (7) at each stage.

The function realized by an MLP with a sigmoidal transfer function in the input
layer and a linear transfer function in the hidden layer, is of the form:

ŷi =
M∑

m=1

wmσ(a′mxi ) (8)

where σ (·) is a sigmoidal function and the wm are parameters also called weights.
Here the number M of the projection space, that is the number of hidden units, is
determined by crossvalidation. The sum of squares error is used as measure of fit
and the generic approach to minimize this error is by gradient descent, called back-
propagation in the neural network setting. Since backpropagation can be very slow,
and for this reason is usually not the method of choice, second order techniques
such as Newton’s methods are frequently used. Better approaches to fitting also
include conjugate methods or variable metric methods which avoid explicit com-
putation of the second derivative matrix while still proving faster convergence. For
a description of the training algorithms and a review of the most important issues in
training an MLP, like the overfitting problem and the presence of multiple minima,
the reader is referred to Bishop (1995) and Ripley (1996).

As stated before, the difference between the two methods is that the PPR model
uses nonparametric functions gm while the MLP uses a far simpler sigmoidal func-
tion. In presence of collinearity, the sigmoidal functions have an interesting prop-
erty. If we consider n linearly dependent points in R p and a (M× p) matrix A with
values on the hypercube [−u, u]pM for u =1/M, then the points Ax1, . . ., Ax n are
still linearly dependent because they are obtained by a linear transformation on
x1, . . ., xn . If σ is a sigmoidal analytic function on (−r, r), with r>0, then

rank







σ(Ax1)
′

...
σ (Axn)

′





 = M

for almost all matrix A and for M ≤ n (Ingrassia (1999); Ingrassia and Morlini
2005). These results show that the projection space in an MLP may be also an
over-space of dimension M with n ≥ M > p because the points in this overspace
are linearly independent and the system:
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w1σ(a′1x1) + · · · + · · · wnσ(a′nx1) = y1
... + · · · + · · · ... = ...

w1σ(a′1xi ) + · · · + · · · wnσ(a′nxi ) = yi
... + · · · + · · · ... = ...

w1σ(a′1xn) + · · · + · · · wnσ(a′nxn) = yn

has a unique solution. The PPR model implemented in S-Plus may hold the same
property, since running means are asymmetric smoothers which may not preserve
constants and linear fits. The dependency or independency of points g1(Ax1),. . .,
gM (Axn) in RM for M ≤ n, depends on the value given to the span. For a given
span, if M* is the maximal dimension of the projection space in which the points
g1(Ax1),. . ., gM∗(Axn) are linearly independent, and we chose a dimension M>
M*, the fitting algorithm set a′m = 0 for m = M*+1,. . ., M. So, the backfitting in
PPR is applied to the points g1(Ax1),. . ., gM∗(Axn) which are linearly independent
and collinearity or multicollinearity in the input matrix affect the dimension of the
projection space but not the stability of the estimates reached by the backfitting.

6 Numerical examples

6.1 Collinear matrix

To understand further how the backfitting algorithm behaves in GAM, when the
input matrix is singular, it is useful to look at a synthetic example. Let p be a (6×1)
dimensional vector and Ua (6 × 5) matrix, such that p′p = 1, U′U = I, p′U =
0, UU′ = I − pp′. Let R be a (6×6) matrix of rank 2, independent of U, with the
first two columns randomly generated from a uniform distribution in (0,1) and the
other columns taken as linear combination of these two. We define the (100×6)
matrix X of the predictor variables, as

X = (zp′ + VU′) · R
with z of dimension (100×1) and elements generated from an N(0, 256), V of
dimension (100×5) with the first column generated from an N(0, 49), the second
one from an N(0, 0.0121) and the last three columns from an N(0, 0.005). Note
that X is of rank 2. We then define the vector y of the dependent variable as y = z
+ e, with the elements of e randomly chosen from an N(0, 0.1225). The elements
of z, V and e are generated independently of each other. The resulting matrix C of
the sizes of correlations between the predictive and the dependent variables is:

C =




x1 x2 x3 x4 x5 x6 y
x1 1
x2 0.96 1
x3 0.85 0.96 1
x4 0.10 0.26 0.5 1
x5 0.19 0.45 0.67 0.98 1
x6 0.32 0.57 0.76 0.94 0.99 1
y 0.41 0.65 0.82 0.90 0.97 0.99 1
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The peculiarity of this data set is that there are two underlying linear factors that
give rise to the input variables. This is clear from the pattern of the high and low
correlations in C such that the variables in a particular subset have high correlations
among themselves but low correlations with all the other variables. Nevertheless
only the one dimensional components z is important for the prediction of y and
this component is not a linear function of X, in general, because of R. Note that
the values of the variances in the normal distributions and the parameter of the
uniform distribution used to generate the data, as long as the number of patterns
(equal to 100) have not a special meaning in this example. The aim is to achieve an
(n × p) input matrix with a rank less then p and a data set such that the number of
components relevant for the prediction of the target variable is known. This allows
evaluating the ability of projection methods to find the actual dimension of the
projection space. It’s also important to note that R is created independently of U.
If, for example, we should have set R= u1u′1 +u2u′2 (where u1 and u2 are the first
and the second column of U,respectively) then X=v1u′1 +v2u′2 (where v1 and v2 are
the first and the second column of V,respectively). The columns of X should have
been independent of z and y impossible to predict by linear or nonlinear functions
of the columns of R.

Linear projection methods like Principal Components Regression and Partial
Least Squares extract two components, as was to be expected. Regarding nonlinear
models, results are as follows. For completeness we also report results by classifi-
cation and regression trees (CART) which are a powerful nonparametric regression
tool using recursive partitioning of the space of independent variables, as MARS,
but not the backfitting algorithm. Detailed discussion on CART can be found in
Breiman et al. (1984), Clark and Pregibon (1992) and Venables and Ripley (1994)

Classification regression trees show stable behaviours: if we consider the full
data set and other subsets of variables including x5 and x6, in all cases, given the
same parameters choice, they select variables x5 and x6. The model complexity,
equal to 8 terminal nodes, still remains unchanged.

Multivariate adaptive regressian splines behaves in a different way. Considering
the full data set and the subset of variables x2, x3, x5, x6,restricting the interaction
order to 2 and setting the maximum number of basis functions equal to 15 (the
default value in the MARS package), we find that at the second knot placement the
algorithm has to choose between x2 and x3. In terms of the generalized crossvali-
dation (GCV) error, these two alternatives are the same and the variable selected
depends on the set of predictors used to build the model (Table 1).

The choice between x2 and x3 results in the same GCV error, but in different
choices in the subsequent stages of the hierarchy and in the backward stepwise elim-
ination step. Models built have approximately the same fit, but different degrees of
freedom and different knots placement (Table 2).

Generalized additive models, given the same parameters, result in different
models, depending on the order in which the variables are presented. For example,
with smoothing splines with degrees ranging from 1 to 6, for variables presented
in theirs original order, that is from x1 to x6, predictors with a parametric degree
of freedom are x1 and x2. For variables in the reverse order, that is from x6 to x1,
predictors with a parametric degree of freedom are x6 and x5 (Table 3).

The two models, for every degree of the smoothing splines, have approximately
the same penalized sum of squares (PSS) error and equal number of total degrees
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Table 1 Forward stepwise knot placement in MARS when all input variables are used and when
the subset of variables x2, x3, x5, x6 is used

All variables Variables x2, x3, x5, x6

Basis function GCV error Variable Knot Basis function GCV error Variable Knot

0 158.29 0 158.29
1 1.770 x6 −155.68 1 1.770 x6 −155.68
3 2 0.115 x3 −37.920 3 2 0.115 x2 −48.850
5 4 0.123 x4 −36.050 5 4 0.123 x5 −10.000
7 6 0.134 x1 73.060 6 0.134 x3 −111.64
9 8 0.144 x3 40.150 8 7 0.144 x2 34.050
10 0.155 x1 −106.56 10 9 0.153 x5 12.090
12 11 0.166 x1 −15.520 12 11 0.169 x3 2.300
14 13 0.185 x1 35.170 14 13 0.184 x6 107.420
15 0.208 x1 −106.56 15 0.204 x3 −111.64

Table 2 Final model, after backward stepwise elimination, in MARS when all input variables
are used and when the subset of variables x2, x3, x5, x6 is used

All variables Variables x2, x3, x5, x6

Basis Function Coefficient Variable Knot Basis function Coefficient Variable Knot

0 −24.39 0 −25.771
1 0.148 x6 −155.68 1 0.157 x6 −155.68
2 0.036 x3 −37.92 2 0.030 x2 −48.85
3 −0.042 x3 −37.92 3 −0.038 x2 −48.85

Table 3 Some results for additive models with smoothing splines with degrees ranging from 1
(linear fit) to 6

Variables Variables with a parametric degree of freedom

Original order x1and x2
Reverse order x5and x6

Table 4 Number of basis functions selected by the backfitting algorithm in additive models with
cubic B-splines

Variables intercept x1 x2 x3 x4 x5 x6

Three degrees of freedom (zero knots)
Original order 1 3 3 2 1 0 0
Reverse order 1 0 0 1 2 3 3
four degrees of freedom (1 knot)
Original order 1 4 4 3 2 1 1
Reverse order 1 1 1 2 3 4 4
seven degrees of freedom (4 knots)
Original order 1 7 7 6 5 4 4
Reverse order 1 4 4 5 6 7 7

of freedom. However, basis functions selected are different and quite arbitrary. The
best crossvalidated error is given with one degree of the smoothing splines, that is
with the linear fit. The problem of basis functions selection and knots placement
in presence of collinearity is more understandable when using B-splines or natural
cubic splines, since GAM reduce in a parametric fit. Table 4 shows the number
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Table 5 Number of knots selected by the backfitting algorithm in additive models with natural
cubic splines

Variables intercept x1 x2 x x4 x5 x6

Two degrees of freedom
Original order 1 2 2 1 1 1 1
Reverse order 1 1 1 1 1 2 2
Three degrees of freedom
Original order 1 3 3 2 2 2 2
Reverse order 1 2 2 2 2 3 3

of basis functions selected by the backfitting algorithm in GAM with cubic B-
splines (degrees = 3) of different degrees of freedom. Table 5 shows the number
of selected knots in GAM with natural cubic splines with 2 and three degrees of
freedom. Results are carried out using the software S-Plus (see Becker et al. 1988).

For what concern projection methods, having fit a PPR model with a R6 pro-
jection space with automatic span selection (that is, with local cross-validation),
we obtain the following coefficients: w1 = 12.045, w2 = 0.218, w3 = 0.161, w4 =
0.194, w5 = 0.134, w6 = 0.103, where the last five coefficients are substantially
smaller than the first one. Considering that the decrease in then error function (7)
from M = 1 to M = 2 is less than 0.0005, we see that PPR correctly finds an R1

projection space. For different span values set a priori and ranging from 0 to 1
the first coefficient always results substantially greater than the others and thus all
models agree on finding an R1 projection space. The maximal dimension of the
projection space changes with the span values. For a span = 1 this dimension is 2
(the rank of the input matrix) since the smoother preserves linear fit. For a span
equal to zero, it is 100, as for the MLP. Results are different for intermediate span
values. For example, with a span equal to 0.8, the maximal dimension is 4 while
for a span equal to 0.5 it is 3.

A sigmoidal MLP trained with the conjugate gradient algorithm and with a
number of hidden units ranging from 1 to 20 gives the best cross-validated results
with 1 hidden unit (that is, an R1 nonlinear projection space).

As for GAM and CART, results for PPR are carried out using the software
S-Plus 2000 while for the MLP are carried out with the Matlab 6.1 packages.

It is worth noting that in this section we have not reported the performance of
each model in terms of GCV error or related indexes, since the emphasis is on the
stability of the algorithm for nonparametric methods and on the ability of finding
the actual dimension of the projection space for projection methods, rather than on
numerical results.

6.2 Multicollinear matrix

This experiment is an example of multicollinearity leading to observed concurvity
in the basis functions. Drawing from one of the simulations proposed in Gu (1992),
we define a (100×6) matrix X = (xi j ) of predictor variables as follows: the first
three variables xi1, xi2, xi3, i=1,. . ., 100, are generated from a uniform distribution
in (0,1); xi4= x(1/2)

i1 , xi5= x2
i2 + x2

i3, xi6= x2
i1 + x2

i2, i=1,. . ., 100. We then define the
dependent variable
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yi = 10 sin πxi1 + exp(3xi2)+ 5 cos(2πxi3)− x cos(2πxi4)

+ exp(xi5)− 5 sin(πxi6)

Once again the coefficients here have no special meaning. The aim is to define a
multicollinearity matrix leading to concurvity. The resulting matrix of the size of
the correlations between the dependent variable and the predictors is:

C =




x1 x2 x3 x4 x5 x6 y
x1 1
x2 0.02 1
x3 0.01 0.06 1
x4 0.97 0.01 0.05 1
x5 0.03 0.60 0.73 0.02 1
x6 0.71 0.64 0.08 0.68 0.35 1
y 0.01 0.71 0.11 0.08 0.67 0.45 1




Even if the input matrix is of full rank and the bivariate correlations are not all
significant (α = 0.01), the input matrix is badly conditioned, as measured by the
condition number of Belsley (1984, 1991), equal to 49.4. This number is computed
as the ratio of the largest singular value to the smallest singular value of the centred
and standardized matrix of the predictor variables, with inclusion of the column of
ones for the intercept. While the choice of standardizing the input matrix is nec-
essary to prevent the eigenanalysis from being dependent on the units of measure
of variables and thus dominated by one or two of the independent variables, the
choice of centring is somehow arbitrary. Some authors argue that variables should
not be centred since centring makes all independent variables orthogonal to the
intercept column and, hence removes any collinearity that involves the intercept.
Belsley et al. (1980) and Belsley (1984) argue that this correction for the mean is
part of the multiple regression arithmetic and should be taken into account when
assessing the collinearity problem. Regarding the interpretation of the condition
number, Belsley et al. (1980) suggest that a value around 10 indicates weak depen-
dencies that may be starting to affect the regression estimates. Condition numbers
of 30 to 100 indicate moderate to strong dependencies and numbers larger than
100 indicate serious collinearity problems.

Classification and regression trees, with a minimum number of observation
before split equal to 5, a minimum node size equal to 10 and a minimum node
deviance equal to 0.01 (default parameters choice in S-Plus) select variables x2,
x3, x5 and x6 and reach a GCV error equal to 3.12. The same results, in terms
of performance power and selection of variables, are reached when the subset of
variables x2, x3, x5 and x6 are used as inputs.

Multivariate adaptive regression splines, with the default parameter values,
behaves in a similar way: the GCV error is 2.6 and all variables are selected.

Generalized additive models with smoothing splines with a degree ranging
from 1 to 6 and with variables presented in the original order and in the reverse
order differ in the values of the coefficients given to each basis functions but not in
the nonparametric degrees of freedom. Differences in the coefficients gets larger
as long as the degrees increase. The PSS error ranges from 2.15 for the linear fit
1◦ to 0.27 for 6◦. With natural cubic splines the behaviour is similar. The number
of knots selected by the backfitting algorithm remains unchanged if variables are
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Table 6 Number of basis functions selected by the backfitting algorithm in additive models with
cubic B-splines

Variables intercept x1 x2 x3 x4 x5 x6

Three degrees of freedom (zero knots)
original order 1 3 3 3 2 2 2
reverse order 1 2 2 3 3 3 3
four degrees of freedom (1 knot)
Original order 1 4 4 4 3 3 3
Reverse order 1 3 3 4 4 4 4
six degrees of freedom (3 knots)
Original order 1 6 6 6 5 5 5
Reverse order 1 5 5 6 6 6 6

presented in the reverse order, while the coefficients appear remarkably different.
The PSS error ranges from 0.9 for one degree of freedom to 0.87 for six degrees
of freedom. The use of B-spline clearly reveals the presence of observed concur-
vity since the number of basis functions selected for each variable changes when
variables are presented in a different order. Table 6 reports some results. The PSS
error ranges from 1.02 for the model with zero knots to 0.05 for the model with
three knots.

Note that GAM numerical performances cannot be directly compared with
those of MARS and CART since these latter models can be given more flexibility
with nondefault parameter values and results for them are crossvalidated.

With a PPR model with a R4 projection space and automatic span selection, we
obtain the following coefficients: w1 = 7.71, w2 = 1.57, w3 = 0.89, w4 = 0.81. The
last two coefficients are substantially smaller than the first two. Considering that
the decrease in then error function (7) from M = 2 to M = 2 is less than 0.02, we
choose an R2 projection space. The PSSE error is equal to 0.14. For different span
values set a priori and ranging from 0 to 1 the first two or three coefficients always
result substantially greater than the others and thus all models agree on finding an
R2 or R3 projection space. The PSSE error for models with a span equal to 0.2,
0.5, 0.6, and 0.8 and a two- or three- dimensional projection space, ranges from
0.14 to 0.3.

For what concerns the maximal dimension of the projection space, this is equal
to 2 for a span=1 and 66 for a span = 0.5. Results are different for intermediate
span values.

A sigmoidal MLP trained with the conjugate gradient algorithm and with a
number M of hidden units ranging from 1 to 20 gives the best cross-validated result
with M > 3. Cross-validated sum of squares errors, as long as the averages of the
size of the weights between the hidden and the output units (that is, the average of∑M

m=1 |wm | for each of the crossvalidated model) are reported in Table 7. Models
with similar crossvalidated errors have similar values of the size of the weights
between the hidden and the output units. This observation is corroborated by the
value of the correlation between the crossvalidated error and the

∑M
m=1 |wm |, equal

to 0.83. These results confirm the analysis Ingrassia and Morlini (2005) which
shows that the generalization performance of an MLP is determined by the sum
of the sizes of the weights in the hidden layer rather than by the number of these
weights and thus by the number of hidden units.
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Table 7 Results for a MLP with a number of hidden units ranging from 1 to 20

Number of hidden units Training error Crossvalidated error
∑M

m=1 |wm |
1 4.94 6.74 544.75
2 3.51 5.07 676.99
3 2.92 4.45 323.24
4 2.15 3.81 106.62
5 1.56 3.08 138.31
6 2.09 3.79 122.79
7 1.56 3.13 137.97
8 1.32 3.27 131.31
9 1.23 2.96 138.02
10 0.91 2.82 126.35
11 0.92 2.72 119.90
12 0.59 2.32 132.43
13 0.55 2.51 135.74
14 0.53 2.43 130.79
15 0.58 2.51 130.39
16 0.57 2.43 137.42
17 0.44 2.34 142.27
18 0.51 2.51 139.77
19 0.53 2.63 157.44
20 0.60 2.59 148.84

Numerical results of these two projection methods are not directly comparable,
since errors for the PPR are not cross-validated. However, both algorithm show
stable performances with respect to the choice of the dimension of the projection
space. In particular, the MLP shows similar results for a number M > 3 while the
PPR shows stable performances for a number M > 1 and for different span values.

7 Real data set example

In this section the behaviours of MARS, GAM and projection tools in presence
of a bad conditioned input matrix are studied by means of a satellite images (sat-
image) data set. This dataset is taken from the ftp anonymous “UCI Repository
of Machine Learning Databases and Domain Theories” (ics.uci.edu:pub/machine-
learniong-databases). Past usages of this data set are, among others, in Michie et
al. (1994), Guerin-Dugue A et al. (1995). The data set was generated from Landsat
Multi-Spectral Scanner (MSS) images. One frame of Landsat MSS imagery con-
sists of four digital images of the same scene in different spectral bands. Two of
these are in the visible region (corresponding approximately to green and regions
of the visible spectrum) and two are in the (near) infra-red. Each pixel is an 8-bity
binary word with 0 corresponding to black and 255 to white. The spatial reso-
lution of a pixel is about 80 × 80 m2. Each image contains 2340 × 3380 pixels.
The satimage data set is a tiny sub-area of a scene, consisting of 82 × 100 pixels
with the binary values converted to ASCII form. Each line in the data set corre-
spond to a 3 × 3 square neighbourhood of pixels completely contained within the
82 × 100 sub-area. Each line contains the pixel values in the four spectral bands
(converted to ASCII) of each of the 9 pixel in the 3× 3 neighbourhood and a num-
ber indicating the classification label of the central pixel. The aim is to predict this
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Table 8 Percentage of total variance and cumulative variance explained by each linear principal
component (PC)

PC percentage of PC percentage of PC percentage of PC percentage of
variance variance variance variance
explained explained explained explained
Total Cumulative Total Cumulative Total Cumulative Total Cumulative

1 70.20 70.20 10 0.70 94.52 19 0.21 97.51 28 0.14 99.03
2 7.64 77.84 11 0.53 95.05 20 0.21 97.72 29 0.14 99.17
3 5.69 83.53 12 0.51 95.56 21 0.20 97.92 30 0.13 99.30
4 3.56 87.09 13 0.38 95.94 22 0.18 98.01 31 0.13 99.43
5 1.83 88.92 14 0.34 96.28 23 0.17 98.27 32 0.12 99.55
6 1.62 90.54 15 0.32 96.60 24 0.16 98.43 33 0.12 99.67
7 1.25 91.79 16 0.26 96.86 25 0.16 98.59 34 0.11 99.78
8 1.06 92.85 17 0.23 97.09 26 0.15 98.74 35 0.11 99.89
9 0.97 93.82 18 0.21 97.30 27 0.15 98.89 36 0.11 100.0

classification (the target value) given the multi-spectral values (inputs). The dataset
contains 6,435 patterns with 36 predictor variables (4 spectral bands × 9 pixels in
the neighbourhood) plus the class label. The predictors are numerical, in the range
0 – 255 (8 bits). The class label is a code for the following classes: 1 = red soil,
2 = cotton crop, 3 = grey soil, 4 = dump grey soil, 5 = soil with vegetation stubble,
6 = mixture class, 7 = very dump grey soil. Here we consider class 3 and class 4
only, with 1,358 and 626 number of patterns, respectively, and we set the target
values equal to 1 for the first class and to 0 for the second one. We split the data
in a training set of 1,484 number of patterns and a validation set of 500 number
of patterns. Results given in the following are referred to the validation set and are
therefore comparable.

Even if the input matrix is of full rank and the bivariate correlations are not all
significant (α= 0.01), the matrix is badly conditioned, as measured by the condi-
tion number, equal to 6,520. The degree of multicollinearity may be also perceived
from Table 8, in which are reported the percentage of variance explained by each
of the linear principal components.

Classification and regression trees, given the same parameter choice (a mini-
mum number of observations before split equal to 25, a minimum node size equal
to 50 and a minimum node deviance equal to 0.1), show stable results when consid-
ering the full data set and a subset of 22 variables. This subset is chosen considering
all variables actually used in the three construction of the full data set analysis and,
for the remaining variables, only one of two eventually highly correlated predic-
tors. The resulting tree is the same in each analysis and variables selected are x13,
x14, x19, x22, x24, x25. The percentage of observations correctly classified is equal
to 83%.

Multivariate adaptive regressian splines behave in a different manner. If we
consider the full data set, restrict the interaction order to 2 and set equal to 10 the
minimum number of observations between knots and equal to 36 the maximum
number of basis functions, the variables appearing in the final model are x12, x13,
x18, x19, x22, x24, x25, x27, x34, x35, x36. With a subset of 22 variables, suitably cho-
sen as in the CART application, variables used in the final model are x8, x12, x13,
x18, x19, x24, x25, x26, x27, x34, x35, x36. The output from the MARS model (Table 9)
shows what has happened in the forward stepwise knot placement (before stepwise
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Table 9 Forward stepwise knot placement in MARS when all input variables are used and when
a subset of 22 variables is used

All variables Subset of 22 variables
Basis Function GCV Error Variable Knot Basis Function GCV Error Variable Knot

0 0.216 0 0.216
2 1 0.099 x19 109 2 1 0.099 x19 109
4 3 0.088 x23 88 4 3 0.088 x24 70
6 5 0.084 x13 72 6 5 0.083 x13 70
8 7 0.081 x18 100 8 7 0.080 x22 102
10 9 0.078 x18 91 10 9 0.079 x19 92
12 11 0.076 x24 71 12 11 0.076 x18 99
14 13 0.075 x27 110 14 13 0.075 x18 91
16 15 0.074 x22 100 16 15 0.074 x25 63
18 17 0.074 x35 93 18 17 0.073 x12 72
20 19 0.073 x12 72 20 19 0.072 x35 93
22 21 0.072 x18 98 22 21 0.072 x34 99
24 23 0.072 x18 96 24 23 0.071 x12 83
26 25 0.071 x12 86 26 25 0.071 x18 108
28 27 0.071 x34 99 28 27 0.071 x27 110
30 29 0.071 x25 63 30 29 0.071 x36 74
32 31 0.071 x36 73 32 31 0.071 x12 73
34 33 0.071 x19 94 34 33 0.071 x8 62
36 35 0.070 x19 106 35 0.071 x26 34

36 0.071 x6 37

deletion). At the second knot placement, MARS has to choose between placing a
knot on variable x23 or x24. These two alternatives result in the same GCV error,
but in different future choices in the tree construction. The final models are the
same in terms of goodness of fit (the percentage of correct classification is 91.83%
with 36 eligible predictors and 91.68% with 22 eligible predictors), but result in
different variable selections.

Generalized additive models, with a logit link function and binomial error,
show stable results when using natural cubic, regression, and beta splines. With
three and four degrees of freedom, the percentage of correct classification ranges
from 87 to 92%.

With smoothing splines smoothers, the unstable contributions of variables to
the additive model become stronger as the degree given to the smoothers increases.
For example, with 3◦ and 4◦ , the parametric and the nonparametric degrees of
freedom remain unchanged while some of the coefficients given to the basis func-
tions differ in the analysis of the variables given in theirs original order (from x1
to x36) and in the analysis with the predictors in the reverse order (from x36 to x1).
With more than 4◦ differences are not only in the values of the coefficients, but also
in the nonparametric degrees of freedom given to some of the basis functions. For
8◦, some of the differences are reported in Table 10. In this application, all vari-
ables are given one parametric degree of freedom, and are therefore included in the
final model. However, multicollinearity in the input matrix has caused approximate
concurvity in the fit.

The presence of approximate concurvity may be also detected by the diag-
nostics proposed by Gu (1992) and based on the retrospective linear model z =
f1+. . .+fp+e. The diagnostics, that is the collinearity indices k j of Stewart (1992)
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Table 10 Some differences in GAM with smoothing splines smoothers with 8◦ degrees, in the
satimage data set

Variables in the original order Variables in the reverse order
(from x1 to x36) (from x36 to x1)
Variable Nonparametric Coefficient Variable Nonparametric Coefficient

degrees of degrees of
freedom freedom

Intercept 55.11780 Intercept 53.44784
x18 6.8 0.042066 x18 6.7 0.039324
x23 7.0 −0.038104 x23 6.9 −0.037834
x24 6.9 −0.198214 x24 6.8 −0.195613
x29 6.9 0.108150 x29 6.8 0.108568
x32 6.8 0.014955 x32 6.7 0.015996
x35 7.0 0.044460 x35 6.9 0.044025

Table 11 Diagnostics for approximate concurvity in GAM with smoothing splines with 8◦ in the
satimage data set

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

k 88.6 83.4 90.2 93.6 86.2 81.9 86.0 96.1 90.7 84.8 93.7 102.5
cos(z, ·) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
cos(e, ·) 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2

f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
k 96.7 88.5 88.4 91.4 97.7 95.7 95.3 94.2 103.8 89.2 91.1 95.7
cos(z, ·) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
cos(e, ·) 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

f25 f26 f27 f28 f29 f30 f31 f32 f33 f34 f35 f36
k 94.9 82.7 80.3 80.3 87.7 84.6 81.4 81.0 95.7 87.5 91.6 94.1
cos(z, ·) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
cos(e, ·) 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1

and the cosines between the estimated additive functions after having removed the
constant effect, are reported in Table 11. The approximate concurvity is obvious.
As a matter of fact, all the collinearity indices are far from 1 and the additive
functions are pairwise almost linearly dependent.

For what concern PPR, the maximum dimension of the projection space (for
which the direction vectors am are not zero) depends again on the span value. For
example, with a crossvalidated span this dimension is equal to 6, while for a span
equal to 0.7 it is 4. The “optimal dimension” of the projection space, however, is
equal to 1 or 2. The choice between these two values is somehow subjective. For
example, with a span equal to 0.5, the coefficients given to the four components are
w1= 0.37, w2= 0.10, w3= 0.07, w4 = 0.03, with a decrease in the error function
equal to 13% going from one to two components and equal to 3.6% from two to
three components. With a twodimensional projection space and different values of
the span, ranging from 0.01 to 0.9, the percentage of correct classification ranges
from 86% to 93%.

An MLP trained with the conjugate gradient algorithm and with a number of
hidden units ranging from 1 to 30 gives the best percentage of classification with
1 hidden unit (that is, 90.61%). Slightly worse results are reached with 10 and
6 hidden units (88.34% and 88.22%, respectively). In the models with 6 and 10
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hidden units, the averages of the size of the weights between the hidden and the
output units are equal to 20.595 and to 20.696, respectively. These results once
again show that generalization performance of an MLP is determined by the sum
of the sizes of the weights in the hidden layer rather than on the number of these
weights and thus on the number of hidden units.

The prediction power of all the nonparametric methods here analysed result
similar (with the only exception of CART, for which the percentage of correct
classification is slightly worse). However, the model selection task, as well as the
possibility to reach model parsimony and model interpretation, results quite diffi-
cult in MARS and GAM. The meaning of model selection is, in this context, the
choice of the model to retain for future prediction (for example, the choice between
the two models in Tables 1, 2 and 9 for MARS and the choice among models
obtained with variables in the original order and in the reverse order in GAM, see
Tables 3, 4, 5 and 6). MARS shows unstable results and different variable selec-
tions, while GAM reaches additive functions which have pairwise correlations
of the same magnitude. The selection of a subset of variables by a retrospective
analysis based on these correlations seems to be a hard task, as long as the compre-
hension of the nature of the effect of each variable on the results. On the contrary,
in this example projection methods reach very parsimonious models, with a one-
or two-dimensional projection space, and the model selection task, based on the
values of the coefficients given to the components for PPR and on the quantity∑M

m=1 |wm | for the MLP, seems to be much easier.

8 Conclusion

This work was motivated by the problem of how to do model selection in a non-
parametric model. Prediction oriented model selection is based on the GCV error
or related indexes and mathematical convenience, regardless of model parsimony
and interpretation. When the predictors are collinear or multicollinear, nonpara-
metric models like GAM and MARS, based on the backfitting algorithm, preserve
the prediction power but may loose theirs interpretation features. As a matter of
fact, they present great instability with respect to the order of variables or to the
subset of variables utilized in the analysis and for this reason they may not be the
optimal alternative in model building and model selection. This arbitrariness in the
selection process is not shared by linear models, in which the original coordinate
system is a meaningful one.

In this paper we have analysed the different behaviour of the backfitting algo-
rithm in GAM, MARS and PPR. We have explained why, in presence of a singular
input matrix, the solution to which the backfitting algorithm converges depends on
the order of variables in GAM while in MARS it depends on the subset of variables
used in the model. We have shown that the distinction between collinearity and
multicollinearity in MARS has no impact, since the instability of the backfitting
algorithm depends on the bivariate linear correlations rather than on the condition
of the input matrix, while in GAM this distinction is of great importance. For what
concern projection methods, we have shown that collinearity has no impact on
the backfitting algorithm used in PPR and we have analysed some properties of
the projection spaces realized by PPR and the MLP. Finally, by the first numeri-
cal example we have investigated the ability of PPR and of the MLP to find the
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correct dimension of the projection space relevant for prediction of the response
data, we have investigated the effect of collinearity in GAM and MARS and com-
pared MARS with CART. With the second numerical study and the real data set
application we have shown examples of multicollinearity leading to approximate
concurvity and outlined the possible effect of approximate concurvity in GAM
with smoothing splines smoothers.

Acknowledgements I would like to thank the anonymous referee for their suggestions and very
thorough and helpful comments which allowed the author to greatly improve the paper.

References

Becker RA, Chambers JM, Wilks AR (1988) The new S language: a programming environment
for data analysis and graphics. Wadsworth & Brooks, Pacific Grove

Belsley DA (1984) Demeaning conditioning diagnostics through centering (with discussion). Am
Stat, 38: 73–77

Belsley DA (1991) Conditioning diagnostics, collinearity and weak data in regression. Wiley,
New York

Belsley DA, Kuh E, Welsch RE (1980). Regression Diagnostics: Identifying Influential Data and
Sources of Collinearity, Wiley, New York.

Bishop C (1995) Neural networks for pattern recognition. Clarendon , Oxford
Breiman L, Friedman JH, Olshen, RA, Stone CJ (1984) Classification and regression trees,

Wadsworth, California
Buja A, Donnel D, Stuetzle W (1986) Additive principal components. Technical Report, Depart-

ment of Statistics, University of Washington
Buja A, Hastie TJ, Tibshirani R, (1989) Linear smoothers and additive models. Ann Stat, 17:

453–555
Clark L–A. Pregibon D (1992) Tree based models. In: Chambers J.M, Hastie T.J (eds) Statistical

models in S. Chapman Hall, New york.
De Veaux RD, Psichogios DC, Hungar LH, (1993) A comparison of two non parametric estima-

tion schemes: MARS and neural networks, Comput Chemi Eng, 17 (8): 819–837
De Veaux RD, Hungar LH, (1994) Multicollinearity: a tale of two nonparametric regressions. In

Cheeseman P, Oldford RW (eds) Selecting models from data: AI and statistics VI
Donnel DJ, Buja A, Stuetzle W (1994) Analysis of additive dependencies and concurvity using

smallest additive principal components, Ann Stati, 22: 1635–1673
Eubank Speckman (1989) Discussion of “linear smoothers and additive models” by Buja A,

Hastie TJ & Tibshirani R. Ann Stat, 17: 525–529
Friedman JH (1984) Classification and multiple response regression trough projection pursuit.

Department of Statistics, Stanford University, Report LCM006
Friedman JH, (1991) Multivariate adaptive regression splines, The Annals of Statistics 19, 1–141.
Friedman JH, Stuetzle W (1981). Projection pursuit regression, Journal of the American Statis-

tical Association, 76, 817–823.
Gu C (1992) Diagnostics for nonparametric regression models with additive terms. J Ame Stat

Assoc, 87: 1051–1058
Guerin-Dugue A et al (1995). Deliverable R3-B4-P task B4: benchmarks, Technical report, Ele-

na-NervesII “Enhanced learning for evolutive neural architecture” ESPRIT-Basic Research
Project Number 6891.

Hastie TJ, Tibshirani R (1986) Generalized additive models, Stat Sci, 1: 297–318
Hastie TJ, Tibshirani R (1990). Generalized additive models. Chapman, London
Hastie TJ, Tibshirani R, Friedman JH (2001) The elements of statistical learning, data mining,

inference and prediction, Springer, New York.
Householder AS (1964) The theory of matrices in Numerical Analysis. Dover, New York
Ingrassia S (1999) Geometrical aspects of discrimination by multilayer perceptrons. J Multivar

Analy 68: 226–234
Ingrassia S, Morlini I (2005) Neural network modelling for small data sets. Technometrics, 47(3):

297–312



26 I. Morlini

Michie D, Spiegelhalter DJ, Taylor CC, (eds) (1994) Machine learning, neural and statistical
classification, Ellis Horwood Series in Artificial Intelligence, UK

Ripley BD, (1996). Pattern recognition and neural networks. Cambridge University Press, Cam-
bridge, UK

Stewart GW (1992) Collinearity and least squares regression. Stat Sci, 2: 68–100
Venables WN, Ripley BD (1994) Modern applied statistics with S-Plus. Springer, Berlin Heidel-

berg, New York



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


