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Abstract. Water quality monitoring in coastal areas is challenging due to cost and time 

constraints. Identifying and selecting sampling sites accurately and effectively is crucial 

for efficient monitoring. The need for efficient monitoring of marine waters has led to 

exploring the use of remote sensing as one helpful alternative. Remote sensing is practical 

in several applications based on pattern recognition and information processing of large 

terrestrial and aquatic surface areas. Collected information is processed with various image 

processing techniques to identify objects such as microorganisms. Fecal coliforms are 

microorganisms that are indicators of sanitary quality and are present in human and animal 

wastes discharged into water bodies reaching coastal regions. The present study estimated 

the presence of fecal coliforms as an indicator of contamination in coastal marine waters. 

Satellite data from two sensors, Landsat 7 ETM+ and Landsat 8 OLI, were used to evaluate 

the reflectance of fecal coliforms in marine waters. Then, statistical analysis and four 

regression models were tested to establish a functional correlation between the spectral 

bands and historical in situ fecal coliform measurement. In this research, satellite imagery 

in the vicinity of Pucusana Bay helped estimate the concentration of fecal coliforms in 

marine waters. As a result, a significant relationship was found between the shortwave 

infrared band splitting (SWIR 2) with the blue band and fecal coliforms presence. The 

relationship was used to estimate coliform concentration from the reflectance of the aquatic 

surface in Pucusana Bay. Finally, spatial distribution maps of fecal coliform concentrations 

were generated to compare the increase of these microorganisms over different years in 

the area. The methodology and results can be calibrated to other water body locations 

where fecal coliform is a concern. 

1.  Introduction 

Lately, there have been efforts to integrate satellite data and in-situ measurements into long-

term water quality monitoring in coastal areas [1] [2]. For instance, a robust correlation was found 

between satellite retrieved chlorophyll measurements and in situ measurements [3]. The presence 

of coliforms is familiar in soil and surface water. Human and animal wastewater can contain large 

quantities of certain types of coliform bacteria. Most coliform bacteria are harmless to humans, 

but others can cause severe waterborne diseases [4]. The presence of coliform is an issue in coastal 

areas due to human activities' uncontrolled disposal of wastewater and pollutants on the coast [5]. 
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Research is being conducted to estimate water pollution using remote sensing. For example, 

from satellite data and mathematical models, spatial distribution maps of the Ismailia channel in 

Egypt were created.  These showed high pollution of drains due to effluent discharge from sewage 

treatment plants [6]. Similarly, a practical algorithm was developed with remotely sensed 

reflectances to estimate water surface chlorophyll for the Basque coastal waters of the Bay of 

Biscay [7]. Also, time series of multisensor satellite images are being incorporated to recover the 

diurnal variation of water constituent concentrations in coastal areas, serving as a warning for water 

quality management [8].  

Big cities are a source of a considerable amount of wastewater, which can sometimes pollute 

coastal waters. For example, each inhabitant generates 145 liters of wastewater per day in Lima. 

This amount represents 1202286 m3 per day of sewage waste to the sewage system. From this 

amount, only 21.2% of the wastewater is treated. So, a considerable amount of sewage directly 

discharges into the sea [9]. There can also be other sources of pollution, such as seafood farming 

[10] 

The main objective of this study is to estimate fecal coliform presence in coastal waters of the 

Pucusana Bay in Peru by calibrating a regression model using satellite data and in-situ 

measurements. So, satellite data from two sensors, Landsat 7 ETM+ and Landsat 8 OLI, were used 

in this study. Then, statistical analysis and four regression models were tested to establish a 

functional correlation between the spectral bands and historical in situ fecal coliform 

measurement. Next, the best-fit regression model was used to estimate coliform concentration 

from the reflectance of the aquatic surface in Pucusana Bay. Finally, spatial distribution maps of 

fecal coliform concentrations were generated to compare the increase of these microorganisms 

over different years in the area. 

2.  Methodology 

2.1 Study area 

Pucusana Bay (Figure 1) is near Lima, Peru, South America (UTM: 306036 East, 8619223 South). 

It has a maximum temperature of 26°C (79°F) and a minimum temperature of 15°C (59°F). The 

average wind speed is 15.6 km/h [11]. 

 

 

 

 

 

Figure 1 Study area 

near Pucusana Bay -

Lima. It shows fecal 

coliform data and 

sampling locations.  

 

Pucusana has an annual population growth rate of 3.4% (INEI, 2018), and its main economic 

activity is fishing and tourism [13] (Figure 2).  
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Figure 2 View of Pucusana bay 

showing fishing and tourist activity. 

 

 

Pucusana and its neighbor beach Naplo have been classified as unhealthy for swimmers since 

2016 [14]. They frequently present coliform concentration peaks of 1600 MPN/100ml or higher, 

exceeding the tolerable yearly limits. The direct discharge of domestic wastewater in the vicinity 

of the Bay is one of the leading causes of contamination. This pollution is a significant health issue 

because high concentrations of harmful bacteria and microorganisms in marine water can cause 

severe human illness [15]. 

2.2 Fecal coliform Data 

Researchers collected on-site data from fecal coliform sample records from the environmental 

statistics yearbooks of the National Institute of Statistics and Informatics. The information on in-

situ measurements in Pucusana Bay ranged from 2010 to 2019. Fecal coliform data have been 

collected from 2 stations (E-02 and E-04) [16] near the Bay (Figure 1). The measurement frequency 

is weekly during the southern hemisphere's summer, from December to April 15. The winter 

season measurements were biweekly from April 16 to November [17]. The sample records were 

sorted to match this study's satellite image date. From them, 22 satellite data matched in-situ 

measurement dates and were selected to continue with the analysis.  

2.3 Satellite data, preprocessing, spectral signatures, band ratio, and statistical 

analysis 

Landsat 7 ETM+ and Lansat 8 OLI satellite data from the study area were downloaded from the 

United States Geological Survey (USGS). The images with less than 10% cloud cover were 

selected because the climate and seasonal changes influence the relationship between water quality 

parameters and reflectance [18]. Therefore, researchers used summer data covering the first 18 

weeks of each year from 2010 to 2019. 

The preprocessing started with the atmospheric correction using the SCP (Semiautomatic 

Classification Plugin) of the QGIS software. This Geographic Information System GIS method 

uses the dark object subtraction method (DOS1). Any of the following formulas can obtain the 

radiance depending on the metadata of the selected image (equations 1, 2, and 3) [20] 

                                                              

                                                       L =
DN−offset

gain2
                                                                      (1) 

     L = GrescaleDN + Brescale (2) 

 

                                                      L = (
Lmax−Lmin

DNmax−DNmin
) × (DN − DNmin + Lmin)                   (3) 

 

Where L= radiance; and DN= Digital Numbers. 
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The SCP add-on transformed the digital values of satellite images into physical reflectance 

quantities by considering the pixel brightness value and error factors due to sensor malfunction or 

environmental distortion [20]. Next, radiometric and geometric corrections improved the spatial, 

temporal, and spectral parameters. The results analysis described surface radiation [21] 

After finishing the preprocessing, we generated 22 satellite images' spectral signatures and the 

reflectance values of the regions of interest (ROI in Figure 1). Table 1 shows the reflectance for 

bands 1 to 7 of the 22 processed satellite data. 

Table 1. Reflectance per band of satellite data matching in-situ measurement dates  

No  

Coliform in-

situ 

measurements 

MPN/100ml 

Satellite data 

Bands 

b1 b2 b3 b4 b5 b6 b7 

1 1600 - 0.036 0.042 0.052 0.059 0.078 0.057 

2 920 0.017 0.019 0.019 0.023 0.029 0.031 0.026 

3 920 0.038 0.040 0.041 0.047 0.052 0.055 0.047 

4 920 - 0.017 0.020 0.024 0.022 0.019 0.020 

5 900 - 0.032 0.036 0.043 0.042 0.042 0.030 

6 540 0.027 0.031 0.036 0.041 0.050 0.044 0.031 

7 540 0.044 0.045 0.051 0.054 0.061 0.055 0.050 

8 540 0.015 0.017 0.021 0.025 0.024 0.023 0.020 

9 540 0.020 0.024 0.028 0.032 0.033 0.035 0.031 

10 490 - 0.021 0.024 0.029 0.030 0.031 0.025 

11 350 0.031 0.034 0.037 0.042 0.050 0.049 0.043 

12 350 - 0.028 0.033 0.037 0.037 0.029 0.024 

13 280 - 0.033 0.038 0.042 0.046 0.035 0.033 

14 240 0.017 0.018 0.021 0.022 0.024 0.025 0.022 

15 240 0.023 0.028 0.036 0.038 0.042 0.039 0.029 

16 240 - 0.055 0.056 0.065 0.068 0.062 0.050 

17 240 - 0.032 0.032 0.037 0.041 0.037 0.030 

18 240 0.017 0.019 0.023 0.024 0.024 0.021 0.018 

19 240 - 0.028 0.030 0.030 0.030 0.025 0.027 

20 210 - 0.036 0.039 0.047 0.051 0.050 0.042 

21 170 0.028 0.033 0.038 0.032 0.027 0.025 0.021 

22 130 0.017 0.018 0.023 0.022 0.021 0.020 0.018 

 

The coastal aerosol band (Band 1) is only presented in Landsat 8 OLI images. Most of the 

analyzed satellite images are from Landsat 7 ETM+ and do not have the reflectance value in the 

aerosol band. Thus, some band ratios cannot be calculated and are presented with a dash in Tables 

1 and 2. Once we obtained each band's reflectance values, band ratios (Table 2) were calculated to 

analyze their magnitude differences [22]. 

 

Table 2. Band ratio of satellite data matching in-situ measurement dates. 

Band 

ratios 

Ratios in matching dates 

1 2 3 … 20 21 22 

b1/b2 - 0.908 0.946 … - 0.864 0.958 
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b1/b3 - 0.908 0.913 … - 0.740 0.753 

b1/b4 - 0.753 0.806 … - 0.894 0.759 

b1/b5 - 0.586 0.723 … - 1.031 0.808 

b1/b7 - 0.664 0.808 … - 1.342 0.950 

b2/b1 - 1.101 1.057 … - 1.157 1.044 

b2/b3 0.859 0.999 0.965 … 0.916 0.856 0.786 

b2/b4 0.686 0.829 0.852 … 0.759 1.035 0.793 

b2/b5 0.611 0.645 0.764 … 0.696 1.192 0.843 

b2/b7 0.624 0.731 0.855 … 0.862 1.552 0.992 

b3/b1 0.000 1.101 1.095 … 0.000 1.352 1.328 

b3/b2 1.164 1.001 1.036 … 1.091 1.169 1.273 

b3/b4 0.798 0.829 0.883 … 0.828 1.209 1.009 

. . . . … . . . 

. . . . … . . . 

. . . . … . . . 

b7/b1 0.000 1.506 1.237 … 0.000 0.745 1.053 

b7/b2 1.603 1.368 1.170 … 1.160 0.644 1.008 

b7/b3 1.377 1.368 1.129 … 1.064 0.551 0.792 

b7/b4 1.099 1.134 0.997 … 0.881 0.666 0.799 

b7/b5 0.979 0.883 0.894 … 0.807 0.768 0.851 

b7/b6 0.732 0.827 0.853 … 0.837 0.842 0.919 

b1/b6 - 0.549 0.689 … - 1.130 0.873 

b2/b6 0.457 0.605 0.729 … 0.722 1.307 0.912 

b3/b6 0.532 0.605 0.755 … 0.787 1.528 1.160 

b4/b6 0.666 0.729 0.855 … 0.950 1.263 1.150 

b5/b6 0.748 0.938 0.954 … 1.037 1.096 1.081 

b6/b5 1.337 1.067 1.048 … 0.964 0.912 0.925 

 

Four regression models were applied (linear, quadratic, logarithmic, and exponential) to study 

the relationship between fecal coliform samples (dependent variable) and the band ratios 

(independent variable). The relationships were measured using Karl Pearson's correlation 

coefficient (r in Equation (4)) [23].   

 

                                                   𝑟 =
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

i=1

√[∑ (𝑋𝑖−�̅�)2𝑛
i=1 ][∑ (𝑌𝑖−�̅�)2𝑛

i=1 ]
                                                    (4) 

 

Finally, the best-fit regression model was used to generate maps of fecal coliforms in Pucusana 

Bay surroundings according to available satellite data.  

3.  Results 

3.1 Statistical analysis of correlation (r) 

The relationships between the reflectance values and the in-situ measurements were measured 

using Karl Pearson's correlation coefficient. The results are shown in Table 3. The first row shows 

each band, and the next row shows its correlation with the in-situ fecal coliform measurements. 

The subsequent rows show the band ratios and their correlation with the in-situ coliform 

measurements. The highest correlation coefficient has an "r" of 0.61 and corresponds to the band 

ratio b7/b2. SWIR 2 (2.1- 2.3 microns) is band 7 for Landsat 8 OLI and Lansat 7 ETM+. The blue 

band (0.45 - 0.515 microns) is band 2 on Landsat 8 OLI, and it is band 1 on Landsat 7 ETM+ [19].     
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Table 3 Pearson's Correlation coefficient of the relationships between the reflectance values and 

the in-situ measurements of fecal coliform. 

Band b1 b2 b3 b4 b5 b6 b7 

r 0.31 0.16 0.22 0.36 0.36 0.52 0.51 

Band ratio b1/b2 b1/b3 b1/b4 b1/b5 b1/b7 b2/b1 b2/b3 

r 0.11 0.13 -0.34 -0.47 -0.49 -0.11 -0.17 

Band ratio b2/b4 b2/b5 b2/b7 b3/b1 b3/b2 b3/b4 b3/b5 

r -0.55 -0.47 -0.52 -0.10 0.15 -0.48 -0.40 

Band ratio b3/b7 b4/b1 b4/b2 b4/b3 b4/b5 b4/b7 b5/b1 

r -0.49 0.34 0.58 0.51 -0.18 -0.35 0.49 

Band ratio b5/b2 b5/b3 b5/b4 b5/b7 b6/b1 b6/b2 b6/b3 

r 0.48 0.39 0.17 -0.28 0.56 0.61 0.59 

Band ratio b6/b4 b6/b7 b7/b1 b7/b2 b7/b3 b7/b4 b7/b5 

r 0.46 0.15 0.57 0.61(*) 0.57 0.41 0.29 

Band ratio b7/b6 b1/b6 b2/b6 b3/b6 b4/b6 b5/b6 b6/b5 

r -0.11 -0.34 -0.51 -0.50 -0.37 -0.38 0.44 

3.2 Regresion model fit 

The regression model was performed using the in-situ measurements of fecal coliform and the 

Band ratio with the highest correlation coefficient. The b7/b2 band ratio yielded the highest 

correlation coefficient and was selected for further analysis. Four regression models were applied 

(linear, quadratic, logarithmic, and exponential) to study the relationship between fecal coliform 

samples (dependent variable) and the b7/b2 band ratio (independent variable). The coefficient of 

determination (R2) was calculated for each regression model. As a result, the exponential 

regression model (Figure 3) had an R2 of 87% (Table 4) and was selected as the best-fit regression 

model (Equation (8)). Then, the prediction error of Equation 8 was calculated by subtracting the 

measured value and the predicted measured value in percentage (Table 5).  

 
Figure 3 Exponential regression fit of the b7/b2 band ratio and the measured fecal coliform 

values. 
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Table 4 Regression model' equations of the b7/b2 band ratio and the measured fecal coliform 

values. 

Regression R2 (%) Equation  

Linear 75 1063X-737.1  (5) 

Quadratic 86 126X^2-1579X+568 (6) 

Logarithmic 33 845.5Log(X)+272.9 (7) 

Exponential (*) 87 37.52Exp (2.268*X)-101.8 (8) 

(*) Best-fit regression model 

Where:  

Y= Fecal coliform concentration (MPN/100ml) (most probable number per 100 mL)                                                    

X= b7/b2 band ratio reflectance. 

 

Table 5 Prediction error of Equation 8 for estimating fecal coliform values (MPN/100ml). 

N° 

Sample 

Measured 

values  

Predicted 

measured 

value from 

Equation (8)  

Error 

(%) 

N° 

Sample 

Measured 

values  

Predicted 

measured 

value from 

Equation (8) 

Error 

(%) 

1 1300 1321 -2% 23 130 233 -79% 

2 920 734 20% 24 93 84 10% 

3 920 614 33% 25 79 288 -265% 

4 920 654 29% 26 79 304 -284% 

5 900 838 7% 27 70 129 -85% 

6 540 467 14% 28 33 321 -874% 

7 540 489 9% 29 33 178 -440% 

8 540 399 26% 30 30 240 -701% 

9 540 607 -12% 31 22 142 -546% 

10 490 450 8% 32 17 126 -640% 

11 350 339 3% 33 11 74 -576% 

12 350 343 2% 34 8 388 -4748% 

13 280 257 8% 35 7 87 -1143% 

14 240 203 15% 36 6 37 -520% 

15 240 297 -24% 37 5 338 -6652% 

16 240 195 19% 38 2 193 -9563% 

17 240 219 9% 39 2 148 -7298% 

18 240 241 0% 40 2 103 -5031% 

19 240 224 6% 41 2 207 
-

10252% 

20 210 227 -8% 42 2 28 -1276% 

21 146 122 14% 43 2 111 -5455% 

22 130 242 -86%     

 

Fecal coliform concentration estimation maps were obtained using the best-fit regression model 

(Equation 8) and GIS tools. The reflectance values of bands 2 (blue) and 7 (SWIR 2) in the satellite 

images of the Pucusana Bay were transformed using the regression model using the QGIS 

software. As a result, fecal coliform concentration estimation maps were obtained for different 

satellite images and dates. Color gradient quantified the distribution of fecal coliforms in the study 

area. As a result, the 2010 map (Figure 4) shows a low fecal coliform concentration near station 

E-02. Next, the 2015 map (Figure 5) presents an increase in the presence of fecal coliform in the 
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area. And in the 2021 map (Figure 6), higher fecal coliform concentrations existed near the Bay 

area. In-situ fecal coliform measurements are not publicly available to date yet. However, we were 

able to estimate those concentrations using satellite images indirectly.   

 

 

 

 

 

 

Figure 4 Estimated fecal 

coliforms in Pucusana Bay 

near Lima using Lansat 7 

satellite image from 

February 8, 2010. 

 

 

 

 

 

 

Figure 5 Estimated fecal 

coliforms in Pucusana Bay 

near Lima using Lansat 8 

satellite image from 

January 29, 2015. 

 

 

 

 

 

 

Figure 6 Estimated fecal 

coliforms in Pucusana Bay 

near Lima using Lansat 8 

satellite image from March 

18, 2021. 
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4.  Discussion 

For the Pucusana Bay and its surroundings, water is considered quality for primary recreational 

contact [25] when fecal coliforms are less than 200 MPN/100ml [26]. For secondary recreational 

contact (USEPA, 2012), fecal coliforms should not exceed 1000 MPN/100ml [26]. The results 

show that fecal coliform concentration between 2010 and 2021 has increased near the Pucusana 

Bay areas, which is worrisome. Current developments and the regression model (Equation (8)) can 

be used by health authorities to track in near-realtime the changes of fecal coliform in the Bay 

The results showed that the regression model error decreased as the coliform concentration 

increased. It is noticed that the regression model error grows substantially for concentration values 

lower than 80 MPN/100ml. So, the regression model can be suitable for monitoring water quality 

exceeding primary or secondary recreational contact tolerances.  

Since higher concentrations of fecal coliform had higher reflectance values, the high reflectance 

of shallow water can mislead the calculations and error increase. To prevent miscalculations and 

reduce errors, in this study, the analysis of the regression model restricted the reflectance values to 

lower than 1600 MPN/100ml. This limit coincides with the threshold values of the in-situ 

measurements data of fecal coliform [17]. 

5.  Conclusions 

The fecal coliform concentration has increased near the Pucusana Bay areas in the last decade. 

Some causes can be urban growth, direct wastewater discharge, inefficient sanitary systems, etc. 

The consequence of this pollution is the increase in health risks for users of the Bay. The results 

of this study can be used by health authorities to track the changes in fecal coliform in the Bay in 

near-real-time. 

This study presented a functional method to estimate concentrations of fecal coliforms in 

coastal areas using publicly available satellite data. Implementing this methodology can be cost-

effective for monitoring fecal coliform presence in coastal waters. Hence, it could help find 

locations where structural or non-structural remedies for sanitation are needed. Eventually, it will 

contribute to Pucusana Bay's population wellbeing. Therefore, Pucusana Bay should improve the 

water quality management of its coastal marine waters to reduce the consistent pollution increase 

shown by the regression model implemented in this study. 

The present study achieved the goal of estimating concentrations of fecal coliforms (dependent 

variable) in coastal areas using publicly available satellite data (independent variable) and 

comparing four well-known regression models. Future work to improve the estimation of fecal 

coliforms values can include implementing other image processing techniques such as intelligent 

optimization techniques with fuzzy entropy [27], salp swarm algorithms [28], signal processing 

techniques for enhanced feature selection and higher classification accuracy [29], Aquila optimizer 

and arithmetic optimization algorithms [30], etc.  
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