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Due to good maneuverability, UAVs and vehicles are often used for environment perception in smart cities. In order to improve
the efficiency of sensor data sharing in UAV-assisted mmWave vehicular network (VN), this paper proposes a sensor data sharing
method based on blockage effect identification and network coding. The concurrent sending vehicles selection method is proposed
based on the availability of mmWave link, the number of target vehicles of sensor data packet, the distance between a sensor data
packet and target vehicle, the number of concurrent sending vehicles, and the waiting time of sensor data packet. The construction
method of the coded packet is put forward based on the status information about the existing packets of vehicles. Simulation
results demonstrated that efficiency of the proposed method is superior to baseline solutions in terms of the packet loss ratio,
transmission time, and packet dissemination ratio.

1. Introduction

With the development of 5G technology, the arrival of 6G
communication technology will further promote the process
of smart city. Application of smart transportation, smart
logistics, smart medical care, and smart manufacturing and
other related technologies have greatly changed people’s
lifestyles. The combination of 5G and related technologies
such as remote control, remote operation, and machine
vision [1, 2] will make digital workshops and smart factories
a reality. 5G combined with unmanned vehicle transporta-
tion and intelligent robotics will enable unmanned monitor-
ing and scheduling of the logistics process [3, 4], which will
greatly improve current urban logistics efficiency. Applica-
tion of 5G in intelligent traffic control and autonomous
driving makes road condition monitoring, congestion guid-
ance, intelligent parking, high-precision positioning, and
emergency accident handling more efficient and convenient
[5, 6]. With the aid of 5G communication technology, real-

time monitoring of patient, remote surgery, and nursing
guidance will become a reality [7, 8], and people can enjoy
higher quality of medical services.

In various application scenarios of smart city, relevant
sensing technologies play a very important role. In order to
achieve efficient urban environmental data sensing, vehicle-
based data sensing is a common solution; it plays an
important role in the construction of smart city. Relevant
equipment can be installed on the vehicle to sense the
traffic information on the road, and an efficient traffic
scheduling scheme can be made based on the current traf-
fic information [9, 10]. Different sensors are installed on
the vehicle to sense the current road and obstacles in real
time [11, 12], which is the current implementation solu-
tion for autonomous driving. Sensors and corresponding
devices installed on multiple vehicles can be applied to
identify and locate the persons who owned the special
identity [13, 14], which can make the urban life safer
and more convenient.
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Sensing technology based on vehicular networks plays an
important role in the construction of smart city. Multiple
vehicles cooperating with each other to accomplish a specific
sensing task is very common, and the sharing of sensing data
among multiple vehicles can achieve a larger range of envi-
ronmental sensing and monitoring. Vehicles can take more
effective control measures based on these sensing data. In
order to improve the sharing efficiency of sensor data, the
paper proposes a UAV-assisted sensor data sharing scheme
for mmWave VN based on link availability identification
and network coding technology to improve the data distri-
bution efficiency. The main contributions of this paper are
as follows.

(i) The paper proposes the concurrent sending vehicles
selection method based on the availability of
mmWave link, the number of target vehicles, the
distance between sensor data packet and requested
vehicles, and the waiting time of sensor data packet,
which can improve the efficiency of sensor data
sharing

(ii) To improve the efficiency of sensory data sharing,
the paper designs a data distribution method based
on network coding techniques. Construction
method of coded packet is proposed, which can
improve the efficiency of the multiple antennas in
mmWave VN

(iii) Simulation results showed that the proposed method
improves the efficiency of sensor data sharing of
mmWave VN in term of time consumed and packet
loss ratio

The rest of the paper is organized as follows. Section 2
introduces the related work; Section 3 introduces the system
model. Section 4 introduces sensor data dissemination
method based on network coding. Simulation and result
discussion are presented in Section 5; Section 6 concludes
this paper.

2. Related Work

2.1. Data Sensing Based on VN. Vehicles as a carrier of
sensors for sensing the urban environment is a common
solution. To accomplish the data collection from sensors
deployed in different locations in urban, data forwarding
schema based on the probability of a vehicle to reach a road
side unit was proposed in the literature [15]; a distributed
age-aware data collection scheme was proposed based on
Lyapunov optimization technique in the literature [16],
including a sampling method with a threshold at the source
vehicle and a data forwarding strategy based on learning. For
the traffic data collection in urban scene, P. Salvo et al. pro-
posed a traffic data collection method based on LTE and
V2V [17], and the way of data collection can switch between
LTE and V2V according to the vehicle density.

In order to meet the requirements of ITS applications for
accuracy and timeliness of sensor data, while achieving effi-
cient use of bandwidth resources, W. Nie et al. formalized

the problem as the minimized communication overhead
problem [18] and proposed two different solutions with
mixed-integer linear programming and deviation-detection
method. An adaptive vehicle clustering mechanism and
online parameter adjustment method were designed in [19]
to satisfy the ITS requirements for accuracy and timeliness
of sensor data.

As to sensor data sharing in vehicular networks with the
mmWave communication technology, X. Chen et al. pro-
posed the graph-based routing selection mechanism [20],
and heading vehicles are responsible for the selection of
the transmission and receiving vehicles. To solve the prob-
lem that the communication performance is vulnerable to
blocking and interference effects with the mmWave in
VNs, a distributed dissemination mechanism was proposed
with the consideration of blocking and interference effect
to improve the efficiency of sensor data distribution [21].
For efficient data access in urban vehicle sensing networks,
hybrid network architecture based on dedicated short-
range communication and vehicular ad hoc network was
proposed in the literature [22], and duplicated data suppres-
sion mechanism was designed based on signaling procedure
and executed in distributed way among vehicles. As to UAV-
assisted data dissemination in V2X networks, dynamic
trajectory scheduling algorithm was designed for UAV to
complete the data caching in the proactive caching phase,
and relay selection method was proposed to improve the
efficiency of data dissemination through V2V and V2I in
the data dissemination phase [23]. Y. Meng et al. proposed
a network architecture based on information-centric net-
working [24] and designed a distributed data caching
strategy to alleviate the system pressure caused by user
requests. Due to the good maneuverability, UAVs are often
used in different IoT applications.

2.2. UAV-Assisted Sensor Data Collection and Dissemination.
In UAV-assisted data collection scenarios, UAV deployment
problem was studied in the literature [25] to maximize the
available time of the user uplink in disaster relief scenarios;
user devices were clustered and then each cluster was served
by one UAV. The age of information and the power con-
sumption of UAV are taken into consideration in the litera-
ture [26] and the data collection problem was formalized as
a mixed-integer linear programming problem to be solved.
To achieve efficient data collection in IoT, UAV-assisted
data collection with NOMA was proposed in [27], and the
location of UAV, sensor grouping, and power control are
jointly considered in the solution. As to the scenario that
sensors located on a straight line, the data collection inter-
vals, the UAV’s speed, and the sensors’ transmit powers
needed to be considered simultaneously to minimize flight
time of the UAV to complete the data collection [28]. For
UAV-assisted integrated sensing and communication sys-
tem, a new sensing and communication mechanism was
designed in the literature [29] to maximize the user available
rate with the joint optimization of UAV trajectory, transmit
precoder, and sensing start instant.

As to UAV-assisted sensor data distribution scenario,
the flight track and speed, sending power, and data demand

2 Wireless Communications and Mobile Computing



of sensors were needed to be considered simultaneously to
minimize the data distribution time [30, 31]; the joint opti-
mization problem was simplified into a convex optimization
problem for solution. Multi-UAV-assisted data distribution
for sensors in post-disaster areas was studied in the literature
[31]. To realize the efficient data distribution to the receiving
nodes within a specific region, file dispatching scheme based
on graph theory with nonorthogonal multiple access
(NOMA) was proposed in [32]; ground users and UAV
can share the time-frequency resource block simultaneously.
In the scenario where the UAV and the primer user shared
the spectrum resources to distribute data to the sensors, to
maximize the minimum number of bits of data received by
the sensors while ensuring the communication quality of
the primer user, the optimization problem was formalized
as a mixed-integer non-linear program [33] and the corre-
sponding convex approximation algorithm was designed to
solve it.

The blocking effect in mmWave VN is considered in the
above related work, but the network coding technique is not
introduced in the solution. In this paper, we design a new
UAV-assisted sensing data distribution scheme based on
link availability identification and network coding tech-
niques. Concurrent sending vehicles selection mechanism
and coded packet construction method are proposed in this
paper to improve the efficiency of sensor data sharing in
mmWave VN.

3. UAV-Assisted Data Sensing Based on
Vehicular Networks

3.1. System Model. Assuming that vehicles are equipped with
sensing device and millimeter wave antenna, sensing device
is used to sense the environment, such as road conditions,
accident scene, and emergency vehicles, millimeter wave
antenna is used to share the sensor data with other vehicles,

and vehicles exchange the sensor data with each other to
obtain complete information about surrounding environ-
ment information. The information can be used to make
decisions, such as avoiding traffic accident and congested
roadways. The vehicles use mmWave directional antenna
in D2D communication. One data transmission, there are
up to M receiving vehicles that can receive the transmitted
data simultaneously, because vehicles use multiple antennas
to send data through M RF chains [21].

Environment sensing procedure consists of two phases,
sensing data acquisition and distribution. In the sensing
stage, vehicle uses the sensors installed on the vehicle to
sense the surrounding environment and then reports the
sensor data to the UAV with the sub 6GHz link. In the stage
of data dissemination, UAV gives the corresponding sched-
uling solution according to the sensor data owned by each
vehicle located in its coverage and informs the vehicle with
the scheduling solution, and then vehicles use mmWave
communication technology to distribute or receive the
sensor data in D2D at the corresponding time slot according
to the scheduling solution distributed by UAV. The struc-
ture of the system is shown in Figure 1. After this round of
data sharing is completed, then vehicles perform a new
round of data sensing and then report the sensor data
to UAV, then UAV distributes new scheduling solution
to vehicles, and vehicles share the new sensor data with
each other to realize the perception of the surrounding
environment.

3.2. Link Availability Identification. In the stage of sharing
sensor data, vehicles broadcast sensor data to neighbor
vehicles with mmWave communication technology. The
communication link is prone to blockage from the interme-
diate vehicles, which cause the failure of data transmission.
So UAV needs to consider the link availability among the
vehicles when make the scheduling decisions. As shown in

Sub-6G link
MmWave link

UAV

Figure 1: Scenario of UAV-assisted sensor data dissemination.
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Figure 2, v1, v2, and v3 are all neighboring nodes of vs node,
and the communication link between vs and v3 is blocked by
vehicle v1, which results in v3 cannot receive the data sent by
vehicle vs successfully.

Suppose the length of vehicle v1 is Lv, take the center
position of vehicle v1 as the center and make a circle with
Lv/2 as the radius; if the LOS path between the sending node
and the receiving node passes through the circular area, then
the link between the sending node and the receiving node is
blocked by vehicle node v1; otherwise, the link is not blocked
by vehicle v1, as shown in Figure 2, and v2 can successfully
receive the data sent by vs node, but v3 cannot. Based on
the coordinates of vs, v1, and v3, and the length Lv of v1, it
can be determined whether the sending signal of vs is
blocked by v1. Using this method, we can get the set of effec-
tive neighbor nodes and blocked neighbor nodes of any
sending vehicle. During a time slot, multiple vehicles may
send data simultaneously, vehicle may receive the data from
multiple vehicles simultaneously, and the receiving noise of
a vehicle can be got according to formula (1) [21]. Pj means
the received power, Pi means the transmission power, Gi and
Gi indicate the gain of transmit antenna and received
antenna, respectively, L0 denotes the reference path loss at
1m, and rij is the distance between the transmitting vehicle
and receiving vehicle. If the received noise strength is greater
than a threshold, the vehicle cannot receive any data cor-
rectly; the vehicle is regarded as the interfered node.

3.3. Formalization of Problem. When a vehicle broadcasts
data, at most M vehicles can receive the sent data. The data
set consisting of sensed data of all vehicles is Ltotal = fp1,
p2,⋯, pKg. In a certain time slot, sending vehicles are
selected to send the corresponding coded data packets
based on the existing data items located on vehicles and
the link availability between vehicles. It is expected to
spend the minimum number of time slots so that each
vehicle gets all the data items in Ltotal, and the blockage
and interference effects are needed to be considered during
the schedule.

Now assume that the existing data items on the vehicles
are shown in Figure 3. An edge between two nodes indicates
that a link between the two vehicles is available. v1 owns the
sensor data items set L1 = fp1, p5g, v2 owns the sensor data
items set L2 = fp1, p2, p3g, v3 owns the sensor data items
set L3 = fp3, p5g, v4 owns the sensor data items set L4 =
fp4g, v5 owns the sensor data items set L5 = fp3, p5g, v6

owns the sensor data items set L6 = fp6g, v7 owns the
sensor data items set L7 = fp1, p2g, and the total sensor
data item set Ltotal = fp1, p2, p3, p4, p5, p6g.

Assume that when a vehicle sends data, at most 3 vehi-
cles can receive the sent data. In the current time slot, v1
sends coded packet p1 ⊕ p5, v2, v3, and v5 are the receiving
vehicles, and v2 receives the coded packet p1 ⊕ p5 and then
can decode the required packet p5 with the existing packets
fp1g; v3 decode the required packet p1 with the existing
packet fp5g; v5 can decode the required packet p1 with the
existing packet fp5g. Since v1 being transmitting state, v4
and v6 are in the state of interference; there are no other
optional vehicles as sending vehicles in this time slot. In
the next time slot, the existing packets state of vehicles has
changed, and then the new sending nodes and correspond-
ing encoded packets are scheduled according to the updated
state information with the expectation that all vehicles can
get all the sensor data items in Ltotal with the minimum
number of time slots spent.

Pj =
PiGiGj

L0r
α
ij

: ð1Þ

4. Sensor Data Dissemination Based on
Network Coding

4.1. Selection of Concurrent Sending Vehicles. For the distri-
bution of sensor data in each time slot, it is necessary to
determine the concurrent sending vehicles and the corre-
sponding packets to be sent. When selecting the sending
vehicles, the distance to the vehicle which has the missing
sensor packets, the generation time of sensor data, the num-
ber of valid receiving vehicles, and the number of concurrent
sending vehicles need to be considered. wn,i is the weight

vs

v1

v2

v3

Lv

R

𝜃

Figure 2: Link availability identification.

v3

v1

v2 v4

v5

v6
L3 = {p3, p5}

L1 = {p1, p5}
L2 = {p1, p2, p3} L4 = {p4}

L5 = {p5, p3}

L6 = {p6}

v7

L7 = {p1, p2}

Figure 3: Request state graph of vehicles.
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Require: VehicleSet
Ensure: SenderSet

1: Set AvaVelSet =VehicleSet;
2: while ðAvaVelSet ≠NullÞ
3: Wmax = 0;
4: for ðvi ∈ AvaVelSet:Þ
5: if ðAvaVelSet == VehicleSetÞ
6: Calculate Wi of vi according to formula (4);
7: else
8: CalculateWi of vi according to formula (5);
9: end if
10: if ðWi >WmaxÞ
11: Wmax =Wi;
12: end if
13: end for
14: Select vk with the Wmax and add vk in

SenderSet;
15: Calculate Inf erenceSet with the current

SenderSet;
16: AvaVelSet = AvaVelSet − SenderSet −

Inf erenceSet;
17: end while
18: return SenderSet;

Algorithm 1: Concurrent sending vehicles selection.

corresponding to the vn sending packet pi calculated with
formula (2). disn,pi means the max shortest distance between
vn and the vehicles lacking of pi, which can be achieved with
Floyd’s algorithm. tpi ,n means the waiting time of the packet
pi on vehicle vn, currn,pi means the number of the effective
neighbor receiving vehicles when vn sends the packet pi,
and εn,pi means the number of concurrent sending vehicles

when vn sends the packet pi. n
pi
w means the vehicle that is

lacking of pi and has the max shortest distance between itself
and the vehicle vn.

wn,i = disn,pi + tpi ,n + currn,pi + εn,pi , ð2Þ

disn,pi = distance n, npiwð Þ, ð3Þ

wn =max wn,ið Þ, ð4Þ

wn = sizeof Qmax
vn

� �
: ð5Þ

The selection process of concurrent transmitting nodes
is shown in Algorithm 1. The vehicle with max weight wn
according to formula (4) is selected as the first sending node
that is shown in lines 5 to 6. After the first sending vehicle is
determined, its receiving vehicles and the corresponding
interfered vehicles set are also determined which are denoted
as InferenceSet. Remove selected sending vehicles, receiving
vehicles, and interfered vehicles from the set of the current
available vehicles to get the new available vehicle set
AvaVelSet, which is shown in lines 15 to 16. Calculate new
weight for the vehicle in the new available vehicle set
AvaVelSet with formula (5), which is shown in line 8, Qmax

vn
is the maximum clique of decoding capability graph (DCG)
of vn. The construction process of decoding capability graph
is discussed in Section 4.2. Select the vehicle with the maxi-
mum weight as the second sending node and then update
the set of sending vehicle set SenderSet, the set of receiving
vehicles, and the set of interfered vehicles InferenceSet.
Lastly, the updated available vehicles set AvaVelSet can
be achieved. Repeat the procedure to select the new con-
current sending vehicle until the set of available vehicles
AvaVelSet is empty, and finally the set of concurrent
sending vehicles SenderSet can be achieved; the details is
shown as Algorithm 1.

case1

pj requested by vi
pl requested by vk
i ≠ k

l = j

,

8>>>>><
>>>>>:

case2

pj requested by vi
pl requested by vk
pl owned by vi
pj owned by vk
i ≠ k

l ≠ j

8>>>>>>>>>>><
>>>>>>>>>>>:

: ð6Þ

4.2. Construction of Decoding Capability Graph. Decoding
Capability Graph of vnðDCGvn

Þ is constructed based on the
existing packets and its valid neighbor nodes. Firstly, the
vertex of DCGvn

are generated. If a valid neighbor vehicle vi
missing the packet pj which cached on vn, then the vertex
ϑij is generated, all vertexs in DCGvn

are produced with the
same way. Then, edges of DCGvn

are produced. For any two
vertices ϑij and ϑkl , if they satisfy the cases1 or case2, an edge
is added between ϑij and ϑkl , all edges in DCGvn

are obtained
by this way. case1 means that vehicle vi and vehicle vk miss
the same packet pj which exists on vn; case2 means that
vehicle vi and vehicle vk each has the missing packet of the
other. Vehicle vi has packet pl requested by vehicle vk, vehicle
vk has packet pj requested by vehicle vi, and both pj and pl
exist on vehicle vn.

An example is given to illustrate the procedure of creat-
ing DCG for a vehicle. Suppose that vehicle v2 has valid
neighbors v1, v3 and v7, as shown in Figure 3. The set of
existing sensor packets of vehicle v2, v1, v3, v7 are L2 = fp1,
p2, p3g, L1 = fp1, p5g, L3 = fp3, p5g, L7 = fp1, p2g separately.
Construct the DCG for v2 with the above method, we can
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get DCGv2
shown as Figure 4. Maximum clique of a graph

can be achieved with the heuristic algorithm in [34]. Maxi-
mum clique of DCGv2

is Qmax
v2

= {ϑ13, ϑ31, ϑ73} which locating
in dashed line, the weight of v2 is 3 according to formula (5).
Packets requested of Qmax

vn
is fp1, p3g. If v2 broadcast the

coded packet Pcoded = p1 ⊕ p3, v7 can decode the packet p3
with the existing packet p1, v3 can decode the packet p1 with
the existing packet p3, v1 can decode the packet p3 with the
existing packet p1.

4.3. Data Dissemination of Selected Vehicles. Once the
concurrent sending nodes in the system are identified, the
packets to be sent by each sending node need to be deter-
mined in order to achieve efficient sharing of sensor data.
Based on the current identified sending vehicles, receiving
vehicles, and interfered vehicles, UAV can get the effective
neighbor nodes set Neighvn of any vehicle vn. Then, the
DCG of any vehicle vn can be constructed based on the exist-
ing packets and missing packets of its effective neighbor
nodes and the existing packets set of vn.

When vehicle disseminates sending sensor data, the first
selected vehicle will broadcast the packet pi with the maxi-
mum weight according to formula (2) that is shown in lines
1 to 4. If it is not the first selected vehicle, for any existing
packet pi of vn, calculate the number of neighbor vehicles
that lack the packet pi among its effective neighbor vehicles;
if the number of neighbor vehicles that lack the packet pi is
greater than or equal to M, then vn broadcasts the packet pi
directly to M neighbor nodes among effective neighbor
nodes which lack the packet pi, which is shown in lines 5
to 11. For every packet pi owned by vn, if the number of
effective neighboring nodes lacking it is less than M, and
then find the maximum clique Qmax

vn
of DCGvn

; if the number
of vertices of Qmax

vn
is greater or equal to M, choose any M

vertices from Qmax
vn

, and the requested packets of the selected
M vertices from Qmax

vn
are used to construct the coded packet

Pcoded; and lastly, vn broadcasts the coded packet Pcoded to
the neighbor vehicles associated with the selected M vertices
from the maximum clique Qmax

vn
, as thown in lines 12 to 16.

If the number of vertices of Qmax
vn

is less than M, construct
the coded packet Pcoded with the requested packets of the
M vertices in the maximum clique Qmax

vn
, and lastly, vn

broadcasts the coded packet Pcoded, which is shown in lines
17 to 21. The procedure of vehicle broadcast is described
as Algorithm 2. After the data sharing of the current time
slot, update the data state of vehicles; and then the new set
of sending nodes is determined based on the updated data
state information to complete the sensor data distribution
for the next time slot. Repeat the procedure until each vehi-
cle gets all the sensor data.

4.4. Complexity Analysis. Assuming that there are N vehicles
and K sensory packets, concurrent sending nodes are
selected based on the weight of vehicle. The distance
between vehicle where the sensory packet is located to the
vehicles lacking of the packet needs to be obtained, which
can be resolved by Floyd’s algorithms, and the computa-

tional complexity is OðN3Þ. The subsequent sending nodes
are determined according to the maximum clique of DCG,
which can be achieved by heuristic algorithm in [35], and
its computational complexity is OðN2KÞ.

In the sensor data dissemination phase, if the sending
node is the first one chosen, the sending packet is deter-
mined according to formula (2), and the computation com-
plexity of it is OðN3Þ, which is same as above. If the sending
node is not the first one chosen, the sending packet is con-
structed based on the maximum clique of DCG, and the
computation complexity of the procedure is OðN2KÞ.

5. Performance Evaluation

The simulation scenario is a 16m × 500m road consisting of
4 lanes, and the number of vehicles on each lane follows
Poisson’s distribution with density of λv. Control signals
between UAV and vehicles are transmitted using sub-
6GHz omni-directional antenna, the inter-vehicle commu-
nication is carried out using mmWave directional antennas,
the data plane is based on 802.11ad implementation in liter-
ature [36], and the simulation parameters are shown in
Table 1. The proposed method BADDNC in this paper is
compared with methods BAMD [21], w/o LAD [21], and
GBRS [20] in terms of packet loss rate, transmission time,
and packet distribution ratio. BAMD considers millimeter
wave blocking effect but does not use coded distribution
technology; w/o LAD is a simplification of BAMD, in which
there is no link availability identification process; sending
vehicle selection of GBRS is based on the utility value of
vehicle nodes, which takes into account vehicle distance,
number of neighbors, and packet queue.

Packet loss rate (PLR) is the ratio of the number of
users who unsuccessfully received the sent packet to the
number of target users, shown as formula (7). Numtar

i is
the number of target users of ith transmission. Numsucc

i
is the number of users who received the packet success-
fully of ith transmission.

PLR = 1 − ∑K
i=1Numsucc

i

∑K
i=1Numtar

i

: ð7Þ

𝜗

𝜗

𝜗 𝜗

𝜗73 12

31 32

13

Figure 4: Decoding capability graph of v2.
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Transmission time (TT) means the time consumed
that each vehicle gets all the sensor data packets, shown
as formula (8). NumDiss is the number of concurrent

1 5 10 15 20 25
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0.7

Pa
ck

et
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ss
 ra

tio

Transmission time (ms)

BADDNC
BAMD

w/o LAD
GBRS

Figure 5: Packet loss ratio when λv = 0:01.

Table 1: Simulation parameters.

Parameters Value

Transmission power of vehicles 30 dBm

Carrier frequency 28GHz

Size of sensor data packet 1600B

Bandwidth of mmWave 2.16GHz

Transmission rate of mmWave link 1Gbps

Antenna gains of vehicles Gt =Gr = 1
Half-power beamwidth of antenna θ = 45∘

Number of RF chains for transmission antenna M = 4
Path loss exponents of channel α = 2:7(LOS)
SNR threshold Pth = 10dB
SINR threshold γ = 5dB
Noise power of vehicles N0 = −174dBm
Interference threshold σ = −54dBm
Time slot interval Δt = 0:0625ms

Require: Sending vehicle SenderSet;
Ensure: Void;
1: while vn ∈ SenderSet do
2: if (vn is the first selected sending vehicle) then
3: vn broadcasts pi with the maximum weight ac-

cording to formula (2);
4: else
5:: Calculate Neighvn of vn according to avai-

lable link identification and interference thresh-
old;

6: while Any packet pi cached on vn do
7: if ðjNeighpivn j> =MÞ then
8: vn broadcasts the packet pi to any M ve-

hicles from Neighpivn ;
9: Return;
10: end if
11: end while
12: vn finds the maxclique Qmax

vn
from DCGvn

;
13: if ðSizeðQmax

vn
Þ> =MÞ then

14: Select any M vetexex from Qmax
vn

;
15: Construct Pcoded with the packets requested

by the selected M vertex;
16: vn broadcasts Pcoded ;
17: else
18: Construct Pcoded with the packets requested

by every vertex from Qmax
vn

;
19: vn broadcasts Pcoded ;
20: end if
21: end if
22: end while

Algorithm 2: Vehicle broadcast.
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transmissions; Δt is the time consumed to complete a
transmission.

TT = NumDiss · Δt: ð8Þ

Packet dissemination ratio (PDR) denotes the ratio of
the number of missing packets that all vehicles have got
and the sum of missing packets of all vehicles, shown as for-
mula (9). Numtcur

vi is the number of missing packets of vehicle
vi at time tcur. Numw

vi
is the number of missing packets of

vehicle vi.

PDR = 1 −
∑vi∈VNum

tcur
vi

∑vi∈VNumw
vi

: ð9Þ

In Figure 5, packet loss ratio of four methods is given
when λv=0.01. During the distribution of sensor data, the
feedback information of link availability will be used for the
next sensor data dissemination. It can be seen from
Figure 5 that both BADDNC and BAMD have a lower packet
loss ratio, because the sending vehicles perform link avail-
ability identification before they disseminate sensor data with
BADDNC and BAMD. In comparison with BAMD and
BADDNC, BGRS and w/o LAD do not perform link avail-
ability identification during the data dissemination process
and have a higher packet loss rate. As the transmission pro-
cess proceeds, more link feedback information is collected
and then the packet loss rate of BGRS and w/o LAD finally
remains at a relatively stable state.

In Figure 6, transmission delay of four methods is given
at different vehicle densities. As can be seen in Figure 6, the
transmission delay of several schemes increases as the vehi-
cle density increases; because as the vehicle density increases,

the amount of sensor data by the vehicles increases, then the
time required to distribute the sensor data increases accord-
ingly. The transmission delay of BADDNC, BAMD, and w/o
LAD is significantly less than BGRS, because these three
methods are able to schedule more concurrent transmission
at each time slot. BADDNC has the smallest data transmis-
sion delay compared to the other three methods because
BADDNC performs an available link identification to dis-
cover available receiving vehicles before each transmission
and also uses a network coding method during data distribu-
tion, which can improve the data distribution efficiency to
some extent. BAMD has shorter distribution delay than
w/o LAD because BAMD performs the available link iden-
tification process before data distribution to select the
neighboring nodes with better link status as the receiving
nodes.

Packet dissemination ratio of several schemes increases
as the transmission time increases, as can be seen in
Figure 7. This is because the number of sensor packets
received by vehicles increases with the transmission time.
The packet dissemination ratio of BADDNC, BAMD, and
w/o LAD is higher than BGRS because these three methods
are able to schedule more concurrent transmissions at each
time slot. BADDNC has the highest packet dissemination
ratio compared to the other three methods because
BADDNC performs an available link identification process
to discover available receiving vehicles before each transmis-
sion and also uses network coding technology during data
distribution, which can increase the number of receiving
vehicles that can successfully receive packets. By this way,
it can improve the efficiency of sensor data distribution.
BAMD has a higher packet dissemination ratio than w/o
LAD because BAMD performs the available link identifica-
tion process before data distribution and selects the
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Figure 6: Transmission delay vs. vehicle density.
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neighboring nodes without the link blockage. The compari-
son between Figures 7 and 8 illustrates that as the number of
vehicle increases, more transmission time is required to
complete the distribution of sensor data. In the case of differ-
ent vehicle densities, the proposed method BADDNC has a
higher packet dissemination ratio and can improve the effi-
ciency of sensor data packet dissemination.

6. Conclusion

The paper proposed a sensor data dissemination method
based on available link identification and network coding
to improve the sensor data sharing efficiency in mmWave
VN. Concurrent sending vehicles selection method are pro-
posed based on the availability of mmWave link, the number

of target vehicles, the distance between sensor data packet
and requested vehicles, the number of concurrent sending
vehicles, and the waiting time of sensor data packet. Con-
struction method of coded packet is put forward based on
the status information about the existing packets of vehicles.
The proposed method can speed up the sensor data sharing
in mmWave VN. The simulation results indicate that our
proposed sensor data dissemination solution is best when
the efficiency of sensor data dissemination is a real concern
in VN. In the future, the new network coding method will
be explored to facilitate the sensor data dissemination.
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