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Abstract

The problem of estimating a classification rule with partially classified observations, which often occurs in
biological and ecological modelling, and which is of major interest in pattern recognition, is discussed. Radial basis
function networks for classification problems are presented and compared with the discriminant analysis with
partially classified data, in situations where some observations in the training set are unclassified. An application on
a set of morphometric data obtained from the skulls of 288 specimens of Microtus subterraneus and Microtus
multiplex is performed. This example illustrates how the use of both classified and unclassified observations in the
estimate of the hidden layer parameters has the potential to greatly improve the network performances. © 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the major problems related to practical
applications in pattern recognition is the presence
of partially classified data. In these situations the
population from which the sample is taken con-
sists itself of a number of several homogeneous
sub-populations, but the group membership of the
training data is known only for some input vec-
tors. If the quantity of data available is suffi-
ciently large, and the proportion of unclassified
observations is small, then the simplest solution is
to discard those patterns from the data set. This
approach, however, is implicitly assuming that the
cause of the omission of the group membership is
independent of the data itself. If the reason of the

omission of the group membership depends on
the data, then this approach will modify the effec-
tive data distribution (Bishop, 1995). When there
is too little data to discard the unclassified one, or
when the proportion of unclassified observations
is high, it becomes important to use all the infor-
mation which is potentially available from the
incomplete patterns. It is intuitively clear, in fact,
that the unclassified observations, as well as the
classified ones, contain some knowledge about the
distribution of the measured variables in the dif-
ferent groups.

The purpose of this work is to show the benefits
of using the information contained in a partially
classified data set to the maximum extent. Radial
basis function networks are introduced and
demonstrated to be a suitable method in situa-
tions where some observations in the training data
are unclassified. An application on an ecological
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problem, which illustrates how to include un-
classified observations in the network training,
and which compares the network performances
with those reached by conventional discriminant
analysis and by discriminant analysis with par-
tially classified observations, is presented. The
network performances are measured in terms of
classification error rate and generalisation to un-
observed patterns.

2. Radial basis function networks

Radial basis function (RBF) networks provide
a powerful technique for generating multivariate,
non-linear mappings (Broomhead and Lowe,
1988). Unlike the widely used multi-layer percep-
tron, that is based on units which compute a
non-linear function of the scalar product of the
input vector and a weight vector, the activation of
a RBF hidden neuron is determined by the dis-
tance between the input vector and a prototype
vector. The RBF network mapping from a d-di-
mensional input space x to a c-dimensional target
space t is a linear combination of a set of M basis
functions, which take the form:

yk(x)= %
M

j=1

wkjfj(��x−mj ��)+wk 0
k=1,…, c (1)

where x is the d-dimensional input vector with
elements xi and mj is the vector determining the
centre of basis function fj and has elements mij.
The basis functions can be normalised (Moody
and Darken, 1989) through lateral connections
between different hidden units in the network
diagram, so that the output becomes:

yk(x)= %
M

j=1

wkj

fj(��x−mj ��)
%
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fj(��x−mj ��)
k=1,…, c (2)

Usually the distance ��x−mj �� is taken to be
Euclidean and several form of basis functions can
be considered, the most common being the
Gaussian:

fj(��x−mj ��)=exp
�

−
��x−mj ��2

2s j
2

�
(3)

where the standard deviation sj, also called
smoothing parameter, determines the width of the
hidden unit. If the basis functions are Gaussians,
then the hidden units assume a localised nature:
the network forms a representation in the space of
hidden units which is local with respect to the
input space, because, for a given input vector,
only few hidden units will have significant activa-
tions. The use of radial basis functions can be
motivated from a number of different concepts as
function approximation, noisy interpolation, den-
sity estimation and optimal classification theory
(Bishop, 1995). In this work we are considering
the use of such networks for a classification prob-
lem. A multilayer perceptron can separate classes
by using hidden units, which form hyperplanes, or
hypersurfaces in the input space, and for this
reason can be related to discriminant analysis. A
RBF network is able to model each class distribu-
tion by local kernel functions, and so can be
rather compared with the kernel discriminant
analysis. If, in a classification problem, the goal is
to model the posterior probabilities p(Ck �x) for
each of the classes Ck, (k=1,…, c), then these
probabilities can be obtained through Bayes’ the-
orem, using prior probabilities p(Ck) as follows:

P(Ck �x)=
p(x �Ck)P(Ck)

p(x)
=

p(x �Ck)P(Ck)

%
c

k=1

p(x �Cj)P(Cj)
(4)

where P(·) indicates a probability and p(·) a prob-
ability density function. If the class-conditional
distributions are obtained by using not a single
kernel function, but a mixture model constituted
by a common pool of M basis functions, labelled
by an index j and equal for every density, then the
probabilities p(x�Ck) and p(x) can be written as

p(x �Ck)= %
M

j=1

p(x �j )P( j �Ck) (5)

and

p(x)= %
c

k=1

p(x �Ck)P(Ck)= %
M

j=1

p(x �j )P( j ) (6)

where priors P( j ) are given by

P( j )= %
c

k=1

P( j �Ck)P(Ck) (7)
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The posterior probabilities can be obtained by
substituting Eqs. (5) and (6) into Bayes’ theorem
(4) and adding an extra factor of 1=P( j )/P( j )
to give:

P(Ck �x)=
%
M

j=1

P( j �Ck)p(x �j )P(Ck)P( j )

%
M

j %=1

p(x �j %)P( j %)P( j %)

= %
M

j=1

wkjfj(x) (8)

This expression represents a radial basis function
network (Bishop, 1995), in which the normalised
basis functions are given by

fj(x)=
P(x �j )P( j )

%
M

J%=1

p(x �j %)P( j %)
=P( j �x) (9)

and the second layer weights are given by

wkj=
P( j �Ck)P(Ck)

P( j )
=P(Ck �j ) (10)

After training, for a particular partition of the
data into c groups, the value of each k output
neuron, (k=1, …, c) can be interpreted as the
posterior probability of corresponding class mem-
bership. Thus, following the optimal classification
rule (Anderson, 1984), in a two class problem an
observation should be classified as belonging to
group k if the value of the corresponding output
unit is bigger than 0.5. In practice, when least
squares are used to set the second layer parame-
ters and the target values are coded with the
1-of-c coding scheme (so that they sum to unity),
the output values are forced to sum to unity but
they are not forced to lie in the range [0, 1]. If the
output values do not lie in this range, they should
be normalised.

The major problems related to a RBF network
are the determination of the number of basis
functions and the choice of the parameters. The
faster and simplest procedure is to create a Proba-
bilistic Neural Network (Specht, 1990) which has
N localised hidden units centred on each input
vector. In these networks the parameters sj are
usually heuristically determined. One approach is
to choose all sj to be equal and to be given by

some multiple of the average distance between the
basis function centres. This ensures that the basis
functions overlap to some degree and hence give a
relatively smooth representation of the distribu-
tion of the training data. In order to determine
the number of basis functions by the complexity
of the data, rather by the size of the data set, a
subset of the input vectors can be chosen by
forward selection or orthogonal least squares to
serve as centres. A different approach is to choose
the number of basis functions and determine the
parameters by supervised or unsupervised meth-
ods. An exhaustive list of these methods, together
with their theoretical issues, is in Bishop (1995). A
k-means procedure is adopted in the example of
section 4. This procedure proposed by Moody
and Darken (1988), sets the centres of basis func-
tions equal to the cluster centres found by the
k-means clustering algorithm, and the standard
deviations sj equal to the average distances to the
z-nearest clusters. Moody and Darken (1988) re-
port good empirical results for using this proce-
dure. The main drawback of this method is that
the number of basis functions must be defined a
priori. This leads to similar problems as the ‘num-
ber of hidden units’ dilemma in the multi layer
perceptron, since it is very difficult to estimate an
appropriate number of basis functions. In Section
4 we determine the optimal number of clusters
(and, therefore, the optimal number of basis func-
tions in the RBF network) on the basis of the
within-groups and between-groups deviances, for
different number of groups. Once the parameters
of the hidden layer are determined, the network
has to be trained to produce the optimal values of
the second layer weights. When the error function
is a quadratic function of these weights, its mini-
mum can be found in terms of the solution of a
set of linear equations. In fact, if we indicate with
N the number of training cases and with tk(xn) the
target value for output unit k when network is
presented with input vector xn (n=1, …, N ;
k=1, …, c), then the sum of squares error func-
tion is given by

E= %
N

n=1

%
c

k=1

{yk(x)− tk(x)}2 (11)
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where yk is defined in Eqs. (1) and (2). Training is
then very fast and does not have the problem of
local minima.

3. Estimating group membership with partially
classified observations

In real applications, especially in biological and
ecological modelling, it sometimes happens that
group membership is known only for a subset of
the original sample. This can arise, for example,
when the exact determination of group member-
ship requires high laboratory costs. In these situa-
tions, classical supervised methods, like the
discriminant analysis or the multi-layer percep-
tron, are often applied. Classified observations are
used to estimate the discrimination rule and this
rule is then applied to unclassified observations,
to determine the corresponding group member-
ship. Evidently, this procedure does not use the
information contained in the data to the maxi-
mum extent, since it is clear that the unclassified
observations contain some information about the
distribution of the measured variables in the
groups, as well. There is also some theoretical
literature on the benefits of using unclassified
observations for estimation (O’Neill, 1978;
McLachlan and Basford, 1988). On the other
hand, using an unsupervised procedure (like mix-
ture analysis, cluster analysis or the Kohonen
network) over the entire data set means ignoring
group membership of classified observations and,
therefore, discarding important available informa-
tion. Airoldi et al. (1995) found that mixture
analysis, compared with discriminant analysis on
a data set with partially classified observations,
reveals highly unstable estimates. They conclude
that ignoring group membership is a bad idea. In
statistics, an iterative method that uses the infor-
mation contained in both classified and un-
classified observations in the parameter estimation
is fairly well developed under the name of dis-
criminant analysis with partially classified data
(discrimix). This method (McLachlan and Bas-
ford, 1988; Airoldi et al., 1995) has the potential
to greatly improve the estimation of the classifica-
tion rule. However, it is a re-estimation procedure

which may involve some technical problems in the
solution of the equation system. These drawbacks
are the computational time and costs, the eventual
convergence to a singular estimate of the covari-
ance matrix (that will cause the algorithm to fail),
the absence of convergence or the convergence to
a local maximum. Some of these problems can be
overcome with a constrained maximum solution
and the availability of good computer programs.
Therefore, the main drawback of this method
seems to be the assumption of multivariate nor-
mality of the density function in each group. This
assumption is indispensable in discriminant analy-
sis with partially classified data, since the density
function appears explicitly in one equation of the
system. This is also a crucial difference to discrim-
inant analysis, where calculus can be justified
without assuming normality or any other particu-
lar distribution.

RBF networks in which the basis functions
parameters are estimated by unsupervised proce-
dures are particularly advantageous for applica-
tions with partially classified observations, since
the hidden layer parameters can be determined
using both labelled and unlabelled data, leaving a
relatively small number of parameters in the sec-
ond layer to be determined using the classified
data. It must be remarked that using unsupervised
methods for determining the hidden units parame-
ters, doesn’t mean ignoring group memberships in
the entire procedure, since the second layer
parameters are determined by the solutions of a
set of linear equations, which includes target val-
ues. One advantage of RBF networks, over dis-
criminant analysis with partially classified data, is
that they do not require iterative procedures in
the estimate of the second layer parameters.
Moreover, they do not need the assumption of
multivariate normality or any other particular
distribution of the density function of the input
variables in each group.

Next section illustrates how the use of unsuper-
vised procedures for the determination of the
basis function parameters and, consequently, the
use of unlabelled data in the estimate of the
classification rule in a problem with partially
classified observation, can improve the perfor-
mances of a RBF network. RBF networks are
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also compared with discriminant analysis and dis-
criminant analysis with partially classified
observations.

4. Real data set example

4.1. The microtus data

This example is based on the classification of
two species of voles (Flury, 1997, pp. 333–339).
The two species, Microtus multiplex and Microtus
subterraneus, differ in the number of chromo-
somes, but are morphometrically difficult to dis-
tinguish. The geographic ranges of distribution of
the two species overlap to some extent in the Alps
of southern Switzerland and northern Italy
(Krapp, 1982; Niethammer, 1982). M. subterra-
neus is smaller than M. multiplex in most mea-
surements. It usually occurs at elevations from
1000 m to over 2000 m, but it is also found at
lower elevations. M. multiplex is found at similar
elevations, and also at latitudes from 200 to 300
m (South of the Alps). Much of the data available
are in form of skull remains, either fossilised or
from owl pellets. Till now, no reliable criteria
based on cranial morphology have been found to
distinguish the two species. The data set consists
of eight variables measured on the skulls of 288
specimens found at various places in central Eu-
rope: X1=width of upper left molar 1; X2=
width of upper left molar 2; X3=width of upper
left molar 3; X4= length of incisive foramen;
X5= length of palatal bone; X6=condylo inci-
sive length or skull length; X7=skull height
above bullae; X8=skull width across rostrum.
Variables X1 to X5 are measured in mm/1000;
variables X6 to X8 are in mm/100. These cranial
measurements are relatively inexpensive to carry
out, since they can be measured with a measures-
cope (accurancy 1/1000 mm) and dial calipers
(accuracy i/100 mm). Nevertheless, the exact de-
termination of the species requires a costly chro-
mosomal investigation. For this reason, only 89 of
the skulls were analysed to identify their species:
43 specimens were from M. multiplex and 46 from
M. subterraneus. The chromosomes were not
analysed and species was not determined for the
remaining 199 observations.

Airoldi et al. (1995) report a discriminant anal-
ysis, a finite mixture analysis and a discriminant
analysis with partially classified observations
(which they call Discrimix) of this data set. Here,
we seek to analyse the data with RBF networks
and to compare the classification capabilities of
different models. The analysis is first performed
using both classified and unclassified observation
in the optimisation of the basis function parame-
ters. In order to reach better generalisation capa-
bilities, a pre-processing stage is then applied to
the network. Results are finally compared with
those reached by a RBF network with parameters
determined using the sole 89 classified specimens
and with those reached by other statistical
models.

In the RBF networks considered in the follow-
ing the input variables are combined via the Eu-
clidean distance function, so that the contribution
of an input variables depends heavily on its vari-
ability relative to other inputs. In order to give the
same importance to every input variable, variables
are standardised to zero mean and unit variance
before every process.

4.2. Computation of the error rates

Two types of error rates are used to assess the
performance of classification procedure. The first,
the simplest and most popular error, is the plug-in
error rate: it is the proportion of observations
misclassified when the classification rule is applied
to the data in the training sample. The second, the
cross-6alidation error (Stone, 1974), is obtained as
follows. The sample is divided in k subsets of
equal size. The network is trained k times, each
time leaving out one of the subsets from training,
and using the omitted subset to compute the error
rate. If k equal the sample size, and only one
observation is used each time to compute the
proportion of observation misclassified, than
cross validation reduces to the lea6e-one-out error
rate. The plug-in error rate is very fast to compute
and, since it uses the entire sample to train the
network, it is very advantageous when only a little
sample is available. The main drawback of the
plug-in error rate is that it tends to be overly
optimistic, that is, it tends to underestimate the
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Table 1
ANOVA table for different number of clusters

Deviance R2Degree of DevianceDeviance Degree ofNumber of Degree of
freedomclusters freedombetween totalbetween freedom

1153.2292 1 1142.771 286 2296 1 0.5023
3 1447.640 2 848.360 285 2296 1 0.6305

3 730.801 2841565.199 22964 1 0.6817
4 659.196 2835 22961636.804 1 0.7129
5 614.173 2821681.827 22966 1 0.7325
6 580.151 281 22967 11715.849 0.7473

probability of misclassifying future observations,
since the error is calculated over the same data
employed during training. Cross validation gives a
better estimate of the generalisation error,
namely, the average misclassification rate over the
entire space of possible inputs. For this reason,
cross validation is often preferred, but if k gets
too small, the error estimate is pessimistically
biased because of the difference in sample size
between the full-sample analysis and the cross-val-
idation analyses. For this reason, a value of k=
10 is chosen, since it is shown to offer good
empirical results in literature.

4.3. Using both classified and unclassified
obser6ations in a RBF network

Eq. (9) points out that the basis functions de-
pend solely on the input data and ignore any
target information. In particularly, the basis func-
tion parameters should be chosen to form a repre-
sentation of the probability density of the input
data and the centre mj should be regarded as
prototype of the input vectors. This justifies the
use of unsupervised procedures to determine the
basis function parameters, which are usually very
fast and can be run a number of time, in order to
test the robustness of the results, with low compu-
tational costs. Following Moody and Darken
(1989), the k-means clustering algorithm is per-
formed to optimise both the basis function centres
and the widths. The optimal number of clusters is
heuristically chosen comparing the within-groups
and between-groups deviances, for different val-
ues of k. Due to an increase in the number of
clusters, the deviance between groups (which indi-

cates the share of total deviance ‘explained’ by the
aggregation of the observations in clusters) in-
creases, while the deviance within (which indicates
the error minimised by the algorithm) decreases.
As long as the increase in the deviance between
groups is considerable, we think it justifies the
increase in the complexity of the grouping struc-
ture (due to the addition of new groups). We stop
adding clusters when this increase becomes poor,
in order to reach a good compromise between the
proportion of the total deviance ‘explained’ by the
aggregation in groups and a parsimonious num-
ber of clusters (which means a clearer and simpler
representation of the data set). The ANOVA table
obtained running the k-means cluster analysis for
the 288 observations, for different values of k
(using the package SPSS for Windows, release
7.5), is reported in Table 1. The coefficient R2 is
the ratio between the deviance between groups
and the total deviance. The increase in R2 from 2
to 3 clusters is considerable. From 3 to 4 groups it
is still fairly great, while from 4 to 5 clusters it
becomes poor. From 5 to 6 and from 6 to 7
groups the increase in R2 is nearly negligible. The
‘optimal’ grouping structure, the one which ap-
pears to lead to the best trade off between number
of clusters and variance in each cluster, seems
therefore to be associated with k=4.

In a RBF network with eight input nodes (one
for each variable), four hidden nodes with centres
determined by the cluster means and widths deter-
mined by the minima distance between all the
other clusters, and second layer weights deter-
mined by linear regression, the plug in error rate
is 5.62%, while the cross validation error rate is
2.28%.
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Fig. 1. Scatter plot matrix of the first three principal components.

Analysing the correlation matrix of the input
data, it can be noted that the eight variables are
highly correlated and the information related to
many of these variables is therefore redundant.
When input variables are highly correlated, a
subset of these variables or a linear transforma-
tion of these into new, fewer variables may de-
scribe the data equally well and, in accordance
with the principle of parsimony (or ‘Occam’s Ra-
zor’) the simplest model, the one with fewer vari-
able, should be preferred. Moreover, the network
performances may improve with a reduction of
the input vector dimensionality (and the related
loss of information), since a network with fewer
inputs has fewer adaptive parameters to be deter-
mined. These parameters are more likely to be
properly constrained by a data set of limited size,
leading to a network with better generalisation
properties. As a pre-processing stage, a principal
component analysis is performed in order to form
linear combinations of the original variables and
generate new (less) input variables for the net-
work. The scatter plot diagram of the first three
principal components is reported in Fig. 1. Using

the scores of the first n principal components as
input variables, the proportion of original infor-
mation that is preserved can be measured. Since
the first three principal components retain the
88% of the original variance, only the 12% of
original information is lost using these scores as
input variables. The scatter plot diagram of Fig. 1
also reveals the presence of possible multivariate
outliers, since observations 6, 170 and 250 clearly
stand aside from the cloud of points. In order to
determine the basis function parameters, cluster
analysis is then performed with k=4 and without
this three possible outliers. The second layer
parameters are determined by least squares, with
a training set of 88 observations (unit 6 is dis-
carded also for linear regression). With this pre-
processing step, the plug in error rate of the RBF
network is 3.37%, while the cross validation one is
4.49%.

An alternative pre-processing concerning dis-
card of six (redundant) input variables and elimi-
nation of the three possible outliers is also
applied. Performing the analysis with the sole
variables X1 and X4, in which the two groups are
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Table 2
Error rates of a radial basis function networks with parameters determined using both classified and unclassified observations

RBF network with eight inputError rate RBF network with three input RBF network with two input
variables (%) variables (%)variables

3.37Plug-in 3.375.62
4.49Cross validation 3.372.28

well separated (see Airoldi et al., 1995), the plug
in and the cross validation error rates are both
3.37%.

Table 2 summarises the results obtained in the
different analysis. Particularly attention must be
paid to the first analysis, since the cross validation
error rate of the RBF network is less than the
plug-in one.

This is a fairly unusual and unexpected result,
even if it is not impossible in theory. The explana-
tion of this phenomenon can be related to the
normalisation of the basis functions. Normalisa-
tion is desirable for a classification problem, since
at every point in the input space the sum of the
basis function is forced to sum to unity so that, in
mixture underlying model, the activation of each
basis function can be interpreted as the posterior
probability of the presence of corresponding fea-
ture in input space (see Eq. (9)) and the network
outputs can be interpreted as Bayesian posterior
probabilities of group memberships (Bishop,
1995). However, normalisation leads to a number
of side effects which are described in Murray-
Smith (1994). Some of these side effects should be
considered here, in order to motivate the better
performances of the network in the test set rather
then in the training set. The first one is that when
the basis functions are Gaussians, the normalisa-
tion results the whole of the input space being
covered and not just the region of the input space
defined by the training data. The second one is
that basis functions with different widths (which
are used in the application) can become multi-
modal, meaning that their activations increase as
the distance function between the input vector
and the centre decreases (this phenomenon is
called ‘reactivation’ of the basis functions). A final
side effect, which also concerns basis functions
with different widths, is that the maxima may no

longer be at their centres. These three normalisa-
tion effects, which are more pronounced as the
input dimension increases, due to the increased
number of neighbouring units in higher dimen-
sions, justify results reported in the first column of
Table 2. From a heuristic point of view, we have
noted that, performing the analysis with an un-
normalised RBF network, the plug is error rate is
less than the cross-validation one.

4.4. Using only classified obser6ations in a RBF
network

In a classical set of a probabilistic neural net-
work, the 89 specimens with known group mem-
bership should constitute the training sample and,
in a subsequent stage, the trained neural network
should be used to assign the remaining 199 speci-
mens to either the M. multiplex or the M. subter-
raneus group. Using a probabilistic neural
network with eight input nodes, one for each
explanatory variable and 89 hidden nodes with
equal width parameters and centres determined by
the input vectors, the following numerical results
are obtained. The plug in error rate is 1.12% and
the cross validation error rate is 10.1%. Using the
first three principal components as input variable,
the plug in and the cross validation error rates are
both 6.82. Performing the analysis with the two
variables X1 and X4, the misclassified observa-
tions in the training set are 5 and the plug in error
rate is therefore 5.62%. The cross validation error
is 8.99%. The reduction of the input vector dimen-
sionality improves the generalisation properties of
the network, but these numerical results are still
remarkably worse that those previously obtained.
The advantage of using a RBF network with basis
function parameters determined using both
classified and unclassified observations is there-
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fore apparent, since generalisation of a result
obtained from a particular data set is one of the
most important concerns in quit every real
applications.

4.5. Comparisons with other concurrent methods

For the 89 classified observations and using the
discriminant analysis the following numerical re-
sults are obtained for all eight variables (for theo-
retical and empirical comparisons between
discriminant analysis and other classification tools
see, for example, Hand, 1981; Ripley, 1994). With
prior probabilities given by the relative frequen-
cies of observations in each group, the plug in
error rate is 5.62% and the cross validation one is
6.74%. With equal prior probabilities the error
rates are, respectively, 4.49 and 6.74%. Using
variables X1 and X4, only, the plug in error rate
is 4.49% and the cross validation is 5.62%, both
for equal and different prior probabilities. Nu-
merical results and parameter estimations ob-
tained from discriminant analysis with partially
classified observations are reported in Airoldi et
al. (1995). Here it should be noted that error rates
obtained with two input variables are remarkably
similar to those obtained by conventional discrim-
inant analysis. The advantage of discrimix over
discriminant analysis is apparent performing
bootstrap analysis, since it reveals that the esti-
mates from discrimix are typically much smaller.
From a numerical point of view, RBF network
with basis function parameters given by k-means
cluster analysis outperforms procedure discrimix.
However, comparison between discrimix and RBF
network should be more detailed, since the pur-
poses of these two methods are different. Discrim-
inant analysis with partially classified
observations (like conventional discriminant anal-
ysis and mixture analysis) attempts to estimate the
parameters of a population which is known to be
composed of a fixed number of homogeneous
sub-populations. It directly models the class dis-
tributions by Gaussian mixtures in the sampling
paradigm. The outputs of a RBF network repre-
sent, in an underlying mixture model, the poste-
rior probabilities of class memberships. However,
procedure k-means partition a data set determin-

istically into subgroups and the number of these
sub-populations is heuristically determined. The
hidden layer of a RBF network is used to learn
bout the class distributions and to estimate the
number of sub-clusters in the training data, when
this number is unknown. Procedure k-means can
be seen as a particular limit of the expectation-
maximisation (EM) algorithm used in discrimix. It
can be shown that in case of Gaussian basis
functions with a common width parameter s and
in the limit s�0, the EM update formula for a
basis function centre reduces to the k-means up-
date formula (Dempster et al., 1977). However,
means and variances of the k-clusters are not in
general considered as estimators of the parameters
of the component densities. Similarly, the mixing
coefficient wkj, which are determined by the EM
algorithm in discrimix, are given by least squares
in the RBF network and should be motivated
from a geometrical point of view rather than from
the principle of maximum likelihood. A final ob-
servation relates to the assumption of multivariate
normality of the density function in each group.
In procedure discrimix this density function ap-
pears explicitly in the update formula. On the
contrary, calculus performed by a RBF network
can be justified without assuming normality or
any other particular distribution.

If the classification rules found by discrimix and
RBF network are applied to the observations with
unknown group membership, results are remark-
ably similar. Of the 199 unclassified specimens,
100 are classified as M. multiplex, 75 as M. subter-
raneus, and 24 observations are near the classifica-
tion boundary, giving rise to considerable
uncertainty in allocating them in one of the two
groups both with discrimix and RBF network.

The CPU time is not a real problem, for the
Microtus data, in any case. Running Discrimix
takes about 10 s of CPU time on a 486PC, using
the Gauss software (Airoldi et al., 1995). Running
the principal components for the pre processing
stage in the neural network set-up takes about 3 s
of CPU time on a pentium PC, using the SPSS for
Windows release 7.5. It takes less then 3 s for each
run of the k-means cluster analysis and for the
solution of the linear equations, to determine the
network parameters. However, for very large data
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sets, the computational costs are usually higher
in discrimix. A further technical problem of dis-
crimix if that the re-estimation formula must
not deterministically converge, while convergence
is demonstrated for the k-means algorithm.

5. Discussion

The idea of using RBF networks to process
inclomplete data is not new (see Bishop, 1995,
p. 184). This work is an attempt to explain and
illustrate the use of RBF networks in situations
where partially classified data sets occur and to
show the differences between this methodology
and other competitive methods which are often
used in these situations. The goal of this paper
is to make RBF networks more popular, since
they appear to be rather less well known than
the classical multi-layer perceptron, in the neural
networks field, and than discriminant analysis
and discriminant analysis with partially classified
observations, in statistics. The application on
the Microtus data demonstrates that RBF net-
works are a suitable methodological tool for
ecological modelling, since the example is a
rather typical case. The benefits of using RBF
networks with partially classified observations is
that no information is wasted and if very few
observations are labelled the only alternative to
estimate a classification rule is procedure dis-
crimix. On the other hand, procedure discrimix
is not a suitable tool in situations where the
normality of the density function in each group
is not verified and, for very large data sets, can
lead to some technical problems in the solution
of the equation systems. These problems are
overcome in a RBF network in which the basis
functions are trained with the k-means al-
gorithm and the second-layer weights are given
by least squares.

References

Anderson, T.W., 1984. An Introduction to Multivariate Statis-
tical Analysis. Wiley, NY, p. 374.

Airoldi, J.P., Flury, B., Salvioni, M., 1995. Discrimination
between two species of Microtus using both classified and
unclassified observations’. J. Theor. Biol. 177, 247–262.

Bishop, M.C., 1995. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, UK, p. 482.

Broomhead, D.S., Lowe, D., 1988. Multi-variable functional
interpolation and adaptive networks. Complex Syst. 2,
321–335.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum
likelihood from incomplete data via the EM algorithm. J.
R. Stat. Soc., B 39 (1), 1–38.

Flury, B., 1997. A First Course in Multivariate Statistics.
Springer-Verlag, NY, p. 713.

Hand, D.J., 1981. Discrimination and Classification. Wiley, NY,
p. 218.

Krapp, F., 1982. Microtus multiplex (Fatio, 1905) Alpen-Klein-
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