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Introduction: This project aimed to investigate the association between

biometric components of metabolic syndrome (MetS) with gray matter

volume (GMV) obtained with magnetic resonance imaging (MRI) from a large

cohort of community-based adults (n = 776) subdivided by age and sex and

employing brain regions of interest defined previously as the “Neural Signature

of MetS” (NS-MetS).

Methods: Lipid profiles, biometrics, and regional brain GMV were obtained

from the Genetics of Brain Structure (GOBS) image archive. Participants

underwent T1-weighted MR imaging. MetS components (waist circumference,

fasting plasma glucose, triglycerides, HDL cholesterol, and blood pressure)

were defined using the National Cholesterol Education Program Adult

Treatment Panel III. Subjects were grouped by age: early adult (18–

25 years), young adult (26–45 years), and middle-aged adult (46–

65 years). Linear regression modeling was used to investigate associations

between MetS components and GMV in five brain regions comprising the

NS-MetS: cerebellum, brainstem, orbitofrontal cortex, right insular/limbic

cluster and caudate.

Results: In both men and women of each age group, waist

circumference was the single component most strongly correlated
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with decreased GMV across all NS-MetS regions. The brain

region most strongly correlated to all MetS components was the

posterior cerebellum.

Conclusion: The posterior cerebellum emerged as the region most

significantly associated with MetS individual components, as the only

region to show decreased GMV in young adults, and the region with the

greatest variance between men and women. We propose that future studies

investigating neurological effects of MetS and its comorbidities—namely

diabetes and obesity—should consider the NS-MetS and the differential

effects of age and sex.

KEYWORDS

metabolic syndrome, insulin resistance, central obesity, waist circumference,
magnetic resonance imaging (MRI), voxel-based morphometry (VBM), posterior
cerebellum, cerebellar cognitive affective syndrome (CCAS)

Introduction

Metabolic syndrome (MetS), also known as the insulin
resistance syndrome, systemic metabolic dysfunction, or
syndrome X (Reaven, 1988), is a cluster of clinical risk factors
for cardiovascular disease (CVD) and type 2 diabetes mellitus
(T2DM). These risk factors include central obesity [increased
waist circumference (WC)], elevated fasting plasma glucose
(FPG), triglycerides (TG), blood pressure (BP), and reduced
high density lipoprotein (HDL) cholesterol (Grundy et al.,
2005). MetS and its associated cardiometabolic diseases—
CVD, T2DM, and obesity—are also known to be significantly
associated with cognitive dysfunction (Geijselaers et al., 2014;
Gonzalez et al., 2015) and neurodegenerative diseases such
as Alzheimer’s and vascular dementia (Vanhanen et al., 2006;
Lee and Mattson, 2014; Morris et al., 2014). Indeed, there are
measurable significant negative correlations seen between both
the number and severity of MetS components when measured
against cognition metrics, specifically for tests of executive
function (Yates et al., 2012), processing speed (Reijmer et al.,
2012), reward perception (Cornier et al., 2010; Cameron et al.,
2017), and affect regulation (Hu et al., 2015; Wolf et al., 2016).

Despite numerous studies examining the cognitive effects
of MetS, neuroimaging studies aimed at identifying gray
matter neuroanatomical correlates of MetS are sparse. Existing
neuroimaging literature has focused primarily on white matter
integrity and hyperintensities (Van Bloemendaal et al., 2016),
structures associated with processing speed (Kochunov et al.,
2016), but not with behavior or executive function (Lansley
et al., 2013). Furthermore, there is a sizeable neuroimaging
literature investigating correlations between obesity markers
such as body mass index (BMI), waist circumference and gray
matter volume (Kurth et al., 2013; Janowitz et al., 2015). Many
such studies have often excluded individuals possessing MetS
components as confounders, in effect eliminating subjects with

a higher disease burden who are more likely to experience
neurovascular events and cognitive decline. Furthermore, most
large cohort studies looking at diabetes and obesity have
primarily been conducted in older (>60 years) individuals,
Caucasian and East Asian ethnic cohorts, and have often
employed relatively small sample sizes (30–50 subjects)
(Moulton et al., 2015; Wu et al., 2017).

Age and sex are important sources of variance in any
analysis involving MetS and neuroimaging. It is widely
understood that sex hormones significantly influence fat
metabolism and adipocyte distribution, an influence that also
changes with age. Indeed, metabolic studies have shown
that men tend to exhibit higher levels of triglycerides
and blood pressure, but lower age-adjusted levels of waist
circumference and HDL cholesterol as compared to women
(Ervin, 2009). Effects of MetS also differ between men and
women physiologically (Regitz-Zagrosek et al., 2006) and
cognitively (Laudisio et al., 2008). In one example, Cavalieri
et al. (2010) found that men with increasing number of
MetS components performed worse on memory and executive
function tests than women. Another more recent study showed
that higher waist circumference and mental health symptoms
had a stronger association with dementia in women than in
men (Gong et al., 2021). For this reason, investigating the
effects of MetS on the brain using separate sex-stratified cohorts
is important. Assessing similarities and differences between
the sexes can be accomplished using regression analyses that
adjust for the effects of age and sex. However, we believe that
stratifying groups as independent analyses can be more helpful
in providing valuable insight for clinicians to be mindful of the
differential effects of MetS and its neurocognitive underpinnings
on men vs. women.

Age is also an important risk factor for MetS. One
large epidemiological study of the United States reported that
18.3% of individuals aged 20–39 years met the International
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Diabetes Federation’s criteria for MetS with the prevalence
rising sharply with age. Indeed, 46.7% of those older than
60 years were identified as meeting the diagnostic criteria for
MetS. Importantly, the age of any individual with MetS can be
confounded by the length of time they have met the diagnostic
criteria, and whether meeting such criteria occurred earlier
vs. later in life. The prevalence of MetS is also higher among
minority populations, with Hispanic-Americans and Native
Americans most widely affected (Aguilar et al., 2015). As with
sex, linear regression modeling can adjust for the effects of age.
In fact, it is often considered the sine qua non of such analyses.
However, independent age-stratified analyses may shed light on
whether there are neuroanatomical differences seen in cross
sections of early vs. young vs. middle-aged adults, and whether
age is still a significant co-factor within the stratified age-
groups.

Previously, our lab characterized the neural signature of
MetS (NS-MetS) using a large age- and sex-matched cohort
(n = 208; 37.3 ± 13.2 years, 56.7% women) of Mexican-
American participants, 104 meeting the International Diabetes
Federation criteria for MetS and 104 healthy controls that
did not meet any criteria. Those with MetS were observed to
have lower gray matter volume in specific brain regions as
compared to their age- and sex-matched metabolically healthy
controls. These five chief brain regions included the posterior
cerebellum, brainstem, orbitofrontal cortex, right insula/limbic
structures, and caudate nuclei (Kotkowski et al., 2019; Figure 1).
Interestingly, decreased GMV within the hippocampus was
conspicuously absent from the findings. This was surprising
because the hippocampus is the structure whose degeneration
is touted as the primary feature in the pathophysiology of
Alzheimer’s disease. It is also often the most often alleged culprit
in much of the diabetes and obesity-related dementia literature
(Biessels and Reagan, 2015; Alford et al., 2018).

For the present study, we sought to identify the extent to
which brain regions making up the neural signature of MetS
are related to the biometric components that define MetS. This
will allow us to specify the metabolic underpinnings associated
with reduced gray matter volume in individuals with MetS and
identify how they differ between age-groups and by sex. We
therefore hypothesized that gray matter volume will exhibit an
inverse linear relationship with each MetS components across
our community-based population (with the exception of HDL
cholesterol), implying that the relationship between NS-MetS
GMVs in these regions and individual MetS components lie
on a continuum. We also hypothesized that sex and age would
show variations in the relationship between gray matter and
MetS, crucial factors necessary for the design of future studies
and treatment plans. Moreover, we included whole brain gray
matter and hippocampal gray matter as regions of interest in our
analyses due to their high research interest with the hypothesis
that they will show weaker correlations with MetS components
than NS-MetS regions.

Materials and methods

Participants

The Genetics of Brain Structure (GOBS) dataset is a
cross-sectional imaging archive aimed at localizing, identifying,
and characterizing genes and quantitative trait loci associated
with variations in brain structure and function. To minimize
selection bias, participants were drawn from extended pedigrees
of Mexican American families recruited at random from the San
Antonio, Texas community. Demographic and data acquisition
details have been previously described (Winkler et al., 2010;
Curran et al., 2013; Kotkowski et al., 2019). Briefly, 1,911
individuals were recruited in three data acquisition blocks over
the course of 15 years. The sample in the current manuscript was
selected from the GOBS cohort based on strict inclusion criteria.
Participants must have completed structural MRI scans and
acquired all MetS component metrics: fasting plasma glucose,
lipid panel, blood pressure, and waist circumference. A notable
limitation of this cohort is its lack of more precise glucose
measures in the form of hemoglobin A1c.

Of the 1,911 participants in the GOBS archive, 519 were
excluded due to lack of or inadequate, incomplete, or absent T1-
weighted MRI scans. An additional 557 participants from the
first phase of acquisition were excluded due to a lack relevant
biometric, blood chemistry, and lipid data relevant to MetS.
Thirty Five subsequent participants with a history of stroke,
neurosurgery, dementia, or substance use disorder also were
excluded from the analysis. Finally, 24 individuals 66-years and
older, were excluded because the cohort size, which would have
been termed “older adults,” was not large enough to produce
statistically significant data. This left a total of 776 individuals
in the final sample. These individuals were further sub-divided
arbitrarily into three age-groups of roughly similar size and by
sex as follows: early adult (18–25 years) men (n = 137) and
women (n = 148), young adult (26–45 years) men (n = 137) and
women (n = 183), and middle-age (46–65 years) men (n = 67)
and women (n = 103).

Magnetic resonance imaging

Scans were obtained on a 3T Siemens Tim Trio MRI
scanner at the University of Texas Health Science Center at
San Antonio’s Research Imaging Institute with the aid of an 8-
element high-resolution phase array head coil. A total of seven
high quality T1-weighted 3D structural images were collected
per participant via a TurboFLASH sequence with an adiabatic
inversion recovery pulse (TE = 3.04 ms, TR = 2,000 ms, TI = 795
ms, flip angle = 8◦, NEX = 6; FOV = 200 mm) optimized
to achieve a gray/white contrast of approximately 25% with
signal to noise ratio of 25. Each image contained 0.8 mm3

isotropic voxels and covered the entire brain and cerebellum.
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FIGURE 1

The neural signature of metabolic syndrome (NS-MetS) as defined by Kotkowski et al. (2019). Each indicated region represents one of the five
main clusters that comprise the NS-MetS. Control regions include gray matter densities from the whole brain and hippocampal, neither of
which are part of the NS-MetS.

Scan time per participant for the anatomical T1-weighted 3D
scan totaled 60 min. Afterward, each of the seven MPRAGE
T1-weighted images was motion corrected using a retrospective
motion-correction protocol and averaged to generate a single
high-resolution anatomical image per participant. This method
of acquisition produces high quality images because it breaks
down a long acquisition time into several shorter acquisitions
that are then corrected using inter-scan motion. This is
done by registering images to the third image and forming
a single image that is both averaged and motion-corrected,
thus improving contrast-to-noise ratio and boundary detail
(Kochunov et al., 2006).

Gray matter volume

Brain volume was calculated using the FMRIB Software
Library (FSL) voxel-based morphometry (VBM) pipeline (Good
et al., 2001; Smith et al., 2004). We used Freesurfer for
initial processing with the autorecon1 command that corrects
head motion, normalizes intensities, and skull-strips the
brain for further processing (Fischl, 2012). Skull-stripped
brains were then processed with FSL-VBM (Douaud et al.,
2007). The next step entailed segmenting gray-matter by also
eliminating the influence of white matter and cerebrospinal
fluid and performing a non-linear registration to the Montreal
Neurological Institute (MNI)-152 1 × 1 × 1 standardized brain
space (Andersson et al., 2007). A study-specific template was
then created to which all images were subsequently registered.

Images were then modulated to correct for expansion (or
contraction) resulting from the spatial transformation from
native space to the standard MNI-125 template space. Finally,
gray matter images were smoothed with an isotropic Gaussian
kernel (sigma = 3 mm).

Once processed, normalized gray matter volumes were
extracted from each individual brain by applying region of
interest (ROI) masks for the entire neural signature of metabolic
syndrome (NS-MetS), and each of the five largest NS-MetS
sub-regions, including: the posterior cerebellum, brainstem,
orbitofrontal cortex, right insular/limbic cluster and caudate
(Figure 1). Additionally, we also measured hippocampal and
whole brain ROIs, due to the high interest in these regions in the
MetS, diabetes, and obesity literature. Normalized values of gray
matter density were calculated by taking the total gray matter
signal from each ROI in each normalized image and dividing it
by the total ROI volume for each relevant ROI.

Group analysis

All group analyses were performed using SPSS software
(version 25; SPSS Inc., Cary, Chicago, United States). Two-tailed
p-values < 0.008 were considered statistically significant after
correcting for multiple comparisons between the six groups in
our study (early adult men and women, young adult men and
women, and middle-aged men and women). Because fasting
plasma glucose (FPG) and triglyceride (TG) levels are not
normally distributed and have a positive skew, we applied
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TABLE 1 Group demographic data and health characteristics (mean ± SD).

Men Women P-value†

Early adult:
18–25 years

Young adult:
26–45 years

Middle-age
adult:

46–65 years

P-value* Early adult:
18–25 years

Young adult:
26–45 years

Middle-age
adult:

46–65 years

P-value

Sample (n) 137 137 67 148 183 103

Age (years) 20.8 ± 2.2A 34.8 ± 6.1B 54.9 ± 5.7C <0.001 20.7 ± 2.2A 34.7 ± 5.9B 53.1 ± 5.3C <0.001 0.229

Education (years) 12.0 ± 1.2A 12.1 ± 2.2A 11.5 ± 3.0A 0.162 12.4 ± 1.8A 12.7 ± 2.5A 11.6 ± 3.3B 0.002 0.027

Waist Circumference (cm) 94.7 ± 17.8A 104.2 ± 15.2B 108.0 ± 12.1B <0.001 94.0 ± 17.2A 100.3 ± 13.4B 102.0 ± 12.6B <0.001 0.027

Fasting glucose (mg/dL) 90.7 ± 9.8A 105.4 ± 46.7B 123.1 ± 51.1C <0.001 88.6 ± 24.4A 98.4 ± 40.8B 120.7 ± 71.4C <0.001 0.042

Triglycerides (mg/dL) 118.8 ± 75.4A 173.2 ± 119.1B 199.0 ± 381.2B <0.001 101.7 ± 45.4A 137.4 ± 137.9B 136.8 ± 73.1B <0.001 0.001

HDL cholesterol (mg/dL) 48.1 ± 12.5 44.8 ± 12.8 47.7 ± 14.9 0.090 50.7 ± 11.8AB 50.6 ± 15.6A 54.9 ± 15.9B 0.037 <0.001

Blood pressure (mmHg)

Systolic 119.0 ± 12.4A 122.7 ± 16.8A 128.4 ± 20.6B 0.001 113.2 ± 11.5A 120.8 ± 17.3B 125.2 ± 16.4B <0.001 0.011

Diastolic 72.1 ± 9.9A 77.2 ± 13.1B 76.6 ± 10.4B 0.001 68.7 ± 10.9A 74.1 ± 11.5B 74.5 ± 9.6B <0.001 0.001

Type 2 diabetes (%) 0.73%A 8.76%B 28.4%C <0.001 2.70%A 11.5%B 27.2%C <0.001 0.212

Hypertension (%) 5.11%A 21.2%B 40.3%C <0.001 3.38%A 13.7%B 37.9%C <0.001 0.344

Hypertriglyceridemia (%) 0.73%A 5.84%A 13.4%B 0.001 0.00%A 3.83%A 16.5%B <0.001 0.878

Hypercholesterolemia (%) 2.92%A 12.4%B 37.3%C <0.001 1.35%A 8.74%A 26.2%B <0.001 0.181

NCEP-ATP III score 1.8 ± 2.3A 4.0 ± 2.8B 4.8 ± 3B <0.001 3.0 ± 2.3A 4.1 ± 2.7B 5.2 ± 2.8C <0.001 0.001

Body mass index (kg/m2) 28.3 ± 6.9A 31.1 ± 6.2B 31.6 + 4.7B <0.001 29 ± 7.5A 31.5 ± 6.8B 32.6 ± 6.1B <0.001 0.081

Total cholesterol (mg/dL) 171.4 ± 29.8A 191.2 ± 40.7B 190.9 ± 51.4B <0.001 162.4 ± 29.6A 186.0 ± 35.6B 195.8 ± 39.0B <0.001 0.303

LDL cholesterol (mg/dL) 100.3 ± 30.5A 113.2 ± 37.3B 111.2 ± 38.9AB 0.007 91.4 ± 27.1A 109.6 ± 28.4B 114.2 ± 34.0B <0.001 0.187

Composite of psychometric
scores (normalized values)

0.54 ± 0.15A 0.53 ± 0.16AB 0.48 ± 0.16B 0.022 0.49 ± 0.15AB 0.51 ± 0.14A 0.45 ± 0.15B 0.002 0.001

Global assessment of functioning
(scale 1–100)

76.5 + 12.1 76.2 ± 12.5 72.2 ± 13.8 0.968 77.3 ± 11.9 78.7 ± 12.3 76.1 ± 12.5 0.206 0.164

Data represented as percent gray matter volume within each given region of interest cluster (mean ± SD).
*Results of one-way ANOVA representing age-group differences within each sex.
†Results of one-way ANOVA representing between-sex differences.
A,B,CWithin each row and within each sex group, each letter represents significantly different group means based on Tukey’s post hoc testing. All diagnoses based on active treatment for specified condition.
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a log-transform to these values to fit the linear regression
framework. We then assessed the differences between the three
age groups within each sex using a one-way analysis of variance
(ANOVA) followed by a separate one-way ANOVA comparing
men and women. Finally, we performed two separate (for
each sex) age-adjusted partial Pearson’s correlations to probe
the association between MetS’s component values, gray matter
densities, and other related biometric values of interest (LDL
cholesterol, total cholesterol, body mass index, and NCEP-ATP
III MetS score).

A total of six univariate linear regression analyses were
performed independently within in each of the six age/sex
groups. We chose this approach in order to identify the
MetS components (independent variables) that would most
strongly correlate with GMV within select regions of interest
(dependent variables). All MetS variables plus age were
entered in a single linear regression step. This method
allowed us to correct for each variable’s influence on
every other variable and subsequently identify the most
significant variable or variables accounting for the observed
correlations.

Results

Demographics

The demographic and MetS component characteristics
of our cohort can be found in Table 1 where the most
appreciable between-sex differences (p≤ 0.001) were observed in
triglycerides (TG), high density lipoprotein (HDL) cholesterol,
diastolic blood pressure (BPD), and National Cholesterol
Education Program Adult Treatment Panel III (NCEP-ATP
III) scores for MetS. Notably, there were no significant
differences seen between the sexes with respect to BMI, total
cholesterol, low density lipoprotein (LDL) cholesterol, and
global assessment of functioning (GAF) scores. There were also
no significant differences in the percentage of participants with
type 2 diabetes, hypercholesterolemia, hypertriglyceridemia,
and hypertension between the sexes or in individuals taking
prescribed medications for each of these disorders. As
hypothesized, every within-sex and between-age measure was
significantly different in men with the exception of HDL
cholesterol and Global Assessment of Function (GAF) scores.
Similarly, each within-sex and between-age measure was
significantly different in women with the exception of GAF
scores.

Table 2 lists gray matter densities (GMV) for each
region of interest obtained from voxel-based morphometry
(VBM) processing arranged by sex- and age-group, previously
described. As with Table 1, the results highlight the differences
between men and women and differences between age groups.
The brain regions whose gray matter densities were significantly
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different between men and women (p ≤ 0.001) included the
whole brain, neural signature of metabolic syndrome (NS-MetS)
regions as a whole, orbitofrontal cortex, right insular/limbic
cluster, the caudate nuclei (p = 0.003), and brainstem (p =
0.013). Notable between sex difference exceptions included
the posterior cerebellum (p = 0.254) and hippocampus (p
= 0.829). Importantly, results did not change when covaried
for total brain volume. Interestingly, differences between age-
groups and within sex-groups in all brain regions’ GMVs were
significantly different (p ≤ 0.001) from one another with the
notable exception of the hippocampus (p = 0.079 for men and
p = 0.222 for women).

We also created an age-adjusted figure, which incorporates
the demographic characteristics from Tables 1, 2 for each
sex group using partial correlation with the effect of
age regressed out (Figure 2). This figure is helpful for
visualizing age-adjusted correlations in our sample cohort

between GMV in the NS-MetS brain regions (with the
addition of whole brain and hippocampus), correlations
between MetS values, and correlations between other
lipid measures of interest (NCEP-ATP III scores, body
mass index, total cholesterol, and LDL cholesterol). The
figure also indicates the strength and significance of each
correlation between the NS-MetS regions and MetS factors
most relevant for each sex. For example, after adjusting
for age, we can appreciate that the relationship between
waist circumference (WC) and posterior cerebellar GMV
is strong in both men (r = –0.50) and women (r = –0.40),
p ≤ 0.001.

Table 3 (men) and 4 (women) represent the results from our
linear regression analyses with each table sub-divided by age-
group. A total of eight linear regression analyses were conducted
for each brain structure within each age-group. This allowed
us to identify which of MetS’s five components (WC, FPG, TG,

FIGURE 2

Age-adjusted partial Pearson’s correlation tables in men (A) and women (B) for gray matter densities of the neural signature of metabolic
syndrome (NS-MetS); its substructures: posterior cerebellum (P. CB), brainstem (BS), orbitofrontal cortex (OFC), right insular/limbic cluster (R.
IN/LC), caudate nuclei (CN); control brain regions: whole brain (WB) and hippocampus (HPC); components of metabolic syndrome: waist
circumference (WC), log-transformed fasting plasma glucose (FPG), log-transformed triglycerides (TG), high-density lipoprotein cholesterol
(HDL), systolic blood pressure (BPS), and diastolic blood pressure (BPD); other biometric values: national cholesterol education program adult
treatment plan III metabolic syndrome index score (NCEP-ATP), body mass index (BMI), total cholesterol (TC), and low density lipoprotein
cholesterol (LPL); and cognitive/psychometric function scores: global assessment of functioning scale (GAF), and latent variable of GOBS
psychometric tests composite (Psy). ***Significant at p ≤ 0.001, **significant at p ≤ 0.01, *significant at p < 0.05.
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TABLE 3 MetS components’ relationship with gray matter volume in neural signature of metabolic syndrome substructures, whole brain, and
hippocampus in men.

Brain regions Significant
predictors in

model (P-value)

β3 Std. error Model
summary R2

Model
P-value

Early adult men (n = 137,
20.8 ± 2.2 years,
range = 18–25)

NS of MetS WC (<0.001)**
TG (0.005)*

WC (–0.002)
TG (–0.031)

WC (0.000)
TG (0.011)

0.372 <0.001*

P. Cerebellum WC (<0.001)**
TG (0.005)*

WC (–0.004)
TG (–0.069)

WC (0.001)
TG (0.024)

0.367 <0.001*

Brainstem WC (<0.001)** WC (–0.001) WC (0.000) 0.165 <0.001*

OFC n.s. n.s. n.s. 0.063 0.024

R. Insular/Limbic TG (0.004)* TG (–0.024) TG (0.008) 0.050 0.048

Caudate TG (0.016) TG (–0.029) TG (0.012) 0.061 0.027

Whole Brain Age (<0.001)**
TG (0.001)*
HDL (0.018)

Age (–0.003)
TG (–0.009)
HDL (0.000)

Age (0.001)
TG (0.003)

HDL (0.000)

0.231 <0.001*

Hippocampus n.s. n.s. n.s. –0.013 0.650

Young adult men
(n = 137, 34.8 ± 6.1 years,
range = 26–45)

NS of MetS WC (<0.001)** WC (–0.002) WC (0.000) 0.269 <0.001*

P. Cerebellum WC (<0.001)** WC (–0.005) WC (0.001) 0.242 <0.001*

Brainstem WC (0.011)
FPG (0.030)

WC (0.000)
FPG (–0.017)

WC (0.000)
FPG (0.008)

0.188 <0.001*

OFC Age (0.016)
FPG (0.026)

Age (–0.001)
FPG (–0.026)

Age (0.000)
FPG (0.011)

0.078 0.010

R. Insular/Limbic n.s. n.s. n.s. 0.035 0.098

Caudate Age (<0.001)** Age (–0.003) Age (0.001) 0.136 <0.001*

Whole Brain Age (<0.001)** Age (–0.001) Age (0.000) 0.154 <0.001*

Hippocampus n.s. n.s. n.s. 0.000 0.427

Middle-aged men (n = 67,
54.9 ± 5.7 years,
range = 46–65)

NS of MetS Age (0.008)*
WC (0.027)

Age (–0.004)
WC (–0.001)

Age (0.001)
WC (0.001)

0.161 0.010

P. Cerebellum WC (0.017) WC (–0.003) WC (0.001) 0.131 0.024

Brainstem Age (0.015) Age (–0.001) Age (0.001) 0.072 0.104

OFC Age (0.003)* Age (–0.003) Age (0.001) 0.169 0.008*

R. Insular/Limbic Age (0.009)* Age (–0.003) Age (0.001) 0.049 0.173

Caudate n.s. n.s. n.s. –0.058 0.875

Whole Brain Age (<0.001)** Age (–0.003) Age (0.000) 0.385 <0.001*

Hippocampus Age (0.010) Age (–0.003) Age (0.001) 0.105 0.047

Predictor significance is determined using partial correlation to control for all other variables (waist circumference, fasting plasma glucose, triglycerides, HDL cholesterol, blood pressure,
age).
*Significant at p ≤ 0.008 after correcting for multiple comparisons, **significant p < 0.001, and not significant (n.s).

HDL, BP, with the addition of age) most significantly predicted
GMV in each region after adjusting for every other covariate.

In Table 3, we can appreciate that the MetS components that
most strongly predict GMV in the NS-MetS. In early adult men,
these are the combined values of WC and triglycerides (TG),
accounting for an effect size of r2 = 0.372 (also Figure 3). This
indicates that 37.2% of the variance in GMV in the NS-MetS can
be explained by the combined effects of WC and TG. In young
adult men, WC was the single strongest predictor (r2 = 0.269).
In middle-aged men, age and WC were the two strongest
predictors (r2 = 0.161). Overall, WC was the most significant

predictor of GMV in the NS-MetS and posterior cerebellum in
early, young, and middle-aged adult men (Figure 4). TGs were
only seen as significant in early adult men, albeit with small
effect sizes (r2 = 0.050 for the right insular/limbic cluster and
r2 = 0.061 for the caudate). Further, age—within the age-group
variance—appeared as the most significant predictor of GMV in
the orbitofrontal cortex, caudate, brainstem, right insular/limbic
cluster and in the whole brain for young and middle-aged adult
men.

In Table 4, we can appreciate that WC was the single
strongest predictor of GMV in the NS-MetS in early adult

Frontiers in Aging Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnagi.2022.999288
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-999288 September 16, 2022 Time: 11:14 # 9

Kotkowski et al. 10.3389/fnagi.2022.999288

FIGURE 3

Combined neural signature of metabolic syndrome gray matter volume vs. waist circumference scatterplot series.

women (r2 = 0.193) (Figure 3). The combined association of
WC and age were the strongest predictors of GMV in the
NS-MetS for young adult women (r2 = 0.254), and WC and
FPG were the strongest predictors of GMV in middle-aged
women (r2 = 0.226). Overall, WC was the most significant of
the MetS components in predicting GMV in women of all age
groups and in almost every region. Our data indicate that each
MetS component contributed to GMV in more brain regions in
women as compared to men, but the effects of MetS components
appeared larger in men than in women, predominantly in
the posterior cerebellum. Secondary to WC in women were
age, FPG, and TG, with the latter two expressing the largest
correlation with GMV in middle-aged women.

For men and women in general, the primary MetS
components exhibiting any degree of significance were WC,
TG, age (within age groups), FPG and to a lesser extent,
HDL. This indicates that most of the neuroanatomical effects

driven by MetS are weighted primarily by these components.
Moreover, MetS component’s effects on the whole brain’s gray
matter were minimal, with age (within age-groups) emerging
as the most significant predictor of whole brain GMV in both
men and women within age groups. Importantly, none of the
MetS components exerted any noteworthy predictive value on
hippocampal gray matter volume.

Discussion

Our first study found that the greatest differences in gray
matter volume (GMV) between individuals with MetS and
metabolically healthy controls were observed in the posterior
cerebellum, brainstem, orbitofrontal cortex, right insular/limbic
cluster (involving the right posterior insula and right amygdala),
and caudate nuclei (Figure 1). Other groups have reported
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FIGURE 4

Posterior cerebellar gray matter volume vs. waist circumference scatterplot series.

similar findings, including an inverse relationship between WC
and cerebellar GMV (Kurth et al., 2013) and decreased GMV
density of the right insula in individuals with MetS associated
with allostatic load (Zsoldos et al., 2018).

The cerebellum has long been known to be involved
in motor control and coordination, but recent studies have
shown that it also plays an important role in cognition
(Schmahmann, 2018; Kotkowski et al., 2020). The cerebellum
serves to integrate information from the cortex to produce
an output that is coordinated, precise, and accurate on a
millisecond timescale in both motor and cognitive domains.
While this is obvious in the setting of motor coordination, the
behavioral and cognitive aspects are not readily apparent. In
fact, these two functions exhibit a clear anatomical partition
in the cerebellum with an anterior lobe that modulates
motor function and a posterior lobe that modulates behavioral

and cognitive function (Stoodley and Schmahmann, 2009). As
posited by Jeremy Schmahmann in 1991: “In the same
way as the cerebellum regulates the rate, force, rhythm
and accuracy of movements, so may it regulate the speed,
capacity, consistency and appropriateness of mental or cognitive
processes (Schmahmann, 1991).” For this reason, gray matter
impairment in the posterior cerebellum might be responsible for
observed cognitive impairment in individuals with longstanding
MetS and associated comorbidities such as type 2 diabetes
mellitus (T2DM) and obesity.

The nodal stress hypothesis might help explain the link
between MetS and the caudate nuclei, orbitofrontal cortex,
and amygdala in the context of the reward (or appetitive)
network. This hypothesis stipulates that regions with high
levels of connectivity, which require higher metabolic demand
and blood flow, are preferentially susceptible to damage
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TABLE 4 MetS components’ relationship with gray matter volume in neural signature of metabolic syndrome substructures, whole brain, and
hippocampus in women.

Brain regions Significant
predictors in

model
(P-value)

β3 Std. error Model
summary R2

Model
P-value

Early adult women (n = 148,
20.7 ± 2.2 years,
range = 18–25)

NS of MetS WC (0.001)* WC (–0.001) WC (0.000) 0.193 <0.001*

P. Cerebellum WC (0.003)* WC (–0.002) WC (0.001) 0.164 <0.001*

Brainstem TG (0.006)*
Age (0.020)

TG (–0.016)
Age (0.002)

TG (0.006)
Age (0.001)

0.117 0.001*

OFC WC (0.008)*
FPG (0.023)

WC (–0.001)
FPG (–0.045)

WC (0.000)
FPG (0.020)

0.128 <0.001*

R. Insular/Limbic WC (<0.001)**
Age (0.012)

WC (–0.001)
Age (0.004)

WC (0.000)
Age (0.002)

0.122 <0.001*

Caudate n.s. n.s. n.s. 0.019 0.189

Whole Brain WC (0.045) WC (0.000) WC (0.000) 0.017 0.209

Hippocampus n.s. n.s. n.s. –0.013 0.653

Young adult women
(n = 184, 34.7 ± 5.9 years,
range = 26–45)

NS of MetS WC (<0.001)**
Age (0.003)*

WC (–0.001)
Age (–0.002)

WC (0.000)
Age (0.001)

0.254 <0.001*

P. Cerebellum WC (< 0.001)**
Age (0.010)

WC (–0.003)
Age (–0.001)

WC (0.001)
Age (0.001)

0.201 <0.001*

Brainstem WC (0.001)* WC (0.000) WC (0.000) 0.101 <0.001*

OFC Age (<0.001)**
WC (0.006)*

Age (–0.002)
WC (–0.001)

Age (0.001)
WC (0.000)

0.139 < 0.001*

R. Insular/Limbic WC (0.017) WC (–0.001) WC (0.000) 0.049 0.021

Caudate Age (0.025) Age (–0.001) Age (0.001) 0.056 0.012

Whole Brain Age (<0.001)**
WC (0.003)*
FPG (0.014)

Age (–0.001)
WC (0.000)

FPG (–0.013)

Age (0.000)
WC (0.000)
FPG (0.005)

0.230 <0.001*

Hippocampus BP-Sys (0.035) BP-Sys (0.000) BP-Sys (0.000) 0.009 0.273

Middle-aged women
(n = 103, 53.1 ± 5.3 years,
range = 46–65)

NS of MetS WC (<0.001)**
FPG (0.031)

WC (–0.002)
FPG (–0.038)

WC (0.000)
FPG (0.017)

0.226 <0.001*

P. Cerebellum WC (<0.001)** WC (–0.004) WC (0.001) 0.173 <0.001*

Brainstem FPG (<0.001)**
WC (0.002)*
Age (0.024)

FPG (–0.021)
WC (–0.001)
Age (–0.001)

FPG (0.007)
WC (0.000)
Age (0.000)

0.257 <0.001*

OFC TG (0.016)
WC (0.024)

TG (–0.022)
WC (–0.001)

TG (0.000)
WC (0.009)

0.154 0.001*

R. Insular/Limbic TG (0.015)
HDL (0.028)

TG (–0.030)
HDL (–0.001)

TG (0.012)
HDL (0.000)

0.112 0.007

Caudate n.s. n.s. n.s. 0.016 0.278

Whole Brain Age (0.020)
FPG (0.034)

Age (–0.001)
FPG (–0.015)

Age (0.000)
FPG (0.007)

0.127 0.004*

Hippocampus n.s. n.s. n.s. 0.038 0.134

Predictor significance is determined using partial correlation to control for all other variables (waist circumference, fasting plasma glucose, triglycerides, HDL cholesterol, blood pressure,
age).
*Significant at p ≤ 0.008 after correcting for multiple comparisons, **significant p < 0.001, and not significant (n.s).

from oxidative stress (Zhou et al., 2012; Crossley et al., 2014).
Thus, the over-stimulation—or chronic stimulation of the
reward/appetitive network (orbitofrontal cortex, caudate nuclei,
insula)—by over-consuming highly palatable food might

partially explain our GMV findings. Alternatively, it is possible
that genetically-determined predispositions, such as those
discussed by Curran et al. (2013) in chromosome 17 associated
with leptin signaling, might account for both brain morphology
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and obesity findings (Winkler et al., 2010). The effects in these
regions may thus be components of vulnerability, outcome, or
a combination of the two. Nevertheless, a more sophisticated
explanation is warranted to explain the pronounced sex
differences observed in our study, where we find that certain
MetS components appear to correlate more strongly with more
regions of the NS-MetS in women than in men, with the notable
exception of the posterior cerebellum, which appears to have
a stronger correlation with MetS components in men than in
women.

Our most surprising finding in this study was the strong
negative association between GMV in the posterior cerebellum
and WC. We know that in Mexican American populations,
elevated waist circumference is independently associated with
insulin resistance and risk for developing T2DM (Mamtani
et al., 2013). Thus, it could be postulated that the posterior
cerebellum is more susceptible to chronically elevated plasma
insulin levels. Insulin in the brain plays an important role
in modulating synaptic transmission, maintaining neuronal
and glial metabolism, and modulating the neuroinflammatory
response (Kleinridders et al., 2014). Insulin resistance in the
brain might therefore manifest itself as neuronal degeneration
detected as decreased GMV. Insulin-like growth factor (IGF)
receptors are also heavily expressed in both the cerebellum
and the hippocampus (Verdile et al., 2015) and insulin can
cross-react with the IGF receptors. This may explain the
neuronal degeneration in the cerebellum, but it does not
explain why the hippocampus is spared from decreased GMV
under the same conditions. Alternatively, the cerebellum is the
only brain region, aside from the hypothalamus, with leptin
receptors. This has led some investigators to speculate that
leptin resistance might also play a role in cerebellar degeneration
(Berman et al., 2012), though our current understanding of
the mechanistic processes by which this occurs is still in its
infancy.

Insulin in the brain modulates synaptic plasticity,
specifically of dopamine neurons involved in the reward
and appetitive network (Stouffer et al., 2015). In cases of
diet-induced obesity, insulin resistance in the hippocampus—a
significant brain structure in the pathophysiology of Alzheimer’s
dementia (AD), which happens to densely express insulin
receptors—has a negative impact on learning and memory.
For example, when insulin is elevated, increased glucose
metabolism was observed in the appetitive network, prefrontal
cortex, insula, and anterior cingulate cortex, but decreased
in the hippocampus and cerebellum (Anthony et al., 2006).
Findings such as these that identify common structures to
those of AD have generated increased interest in identifying
hippocampal pathology mechanisms that relate to MetS, type
2 diabetes, obesity and AD. What our research has shown
is that when it comes to gray matter atrophy, the pattern
observed with the NS-MetS is very distinct from that of mild
cognitive impairment (MCI) and AD. Whereas MCI and AD

begin demonstrating gray matter loss in the hippocampus
and medial temporal lobe structures prior to symptom onset,
the same mechanism cannot be suggested to explain why
individuals with MetS end up developing cognitive decline.
Instead, other brain regions that have not been as extensively
studied but are nonetheless important to cognition, namely the
posterior cerebellum, should be given more attention in future
research.

Our study’s key strength is that it represents a population-
based and heterogenous community sample, as opposed to a
disease-based sample, allowing us to investigate relationships
between normally distributed characteristics. Additionally, the
T1-weighted MRI images available for each of the 776 subjects
were of exceptionally high quality, as highlighted in the
methods, using a research-dedicated 3T scanner and 1-h long,
multi-faceted anatomical brain scans. However, our study also
had notable limitations. The largest limitation is its cross-
sectional and retrospective design. This method limited our
ability to obtain biomarkers which would have made our
subject stratification more ideal. For example, using hemoglobin
A1c instead of fasting plasma glucose as a metric to define
blood glucose levels. The cross-sectional nature of our sample
allowed us to calculate correlations but prevented us from
deducing causal relationships. Furthermore, we were limited
by the number of participants in older age-groups that could
have yielded valuable information regarding the effects of MetS
factors on older individuals who manifest cognitive decline in
higher numbers. Finally, were also limited by a lack of data on
when each individual first met diagnostic criteria for MetS and
related diseases like diabetes and hypertension along with how
long they carried the disease burden. This last limitation is the
key in understanding why there could be a lower variance in
the correlation data between NS-MetS GMV and WC and the
posterior cerebellar GMV and WC in older men (Figures 3, 4).
For example, it is likely that men who meet the diagnostic
criteria for MetS or have increased WC early in life suffer
earlier instances of morbidity and mortality, thus experiencing
deleterious brain effects earlier. These same individuals might
be less likely to be represented in the older cohort who may have
developed increased waist circumference and MetS biomarkers
later in life after decades of relative health.

In summary, our results provide a detailed breakdown
of important brain regions implicated in the pathophysiology
of MetS while identifying the sub-components that are most
associated with GMV in these regions. The results also highlight
the importance of age and sex in determining the effects of MetS
on the brain. Future neurocognitive, structural, and functional
analyses in future studies involving participants with MetS,
obesity, and diabetes can stand to benefit from our findings in
their experimental designs. These data can also aid in generating
hypotheses that merit further inquiry, such as probing why
the observed sex differences exist, specifically in questions
where sex differences might play a role in metabolic signaling,
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such as in fat distribution differences, menopause, and other
potential hormonal effects. Anticipated investigations will also
be focused at understanding the mechanistic nature of why
certain MetS components correlate with GMV, specifically in the
posterior cerebellum.

Conclusion

This study examined the associations between age groups
and between the sexes with each of the five components
of metabolic syndrome (MetS) and five brain regions
comprising the previously defined neural signature of
MetS (NS-MetS). We found that waist circumference
(WC) was the strongest predictor of decreased posterior
cerebellar gray matter volume (GMV), regardless of age
or sex. In men, associations between WC and posterior
cerebellum were most pronounced in early adults, an
effect that appeared to decrease with increasing age. The
inverse was true in women, where the association between
WC, (along with TG, and FPG) on the brain’s gray matter
volume appeared to be slightly weaker in early adult
women but increased with increasing age. Between men
and women, the potential of MetS components to predict
GMV particularly strong in men but confined primarily to
the posterior cerebellum. In women, the correlation between
MetS components on GMV was more diffuse across most
NS-MetS regions.
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