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Abstract

The work in this paper is four-fold. Firstly, we introduce an alternative approach to solve frac-
tional ordinary differential equations as an expected value of a random time process. Using the
latter, we present an interesting numerical approach based on Monte Carlo integration to simu-
late solutions of fractional ordinary and partial differential equations. Thirdly, we show that this
approach allows us to find the fundamental solutions for fractional partial differential equations
(PDEs), in which the fractional derivative in time is in the Caputo sense and the fractional in space
one is in the Riesz-Feller sense. Lastly, using Riccati equation, we study families of fractional PDEs
with variable coefficients which allow explicit solutions. Those solutions connect Lie symmetries to
fractional PDEs.

Keywords: Caputo fractional derivative, Riesz-Feller fractional derivative, Riccati equation, Lie
symmetries, Green functions, Monte Carlo Integration, Mittag-Leffler function.

1. Introduction

Although it was started in the second half of the eighteenth century by Leibniz, Newton and
l’Hôpital, [1], fractional calculus has received great attention in the last two decades. Many physical,
biological and epidemiological models have found that fractional order models could perform at least
as good as well as their integer counterparts, [2, 3]. Integer order models are also appearing as special
cases of the fractional order. That makes the dynamical behavior of those models richer and in some
cases flexible. As advances are made in fractional calculus and fractional modeling, understanding
of the physical interpretation of fractional derivatives is becoming clearer. A memory kernel with
algebraic decay is the most common interpretation for the change in the dynamical behavior of the
system [4, 5, 6]. Today fractional calculus is widely used in physical modeling. Examples include
the nonexponential relaxation in dielectrics and ferromagnets [7], [8], the diffusion processes [9], [10]
and the Hamiltonian Chaos [11] and [12].

Anomalous diffusion could be modeled using fractional order stochastic processes and their
Fokker-Planck equations [13, 14, 15]. Continuous-time random walk (CTRW) is one approach
used to model anomalous diffusion [16]. In particular, a CTRW with infinite-mean time to jump
exhibits sub-diffusion behavior. The time to jump could be modeled by a heavy tail distribution
with index β such that 0 < β < 1 leading to a mean square displacement that is of order tβ depicting
the short-range jump and so thus sub-diffusion. A long-range jump leads to super-diffusion, i.e.,
β > 1, [17].

A random time is an increasing Lévy process, which is a non-negative process with independent
stationary increments; it is usually used as operational time in a physical system, or a subordinator,
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see e.g. [18, 19]. One of those subordinators is the α−stable random time (or α−stable subordinator)
whose density decays algebraically like 1/tα+1, as t→∞ with 0 < α < 1. That time change leads to
super-diffusion when one takes α = α′/2. Another time change is using the β−inverse subordination
with 0 < β < 1, which results in a sub-diffusion.

The Riccati equation has played an important role in finding explicit solutions for Fisher and
Burgers equations, (see [20] and [21] and references therein). Also, similarity transformations and
the solutions of Riccati and Ermakov systems have been extensively applied thanks to Lie groups
and Lie algebras [22], [23], [24], [25] and [26]. In this work, we show that this approach allows us
to find the fundamental solutions for fractional PDEs; the fractional derivative in time is in the
Caputo sense and the fractional derivative in space one is in the Riesz-Feller sense. We establish a
relationship between the coefficients through the Riccati equation; we study families of fractional
PDEs with variable coefficients which allow explicit solutions and find those explicit solutions.
Those solutions connect Lie symmetries to fractional PDEs.

Formulating solutions of fractional differential equations and partial differential equations as
expected values with respect to heavy-tail or power law distributions could be enabled using Monte-
Carlo integration methods and Sampling Importance Integration to evaluate them. The mean
problem is in the number of simulations or random number generations that need to be done to
guarantee convergence and small standard error.

In Section 1, we will review fundamental definitions and classical results needed from the classical
theory of fractional differential equations. In Section 2, we present the first main result of this work,
Lemma 1, which allow us to see a fractional functions and their fractional derivatives as Wright type
transformations of some functions and their derivatives. They could be also interpreted as expected
values of functions in a random time process. Also, in Section 2 we present Theorem 2.1 which allow
us to solve fractional ordinary differential equations through solutions of regular ordinary differential
equations. In Section 3, we derive fractional green functions for some important fractional partial
differential equations, like diffusion, telegraph, Schrödinger, and wave equations. In Section 4,
we derive green functions of fractional partial differential equations with variable coefficients with
application to Fokker-Planck equations. In Section 5, we use the integral transform or the expected
value interpretation of the solutions of fractional equations to carry out Monte Carlo simulations of
their solution.

1.1. Preliminaries. In this section we give the required background of Caputo and Riesz-Feller
fractional differentiation.

Caputo Derivative. Let Dn be the Leibniz integer-order differential operator given by

Dnf =
dnf

dtn
= f (n),

and let Jn be an integration operator of integer order given by

(1.1) Jnf(t) =
1

n− 1!

∫ t

0

(t− τ)n−1f(τ)dτ,

where n ∈ Z+. Let us use D = D1 for the first derivative. For fraction-order integrals, we use

(1.2) Jn−βf(t) =
1

Γ(n− β)

∫ t

0

(t− τ)n−β−1f(τ)dτ,
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where n− 1 < β ≤ n. Now, define the Caputo fractional differential operator Dβ
C to be

Dβ
Cf(t) = Jn−βDnf(t),

where n− 1 < β ≤ n, for n ∈ N. It is also known that

lim
β→n

Dβ
Cf(t) = f (n)(t),

lim
β→n−1

Dβ
Cf(t) = f (n−1)(t)− f (n−1)(0)

(1.3)

for any n ∈ N.

Riemann-Liouville Derivative. The Riemann-Liouville fractional differential operatorDβ
RL is defined

to be

Dβ
RLf(t) = DnJn−βf(t),

where n− 1 < β ≤ n, for n ∈ N. We will use ∂βt F :=
∂βF

∂tβ
and use ∂tF :=

∂F

∂t
.

The Riemann-Liouville fractional is related to the Caputo fractional derivative through [27]:

Dβ
RLf(t) = Dβ

Cf(t) +
n−1∑
k=0

f (k)(0)
tk

k!
.

While we will not discuss the Riemann-Liouville fractional derivatives in the paper, the results
presented in this paper are valid for Riemann-Liouville fractional derivatives, when f (k)(0) = 0 for
k = 0, 1, . . . , n− 1.

We will consider n = 1 in this work; that is 0 < β ≤ 1. Some of the results be extended
through the remark that for 0 < β ≤ 1, Dn+β−1

C f(t) = Dβ
Cf

(n−1)(t) for n ≥ 1. Note also that when

0 < β ≤ 1, Dβ
RLf(t) = Dβ

Cf(t) + f(0).

Riesz-Feller Derivative. The Riesz-Feller fractional differential operator Dα,θ
RF is defined to be [28]

Dα,θ
RFf(x) =

Γ(1 + α)

π
sin((α + θ)

π

2
)

∫ ∞
0

f(x+ y)− f(x)

y1+α
dy

+
Γ(1 + α)

π
sin((α− θ)π

2
)

∫ ∞
0

f(x− y)− f(x)

y1+α
dy

for fractional order 0 < α ≤ 2, and the skewness parameter θ ≤ min(α, 2 − α). The symmetric
Riesz-Feller differential operator is defined at θ = 0 and is simply denoted by Dα

RF .

Transformations. The Laplace transform of a function f(t) is defined as

L(f)(s) = f̃(s) =

∫ ∞
0

e−stf(t)dt.

The inverse Laplace transform is defined by

L−1
(
f̃
)

(t) =
1

2πi

∫
C
estf̃(s)ds
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where C is a contour parallel to the imaginary axis and to the right of the singularities of f̃ . The
Laplace transform of the Caputo fractional derivative of a function is given by

(1.4) L
(
Dβ
Cf
)

(s) = sβ f̃(s)−
n−1∑
k=0

sβ−1−kf (k)(0).

The Fourier transform of a function f(x) is defined as

F(f)(y) = f̂(y) =

∫ ∞
−∞

eixyf(x)dx.

The inverse Fourier transform is defined by

F−1
(
f̂
)

(x) =
1

2π

∫ ∞
−∞

e−ixyf̂(y)dy.

The Fourier transform of the Riesz-Feller fractional derivative of a function is given by

(1.5) F
(
Dα,θ
RFf

)
(y) = −ψθα(y)f̂(y),

where ψθα(y) = |y|αe
isign(y)θπ

2 .

Mittag-Leffler Function. The Mittag-Leffler function, which generalizes the exponential function,
can be written as follows,

Eβ(z) =
∞∑
k=0

zk

Γ(βk + 1)
, β ∈ R+, z ∈ C,(1.6)

and the more general Mittag-Leffler function with two-parameters is defined to be

Eβ,α(z) =
∞∑
k=0

zk

Γ(βk + α)
, β, α ∈ R+, z ∈ C.(1.7)

Wright function. The Wright function is another special function of importance to fractional cal-
culus and is defined by [29],

Wβ,α(z) =
∞∑
k=0

zk

k!Γ(βk + α)
, β > −1, α ∈ C, z ∈ C.(1.8)

The following Wright type function will be fundamental in the rest of this work

(1.9) gβ(x; t) =
1

tβ
W−β,1−β

(
− x
tβ

)
,

which is a probability density function of the random time process Tβ(t) for all t > 0 [30, 31]. It
has a Laplace transform

(1.10) L (gβ(·; t)) (s) =

∫ ∞
0

e−sxgβ(x; t)dx = Eβ
(
−stβ

)
for <(s) > 0 and moments E

[
(Tβ(t))k

]
= Γ(k + 1)

tkβ

Γ(kβ + 1)
for k ≥ 1 [32, 33]. At the same time

(1.11)

∫ ∞
0

e−stgβ(x; t)dt = sβ−1e−xs
β

.
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It is shown in [30] that for 0 < β, α < 1,

(1.12) gβα(x; t) =

∫ ∞
0

gβ(x; s)gα(s; t)ds

for x > 0. For more details about Wright function see [30, 31]. From (1.10) and (1.12), we get∫ ∞
0

Eβ
(
−stβ

)
gα(t; r)dt =

∫ ∞
0

∫ ∞
0

e−sxgβ(x; t)gα(t; r)dxdt = Eβα
(
−srβα

)
,

and from (1.11) and (1.12), we get∫ ∞
0

Eα (−txα) gβ(x; t)dt =

∫ ∞
0

sβ−1e−xs
β

gα(s;x)ds.

Lévy α-stable distribution. The Lévy α-stable distribution with stability index 0 < α ≤ 2, Lθα(x)
has a Fourier transform given by

(1.13) F
(
Lθα(·)

)
(y) := L̂θα(y) = e−ψ

θ
α(y).

The density Lθα(x) has a fat tail proportional to |x|−(1+α).

Define Lθα(y;x) =
1

x
1
α

Lθα

(
y

x
1
α

)
for y ∈ R and x > 0 which is a probability density function of

the α-stable random process with asymmetry parameter θ, denoted by Lθα(x) for x > 0, [34].

(1.14)

∫ ∞
−∞

eisyLθα(y;x)dy = e−ψ
θ
α(s)x.

For 0 < α < 1, and t, x > 0,

(1.15) L−αα (t;x) =
xα

t
gα(x; t).

See [35] for more details. Also, for 0 < α ≤ 1

(1.16) Lθαβα(x; t) =

∫ ∞
0

Lθβ(x; s)L−αα (s; t)ds.

2. Fractional Derivative as Expected Value with Respect to a Lévy Distribution

In this Section we establish the first main result of this paper.

2.1. Caputo Fractional Derivative. The following lemma is one of the main results of this work
for its wide applicability. A fundamental remark is that based on Lemma 1, E [f(Tβ(t))] = fβ(t),
and E

[
f (1)(Tβ(t))

]
.

Lemma 1.

(1) Let f ∈ C([0,∞)) and fβ be a function. Hence,

f̃β(s) = sβ−1f̃
(
sβ
)

for s ∈ [0,∞) if and only if

fβ(t) =

∫ ∞
0

f(x)gβ(x; t)dx

for 0 < β ≤ 1, and if integrals exist.
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(2) Let f ∈ C1([0,∞)) and fβ be a function such that

f̃β(s) = sβ−1f̃
(
sβ
)

for s ∈ [0,∞) and fβ(0) = f(0) then

Dβ
Cfβ(t) =

∫ ∞
0

f (1)(x)gβ(x; t)dx

for 0 < β ≤ 1.
(3) Let f ∈ Cn([0,∞)) and fβ be a function such that

L
(
f
(n−1)
β (·)

)
(s) = sβ−1L

(
f (n−1)(·)

) (
sβ
)

for s ∈ [0,∞) and f
(n−1)
β (0) = f (n−1)(0). For 0 < β ≤ 1, the following holds

Dn+β−1
C fβ(t) =

∫ ∞
0

f (n)(x)gβ(x; t)dx

for n ≥ 1.
(4) For 0 < α, β < 1 and such that fβα(0) = fβ(0)

Dβα
C fβα(t) = Dα

C

(
Dβ
Cfβ(s)

)
.

Proof.

(1) To show sufficiency, we use the Laplace transform as follows:

L
(∫ ∞

0

f(x)gβ(x; ·)dx
)

(s) =

∫ ∞
0

∫ ∞
0

e−stf(x)gβ(x; t)dxdt

by equation (1.11) =

∫ ∞
0

f(x)sβ−1e−xs
β

dx

= sβ−1f̃
(
sβ
)

= f̃β(s) = L (fβ(·)) (s).

Necessity follows from the same lines.
(2) We will show that the Laplace transform of the right-hand side of equation (2) is equal to

that of the left hand side which is given by (1.4). The Laplace transform of the right hand
side of equation (2) is given by

L
(∫ ∞

0

f (1)(x)gβ(x; ·)dx
)

(s) =

∫ ∞
0

∫ ∞
0

e−stf (1)(x)gβ(x; t)dxdt

by equation (1.11) =

∫ ∞
0

f (1)(x)sβ−1e−xs
β

dx

= sβ−1
(
sβ f̃(sβ)− f(0)

)
= sβ f̃β(s)− sβ−1fβ(0)

= L
(
Dβ
Cfβ(·)

)
(s).

(3) It follows directly from part 2 and that Dn+β−1
C f(t) = Dβ

Cf
(n−1)(t).
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(4) Using equation (1.12),

Dβα
C fβα(t) =

∫ ∞
0

f ′(x)gβα(x; t)dx =

∫ ∞
0

f ′(x)

∫ ∞
0

gβ(x; s)gα(s; t)dsdx,

and using part 2, we obtain

Dβα
C fβα(t) =

∫ ∞
0

gα(s; t)

∫ ∞
0

f ′(x)gβ(x; s)dxds

=

∫ ∞
0

Dβ
Cfβ(s)gα(s; t)ds = Dα

C

(
Dβ
Cfβ(t)

)
.

�

Theorem 1. The linear fractional differential equation

(2.1)
n∑
k=1

akD
k+β−1
C y(t) + an+1y(t) = Fβ(t)

such that y(0) = y0 and Dβ+i−1
C y(0) = yi for i = 1, . . . , n− 1 and 0 < β ≤ 1, has a solution given by

yβ(t) =

∫ ∞
0

z(x)gβ(x; t)dx

where z(t) is the solution of the linear ordinary differential equation

(2.2)
n∑
k=1

akz
(k)(t) + an+1z(t) = F (t)

such that z(i)(0) = yi for i = 0, . . . , n− 1 and Fβ(t) =
∫∞
0
F (x)gβ(x; t)dx.

Remark. The function F (x) could be found using Laplace transform and Lemma 1 part a.

F̃β(s) = sβ−1F̃
(
sβ
)
.

Proof. Taking a β−Wright type transformation on both sides of equation (2.2), we obtain

n∑
k=1

ak

∫ ∞
0

z(k)(x)gβ(x; t)dx+ an+1

∫ ∞
0

z(x)gβ(x; t)dx =

∫ ∞
0

F (x)gβ(x; t)dx,

and applying Lemma 1 we obtain
n∑
k=1

akD
k+β−1
C yβ(t) + an+1D

β−1
C yβ(t) = Fβ(t)

as we wanted. �

In the following, let 0 < β ≤ 1. The best method to find

fβ(t) =

∫ ∞
0

f(x)gβ(x; t)dx
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is by using Taylor’s expansion of f(t) about 0 giving

fβ(t) =
∞∑
n=0

f (n)(0)
tβn

Γ(nβ + 1)
.

That relationship can be used to find many fractional analogue functions that can be found in the
literature. It will be also seen through the following examples.

Example 1 (Fractional velocity). The solution of the FDE Dβ
Cyβ(t) = c with yβ(0) = y0, where c

is a real-valued constant is given by

yβ(t) =

∫ ∞
0

(y0 + x)gβ(x; t)dx = y0 +
tβ

Γ(β + 1)

since y(t) = y0 + t solves Dy(t) = c, with y(0) = y0. That is, yβ(t) = E[y0 + Tβ(t)].

Example 2 (Fractional growth/decay models). The solution of the FDE Dβ
Cy(t) = λy(t) with

y(0) = y0 where λ is a real-valued constant is given by

y(t) =

∫ ∞
0

y0e
λxgβ(x; t)dx = y0Eβ

(
λtβ
)

since z(x) = y0e
λx solves Dz(x) = λz(x), with z(0) = y0. That is, yβ(t) = E[y0e

λTβ(t)]. See section
5 for graphical representation.

Example 3 (Fractional oscillations). The solution of the FDE Dβ+1
C y(t) = −ω2y(t) with y(0) = 0,

where ω is a real-valued constant is given by

y(t) =

∫ ∞
0

sin(ωx)gβ(x; t)dx = sinβ (ωt)

since z(x) = sin(ωx) solves D2z(x) = −ω2z(x), with z(0) = 0. That is, yβ(t) = E[sin(ωTβ(t))].

The fractional analogue of the sine function could be found using [36]

sinβ (t) =
∞∑
n=0

(−1)n
t(2n+1)β

Γ((2n+ 1)β + 1)
= tβE2β,β+1

(
−t2β

)
.

Similarly,

cosβ (t) =
∞∑
n=0

(−1)n
t2nβ

Γ(2nβ + 1)
= E2β

(
−t2β

)
.

It is not hard then to see that Dβ
C cosβ (t) = − sinβ (t) and Dβ

C sinβ (t) = cosβ (t).

3. Green functions for fractional partial differential equations

In the following we will use the notation CD
β
t and RFD

α
x for Caputo and Riesz-Feller derivatives,

respectively, to identify the variable with respect to which the derivatives are calculated.



9

3.1. The fractional diffusion equation. In this example, using the approach of the previous
section, we find the Green function for the fractional diffusion equation

(3.1)

{
CD

β
t u(x, t) = RFD

α,θ
x u(x, t)

u(x, 0) = f(x)

(x, t) ∈ R× [0,∞)

x ∈ R

with 0 < β ≤ 1, 0 < α ≤ 2 and u(±∞, t) = 0, t > 0. Applying the Fourier transform to x, we
obtain

CD
β
t û(k, t) = −ψθα(k)û(k, t)

û(k, 0) = f̂(k).

Solving this ordinary differential equation using Lemma 1, we obtain

û(k, t) =

∫ ∞
0

f̂(k)e−ψ
θ
α(k)xgβ(x; t)dx = f̂(k)Eβ

(
−ψθα(k)tβ

)
,

see example 2.1. Using the Inverse Fourier Theorem and the convolution theorem we get

u(x, t) =

∫ ∞
−∞

Gθ
α,β(x− y, t)f(y)dy

where the Green function is given by

Gθ
α,β(x, t) =

1

2π

∫ ∞
−∞

eikxEβ
(
−ψθα(k)tβ

)
dk.

In the particular case of θ = 0,

(3.2) G0
α,β(x, t) =

1

2π

∫ ∞
−∞

eikxEβ
(
−|k|αtβ

)
dk.

For the case β = 1, α = 2, we obtain the classical heat equation{
∂tu(x, t) = ∂2xu(x, t)

u(x, 0) = f(x).

(x, t) ∈ R× [0,∞)

x ∈ R

Since E1(λt) = eλt, we obtain for x ∈ R and t > 0

G0
1,2(x, t) =

1

2π

∫ ∞
−∞

eikx−tk
2

dk =
1√
4πt

e−
x2

4t

or L0
2(x, t), by using standard formulas from Fourier transform. This result agrees with the Green

function of the standard heat equation, see for example [37].

Corollary 1. The solution of the fractional heat equation (3.1) could be written as

(3.3) uα,β(x, t) =

∫ ∞
0

∫ ∞
0

L0
2(x, τ)L

−α/2
α/2 (τ, s)gβ(s, t)dτds,

where L0
2(x, τ) is the solution of the classical heat equation.

Proof. As was shown in [28], it could be shown that the solution in (3.2) could be rewritten as

uα,β(x, t) =

∫ ∞
0

L0
α(x, s)gβ(s, t)ds,
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but for 0 < α/2 ≤ 1

(3.4) L0
α(x, s) =

∫ ∞
0

L0
2(x, τ)L

−α/2
α/2 (τ, s)dτ,

by equation (1.16). Then the result follows. �

Based on this corollary, uα,β(x, t) = E
[
L0
2(x,L

−α/2
α/2 (Tβ(t)))

]
where L−α/2α/2 (t) is the α/2−Lévy

process with θ = −α/2 and Tβ(t) is the random β−time process. See section 5 for graphical
representation.

The moments of Xα,β(t) ∼ uα,β(·, t) are given by [34],

(3.5) E(|Xα,β(t)|s) = t
sβ
α

Γ(1− s
α

)Γ(1 + s
α

)Γ(1 + s)

Γ(1− s
2
)Γ(1 + s

2
)Γ(1 + sβ

α
)

for −min(1, α) < R(s) < α. That formula shows different regimes of diffusion, subdiffusion and
superdiffusion based on whether α

2
= β, α

2
> β, or α

2
< β, respectively.

Moreover, Equation (3.3) shows that the α−β fractional process {Xα,β(t), t ≥ 0} is equivalent in

distribution to the subordinated process {B(L−α/2α/2 (Tβ(t))), t ≥ 0}, where {B(t), t ≥ 0} is a Brow-

nian motion. That relationship postulates that Lévy flights are random dilation, with probability

distribution L
−α/2
α/2 , of the standard deviation or the time parameter in the Brownian motion. That

dilation results in an expand in the range of possible displacement by magnitude beyond the regular

tails of the standard Gaussian distribution. The process {B(L−α/2α/2 (t)), t ≥ 0} was introduced in

[38], and used in [39] to model stock price differences. See also more about those subordinated
processes in [40].

3.2. The fractional Telegraph equation. In this example, we consider the fractional telegraph
equation

(3.6)


CD

β+1
t u(x, t) + CD

β
t u(x, t) = c2 ∂2xu(x, t)

u(x, 0) = δ(x)

∂tu(x, 0) = 0

(x, t) ∈ R× [0,∞)

x ∈ R
x ∈ R

with 0 < β ≤ 1, c > 0 and u(±∞, t) = 0, t > 0. Notice that in this equation the higher time
derivative is of order β + 1 in contrast to other fractional telegraph models that consider an order
of 2β for example in [41, 42, 43, 44]. Note that 2β < β + 1 for 0 < β < 1. The solution of the
integer Telegraph equation β = 1 is given by

u1(x, t) =

{
1

2c
e−

t
2 I0(

√
c2t2−x2
2c

), for |x| < ct,

0, otherwise,

where I0 is the modified Bessel function (see below). Thus, the solution of the fractional telegraph
equation (3.6) is given by

uβ(x, t) =
1

2c

∫ ∞
|x|/c

e−
s
2 I0(

√
c2s2 − x2

2c
)gβ(s, t)ds.
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3.3. The time and space fractional Schrödinger equation. Let 0 < β, α ≤ 1. The solution
of the time and space-fractional Schrödinger equation

{
0D

β
t φβ,α(x, t) = ihxD

α+1
θ φβ,α(x, t)− icxDα

θ φβ,α

φβ,α(x, 0) = f(x)

(x, t) ∈ R× [0,∞)

x ∈ R

is as follows. The Schrödinger Fourier transform is

{
0D

β
t φ̂β,α(x, t) = −iφ̂β,α(k, t)

[
hψθα+1(k)− cψθα(k)

]
φ̂β,α(k, 0) = F (k)

Then, applying lemma 3, the solution is given by φ̂β,α(k, t) =
∫∞
0
z(x)gβ(x; t)dx,where the function

z(x) = F (k) exp
(
−ix

[
hψθα+1(k)− cψθα(k)

])
and solves the last Fractional PDE initial problem.

Now, setting the new solution we have that

φ̂β,α(k, t) = F (k)Eβ
(
−itβ

[
hψθα+1(k)− cψθα(k)

])
.

Next, applying the inverse Fourier transform and convolution theorems lead us to

φ(x, t) = F−1
{
F (k)Eβ

(
−itβ

[
hψθα+1(k)− cψθα(k)

])}
=

∫ ∞
−∞

G(x− y, t)f(y)dy

where the Green function is given by

G(x, t) =
1

2π

∫ ∞
−∞

exp(ikx)Eβ
(
−itβ

[
hψθα+1(k)− cψθα(k)

])
dk

In the particular case θ = 0, and β = α = 1 it results to

G(x, t) =
1

2π

∫ ∞
−∞

exp
(
−ithk2 + itc|k|+ ixk

)
dk.

3.4. The linear time and space fractional Schrödinger equation. Let 0 < β, α ≤ 1. The
solution of the time and space-fractional linear Schrödinger equation

{
0D

β
t φβ,α(x, t) = ihxD

α+1
θ φβ,α(x, t)− icφβ,α

φβ,α(x, 0) = f(x)

(x, t) ∈ R× [0,∞)

x ∈ R

is as follows. The linear Schrödinger Fourier transform is

{
0D

β
t φ̂β,α(x, t) = −iφ̂β,α(k, t)

[
hψθα+1(k) + ic

]
φ̂β,α(k, 0) = F (k)
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Then, applying lemma 3, the solution is given by φ̂β,α(k, t) =
∫∞
0
z(x)gβ(x; t)dx where the function

z(t) = F (k) exp
(
−it

[
hψθα+1(k) + c

])
and solves the last Fractional PDE initial problem. Now,

setting the new solution we have that

φ̂β,α(k, t) = F (k)Eβ
(
−itβ

[
hψθα+1(k) + c

])
.

Next, applying the Fourier transform inverse and convolution theorems lead us to

φ(x, t) = F−1
{
F (k)Eβ

(
−itβ

[
hψθα+1(k) + c

])}
=

∫ ∞
−∞

G(x− y, t)f(y)dy

where the Green function is given by

G(x, t) =
1

2π

∫ ∞
−∞

exp(ikx)Eβ
(
−itβ

[
hψθα+1(k) + c

])
dk

In the particular case θ = 0, and β = α = 1 it results to

G(x, t) =
1

2π

∫ ∞
−∞

exp(−ithk2 + ixk − itc).

Applying the Gaussian integration generalization we get,

G(x, t) =

√
1

4iπth
exp

(
−x2

4ith
− itc

)
.

4. Green functions for fractional PDEs with variable coefficients

In this section we use Lie symmetry group methods and Lemma 1 to introduce families of frac-
tional partial differential equations with variabe coefficients exhibiting explicit solutions. More
specifically, we show that solutions for FDE with variable coefficients of the form

(4.1) CD
β
t u(x, t) = σ(x)uxx(x, t) + µ(x)ux(x, t), 0 < β ≤ 1.

can be expressed as a Wright type transformation for PDEs that we define as

(4.2) uβ(x, t) =

∫ ∞
0

u(x, s)gβ(s, t)ds,

where where u(x, t) is the solution of the associated standard PDE

(4.3)
∂u(x, t)

∂t
= σ(x)uxx(x, t) + µ(x)ux(x, t).

Theorem 2. Let’s consider the fractional partial differential equation with a variable coefficient
of the form (4.1). The solution is given by the Wright-type transformation define by (4.2) of the
analogous PDE of the form (4.3) which admits a Green function. Furthermore,

lim
β→1−1

uβ(x, t) = u(x, t).
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Proof. Taking the β− Wright type transformation on both sides of (4.1), we get∫ ∞
0

∂u(x, s)

∂s
gβ(s; t)ds = σ(x)

∫ ∞
0

uxx(x, s)gβ(s; t)ds

+ µ(x)

∫ ∞
0

ux(x, s)gβ(s; t)ds.

By Lemma 1, we obtain

CD
β
t uβ(x, t) = σ(x)

∂2

∂x2

∫ ∞
0

u(x, s)gβ(s; t)ds

+ µ(x)
∂

∂x

∫ ∞
0

u(x, s)gβ(s; t)ds.

Finally, we obtain

CD
β
t uβ(x, t) = σ(x)

∂2uβ(x, t)

∂x2
+ µ(x)

∂uβ(x, t)

∂x
.

For 0 < v < 1, we recall that

lim
v→1−

W−v,1−v(−z) = δ(x− 1),

therefore, we get

lim
v→1−

gv(s; t) = lim
v→1−

t−vW−v,1−v(−st−v) =
1

t
δ(st−1 − 1) = δ(s− t)

Therefore, if we assume u(x, t) =
∫∞
0
G(x, y, t)f(y)dy, u has a Green function, using Fubini-Tonelli’s

theorem and assuming f is a suitable function, then

lim
β→1−

uβ(x, t) = lim
β→1−

∫ ∞
0

gβ(s; t)u(x, s)ds = lim
β→1−

∫ ∞
0

gβ(s; t)

∫ ∞
0

G(x, y, s)f(y)dyds

=

∫ ∞
0

δ(s− t)G(x, y, s)f(y)dy =

∫ ∞
0

G(x, y, t)f(y)dy.

�

Next, we will present the following families, exhibiting explicit solutions thanks to the Theorem
above.

4.1. Solutions for a fractional Fokker-Planck equation with a forcing function. Let’s
recall that the Langevin stochastic differential equation is given by

(4.4) dX(t) = f(X(t))dt+
√

2DdW (t)

such that X(0) = x0, where Ẇ (t) is a white noise. The solution process X(t) of the Langevin
equation (4.4) is a stationary Markov process and is completely specified by finding the probability
density p(x, t|x0) ≥ 0, which satisfies the Fokker-Planck equation

∂p

∂t
= D

∂2p

∂x2
+

∂

∂x
[f(x)p]

p(x, 0|x0) = δ(x− x0).
Applying the Theorem of this Section, we obtain the following Corollaries.
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Corollary 2. If f satisfies the Riccati equation of the form

2f ′(x)− f 2(x) + β2x2 − γ +
16v2 − 1

x2
= 0

and β, γ and v are constants, then the family of the fractional Fokker-Planck equation

(4.5) CD
β
t u(x, t) =

∂2u

∂x2
+

∂

∂x
[f(x)u(x, t)]

where f(x) = −f(−x) (f is an odd function) admits an explicit solution of the form (4.2) where u
is given by

(4.6) u(x, t) =

∫ ∞
0

p(x, t|y)ϕ(y)dy,

p is given by

p(x, t|x0) = F

 x√
4 sinh2(βt)

 eγt/4(
4 sinh2(βt)

)1/4
× exp

[
−
(
β

4
coth(βt)x2 +

1

2

∫
f(x)dx

)
+

x20β

2(1− e2βt)

]
,

and

F (z) =

{
z1/2 [A1I2v(kz) + A2I−2v(kz)] , for z > 0
|z|1/2 [B1K2v(k|z|) +B2I2v(k|z|)] , for x < 0

where k = βx0 and A1, A2, B1 and B2 are arbitrary constants be determined by boundary and
continuity conditions and if α is a real number

Iα(z) =
∞∑
m=0

(z/2)2m+α

m!Γ(m+ α + 1)
,

Kα(z) =
π

2

I−α(z)− Iα(z)

sin(απ)
.

Proof. This Corollary is a direct consequence of the Theorem of this section and the similarity
solution presented in [22] using the method of Lie group symmetries for the equation

∂p

∂t
=
∂2p

∂x2
+

∂

∂x
[f(x)p](4.7)

p(x, 0|x0) = φ(x− x0)(4.8)

when f is odd. �

Corollary 3. A particular case of interest is obtained if

f(x) = ax+
b

x
, such that a > 0 and −∞ < b < 1.

The transition probability density is

p(x, t|x0) = ax
1/2
0

(
x

x0

)− b
2

z
1
2 I−( 1

2
+ b

2)(kz)
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× eγt/4(
4 sinh2(at)

)1/4 exp

(
−
(a

4
coth(at)

)2
− ax2

4

)
for x ≥ 0.

Example 4. Let’s consider the standard fractional Fokker-Planck equation of the form

CD
β
t u(x, t) =

∂2u

∂x2
+ x

∂u

∂x
+ u(4.9)

u(x, 0) = f(x).(4.10)

By the Theorem of this Section, we obtain (4.2) where p(x, t) satisfies the classical Fokker-Planck
equation (FPE)

∂p

∂t
=
∂2p

∂x2
+ x

∂p

∂x
+ p.

It is possible to find the Green function of FPE, see for example [37]. Therefore we obtain explicit
expression for the solution

u(x, t) =

∫ ∞
0

∫ ∞
0

exp

[
−(x−e−sy)

2

2(1−e−2s)

]
√

2π (1− e−2s)
gβ(s; t)dsf(y)dy.

Corollary 4. The family of fractional PDEs with space variable coefficients of the form

CD
β
t u(x, t) = xuxx(x, t) + f(x)ux(x, t)(4.11)

u(x, 0) = ϕ(x)(4.12)

where f satisfies the Riccati equation of the form

xf ′ − f +
1

2
f 2 = Ax

3
2 + Cx− 3

8

admits an explicit solution of the form (4.2) where u is given by (4.6) and p(x, y, t) is the inverse
Laplace transform of

Uλ(x, t) =

√ √
x (1 + λt)

√
x (1 + λt)− Aλ t3

12

exp[S(x, y, t)]

× exp

[
−1

2

(
F (x)− F

(
(12(1 + λt)

√
x− Aλt3)2

144 (1 + λt)4

))]
where F ′(x) = f(x)

x
,

S(λ, x, t) = −λ(x+ Ct2/2)

1 + λt
− 2At2

√
x(3 + λt)

3(1 + λt)2
+
A2t4(2λt(3 + λt/2)− 3)

108(1 + λt)3

for λ ≥ 0.

Proof. This Corollary is a direct consequence of the Theorem of this section and the similarity
solution presented in Theorem 6.1 on [45] for

∂u

∂t
= x

∂2u

∂x2
+ f(x)

∂u

∂x
(4.13)

u(x, 0) = ϕ(x)(4.14)
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when f is an odd function. �

Corollary 5. The family of fractional PDEs with space variable coefficients of the form

CD
β
t u(x, t) = xuxx(x, t) + f(x)ux(x, t)(4.15)

u(x, 0) = ϕ(x)(4.16)

where f satisfies the Riccati equation of the form

xf ′ − f +
1

2
f 2 = Ax+B

admits an explicit solution of the form (4.2) where u is given by (4.6) and p(x, y.t) is the inverse
Laplace transform of

Uλ(x, t) = exp

[
−λ(x+ At2/2)

1 + λt
− 1

2

(
F (x)− F

(
x

(1 + λt)2

))]
where F ′(x) = f(x)

x
and for λ ≥ 0.

Proof. This Corollary is a direct consequence of the Theorem of this section and the similarity
solution presented in Theorem 4.1 on [45] for

∂u

∂t
= x

∂2u

∂x2
+ f(x)

∂u

∂x
(4.17)

u(x, 0) = ϕ(x)(4.18)

when f is odd. �

Example 5.

CD
β
t u(x, t) = xuxx(x, t) +

(
1 + 3

√
x

2 (1 +
√
x)

)
ux(x, t)(4.19)

u(x, 0) = ϕ(x)(4.20)

has a solution of the form (4.2) where u(x, t) =
∫∞
0
G(x, y, t)ϕ(y)dy and

G(x, y, t) =

cos

(
2
√
xy

t

)
√
πyt (1 +

√
x)

(
1 +
√
y tanh

(
2
√
xy

t

))
exp

[
−x+ y

t

]
.

Example 6.

CD
β
t u(x, t) = xuxx(x, t) +

(
1

2
+
√
x coth

(√
x
))

ux(x, t)(4.21)

u(x, 0) = ϕ(x)(4.22)

has a solution of the form (4.2) where u(x, t) =
∫∞
0
G(x, y, t)ϕ(y)dy and

G(x, y, t) =

sinh

(
2
√
xy

t

)
√
πyt

sinh
(√

y
)

sinh (
√
x)

exp

[
−x+ y

t
− 1

4
t

]
.



17

Theorem 3. A solution for

(4.23) CD
βα
t uβα(x, t) = σ(x)

∂2uβα(x, t)

∂x2
+ µ(x)

∂uβα(x, t)

∂x
can be obtained as an α−Wright type transformation of uβ, where uβ is a solution for

CD
β
t uβ(x, t) = σ(x)

∂2uβ(x, t)

∂x2
+ µ(x)

∂uβ(x, t)

∂x
.

Proof. Let’s consider

CD
β
t uβ(x, t) = σ(x)

∂2uβ(x, t)

∂x2
+ µ(x)

∂uβ(x, t)

∂x
.

By Lemma 1, it can be written as∫ ∞
0

∂u(x,w)

∂w
gβ(w; s)dw = σ(x)

∂2

∂x2

∫ ∞
0

u(x,w)gβ(w; s)dw

+ µ(x)
∂

∂x

∫ ∞
0

u(x,w)gβ(w; s)dw.

Taking a α-Wright type transformation on both sides of the equation we obtain,∫ ∞
0

∫ ∞
0

∂u(x,w)

∂w
gβ(w; s)dwgα(s; t)ds =

∫ ∞
0

σ(x)
∂2

∂x2

∫ ∞
0

u(x,w)gβ(w; s)dwgα(s; t)ds

+

∫ ∞
0

µ(x)
∂

∂x

∫ ∞
0

u(x,w)gβ(w; s)dwgα(s; t)ds

and using (1.12) we obtain∫ ∞
0

∂u(x,w)

∂w
gβα(w; t)dw = σ(x)

∂2

∂x2

∫ ∞
0

u(x,w)gβα(w; t)dw

+ µ(x)
∂

∂x

∫ ∞
0

u(x,w)gβα(w; t)dw,

which completes the proof. �

5. Numerical Simulations

We use Monte Carlo integration to simulate the solutions of factional differential equations and
partial differential equations given their solutions. As expected, simulations of heavy tail distri-
butions require the use of a large amount of random numbers for adequate coverage. We first
present the lemma by M. Kanter [46] to generate random numbers distributed as the Lévy α-stable
distribution with stability index 0 < α ≤ 2, Lθα(x), defined by equation (1.13). See also [47].

Lemma 2 (Lemma 4.1 [46]). Let α ∈ (0, 1) and let L−αα (x) as defined in (1.13). Then for x ≥ 0

(5.1) L−αα (x) =
1

π

(
α

1− α

)(
1

x

)(1−α)−1 ∫ π

0

a(ϕ) exp

(
−
(

1

x

)α/(1−α))
dϕ

where

(5.2) a(ϕ) =

(
sin(αϕ)

sin(ϕ)

)(1−α)−1 (
sin((1− α)ϕ)

sin(αϕ)

)
.
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Corollary 6 (Corollary 4.1 [46]). Let U1 and U2 be independent random variables where U1 is
uniformly distributed on [0, 1], and U2 is uniformly distributed on [0, π]. Then for α ∈ (0, 1),
L−αα (x) is the density of (−a(U2)/ log(U1))

(1−α)/α where a is given by equation (5.2).

Corollary 7. If X ∼ L−ββ (·), then gβ(·, t) is the probability density function of Y =
tβ

Xβ
.

Proof. For t > 0, the probability density function of Y is given by

fY (y) = L−ββ

(
t

y1/β

) ∣∣∣∣dxdy
∣∣∣∣

=
t

βy

1

y1/β
L−ββ

(
t

y1/β

)
=

t

βy
L−ββ (t, y)

= gβ(y, t).

(5.3)

�

Corollary 8. If X ∼ L−αα (·), then L−αα (·, t) is the probability density function of Y = Xt1/α.

Proof. Similar proof as above. �

By using the above corollaries, a powerful computational approach is performed using gβ instead
of simulating the Wright function. The codes are done on Python using numba and matplotlib
libraries.

Example 7 (Fractional growth/decay models). The solution of the Fractional differential equation

(5.4)

{
Dβ
Cy(t) = −y(t)

y(0) = 1

has a solution given by y(t) =
∫∞
0
e−xgβ(x; t)dx = Eβ(−tβ).

As a conclusion, the numerical solution converges to the actual solution when the random number
values of gβ are considerably high. Convergence is, however, good starting from 104 randomly
generated values from gβ.

Example 8. Let’s consider the standard fractional Fokker-Planck equation of the form

CD
β
t pβ(x, t) =

∂2pβ
∂x2

+ x
∂pβ
∂x

+ pβ(5.5)

p(x, 0) = f(x).(5.6)

We obtained a solution in the form

(5.7) pβ(x, t) =

∫ ∞
0

∫ ∞
0

exp

[
−(x−e−sy)

2

2(1−e−2s)

]
√

2π (1− e−2s)
gβ(s; t)dsf(y)dy.

See Figure 5.2 for numerical simulation of the solution and see Figure 5.3 for the mean absolute
error for N = 106 with respect to N = 107.
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Figure 5.1. The Monte Carlo integration repeated 100 times of simulations of the
solution of equation (5.4) for each β = 0.5 compared to the exact solution.

(a) (b) (c)

Figure 5.2. Fokker Plank Monte Carlo integration simulation of solution in equation
(5.7) using a number of 107 random values for β = 0.1, 0.5 and 0.9, respectively.

Example 9. The solution of the fractional heat/diffusion equation

(5.8) uα,β(x, t) =

∫ ∞
0

∫ ∞
0

L0
2(x, τ)L

−α/2
α/2 (τ, s)gβ(s, t)dτds

could be numerically computed for each x and t using a large number of simulations from gβ(s, t),

and for each s simulate a large number of τ are simulated from L0
2(x, τ) L

−α/2
α/2 (τ, s). Then the values

of L0
2(x, τ) are averaged up over all values of τ and then over all values of s. See Figure 5.4.

A similar procedure could be done to simulate random numbers from uα,β(x, t), but after simulating

one s from gβ(s, t), and then one τ from L
−α/2
α/2 (τ, s), then we simulate one x from L0

2(x, τ).
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(a) (b) (c)

Figure 5.3. Mean error in Fokker Plank Monte Carlo integration simulation of
solution in equation (5.7) over time t ∈ [1, 10]. The mean absolute error between
using a number of 107 and 106 random values from gβ for β = 0.1, 0.5 and 0.9
respectively.

Linear ordinary differential equations and partial differential equations could be also solved nu-
merically. Solutions then get interpolated at the values generated by gβ(·, t) and averaged at each
value of t.

Example 10. The solution of the fractional differential equation

(5.9) Dβ+2
C y + 5Dβ+1

C y +Dβ
Cy + 2y = Eβ(−tβ)

could be numerically computed for each t by numerically solving

(5.10) y(3) + 5y(2) + y(1) + 2y = exp(−t)
at N randomly generated s values from gβ(s, t) and then average the values up for each t. See
Figure 5.5. We used the Runge-Kutta method of hybrid order 4 and 5 from minimum generated s
to maximum generated s and then interpolated the solution at the rest of the randomly generated s
values.

6. Conclusion

In this work, we have shown an alternative way to find the fundamental solutions for fractional
partial differential equations (PDEs). Indeed, Riccati equation have allow us to study families of
fractional diffusion PDEs with variable coefficients which allow explicit solutions. Those solutions
connect Lie symmetries to fractional PDEs. We expect similar results for fracational dispersive
equations. These results will appear in another work.

In our approach, we have taken advantage of Lie symmetries applied to fractional diffusion PDEs
with variable coefficients. We predict that Feynman path integrals can play a similar role with
fractional dispersive equations.

We conjecture that a general solution similar to that in equation (3.3) can be shown to hold
for a larger class of fractional partial differential equations. A conjecture for which an interesting
consequence that the Lévy flight could be a result of the wide expanse allowed for the normal
diffusion to make a jump over.

Monte-Carlo integration of solutions of ordinary differential equations and partial differential
equations with respect to heavy-tailed distributions is a new approach that can prove valuable for
other general fractional equations. Evaluating such solutions take small amount of time thanks to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4. Simulation of the solution of fractional heat equation uα,β of solution in
equation (5.8) for β = 0.1 in (a), (d) and (g), β = 0.5 in (b), (e), and (h) and β = 0.9
in (c), (f), and (i) and α = 0.2 in (a), (b) and (c), 0.6 in (d), (e) and (f) and 1 in (g),
(h) and (i) for (x, t) ∈ [−5, 5] × [1, 10]. The Monte Carlo integration was performed
using a number of 107 random values from gβ.

the availability of fast computing devices. A general formula like equation (3.3) can make numerical
solutions easier.
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