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Trustworthy Medical Segmentation with Uncertainty
Estimation

Giuseppina Carannante, Member, IEEE, Dimah Dera, Member, IEEE, Nidhal C. Bouaynaya, Member, IEEE,
Ghulam Rasool, Member, IEEE, and Hassan M. Fathallah-Shaykh

Abstract—Deep Learning (DL) holds great promise in re-
shaping the healthcare systems given its precision, efficiency,
and objectivity. However, the brittleness of DL models to noisy
and out-of-distribution inputs is ailing their deployment in the
clinic. Most systems produce point estimates without further
information about model uncertainty or confidence. This paper
introduces a new Bayesian deep learning framework for uncer-
tainty quantification in segmentation neural networks, specifically
encoder-decoder architectures. The proposed framework uses the
first-order Taylor series approximation to propagate and learn
the first two moments (mean and covariance) of the distribution
of the model parameters given the training data by maximizing
the evidence lower bound. The output consists of two maps: the
segmented image and the uncertainty map of the segmentation.
The uncertainty in the segmentation decisions is captured by the
covariance matrix of the predictive distribution. We evaluate the
proposed framework on medical image segmentation data from
Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate
that the proposed framework is more robust to noise and
adversarial attacks as compared to state-of-the-art segmentation
models. Moreover, the uncertainty map of the proposed frame-
work associates low confidence (or equivalently high uncertainty)
to patches in the test input images that are corrupted with noise,
artifacts or adversarial attacks. Thus, the model can self-assess its
segmentation decisions when it makes an erroneous prediction
or misses part of the segmentation structures, e.g., tumor, by
presenting higher values in the uncertainty map.

Index Terms—Bayesian deep learning, encoder-decoder net-
works, reliability, segmentation, trustworthiness, uncertainty es-
timation.

I. INTRODUCTION

DRIVEN by the superior performance achieved in many
areas, various deep learning (DL) models have been

advanced to analyze medical data, e.g., radiological images
and pathology slides. Several methods have achieved, if not
surpassed, prognosis parity with specialized medical personnel
[1]–[4]. However, their successful deployment in clinical set-
tings remains limited. While several autonomous algorithms
are doubtlessly employed for many everyday tasks (e.g., spam
filters for emails or biometrics that unlock our cellphones),
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there is less assertive willingness to utilize the same algorithms
for risky, sensitive data, such as medical images.

The main challenge that hinders the widespread and ef-
fective use of DL in clinical settings is the lack of reliable
and trustworthy predictions [5], [6]. For example, a system
encountering unseen test examples, which lie outside of its
training data distribution, could easily make unreasonable sug-
gestions, and as a result, unjustifiably bias the human expert.
The need for reliable models is further exacerbated owing
to recent studies showing the vulnerability of DL models to
adversarial inputs — perturbations that are imperceptible and
would not mislead the decisions of a human observer but
force a trained DL model to make erroneous predictions [7].
Specifically, some studies have demonstrated the vulnerability
of medical models to adversarial perturbations [8], [9].

For the successful deployment of DL models in the real-
world, e.g, a clinic, these models should provide information
on the trustworthiness of their predictions. The user of these
models should be aware of the level of confidence in the
models’ predictions. Such information could be very useful
when the DL model is essentially guessing at random due
to excessive noise in the input or possible adversarial attack.
Unfortunately, as most DL models are inherently deterministic,
a measure of confidence or uncertainty is not readily available
at their output.

Estimating the confidence of a model requires a probabilistic
interpretation of the model’s parameters, i.e., treating model
parameters as random variables endowed with a probability
distribution. Through Bayesian inference, the posterior distri-
bution of the model parameters can be found. At test time, the
second moment, i.e., the variance, of the predictive distribution
can serve as a measure of confidence or uncertainty in the
predicted output. Several Bayesian models have been devel-
oped for the classification and regression problems [10]–[15].
Trade-offs between prediction accuracy, confidence estimation,
and scalability are at the heart of these different approaches
[16]. Recently, Dera et al. proposed a variational moments’
propagation (VMP) framework that provides meaningful and
scalable methods for uncertainty propagation and estimation
in deep neural network (DNN) classifiers [14].

A relatively less amount of work focuses on quantifying
uncertainty in pixel-level segmentation tasks using Bayesian
DL models. The challenge in learning uncertainty for each
pixel arises from propagating high-dimensional posterior dis-
tributions of the model’s parameters through the multiple
stages of non-linearities in the encoder-decoder architecture.
Furthermore, the model must provide an instantaneous uncer-
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tainty map at test time, i.e., simultaneously output the predic-
tion (the segmentation decision) and corresponding pixel-level
uncertainty map without resorting to expensive Monte Carlo
estimation techniques.

In this paper, we develop a VMP framework for segmenta-
tion tasks and apply it to various medical imaging datasets. By
leveraging key concepts from probability density tracking in
nonlinear and non-Gaussian systems [17], [18], we propagate
the first and the second moments of the posterior distribution
of network parameters through the nonlinear layers of an
encoder-decoder type segmentation architecture. The devel-
oped approach is tested using various medical segmentation
datasets consisting of Magnetic Resonance Images (MRI) and
Computed Tomography (CT) scans. The proposed VMP for-
mulation and the derived mathematical relationships presented
in the paper are applicable to various DNN architectures.

The contributions of this paper are summarized as follows:
(1) Formalize a scalable Bayesian framework that learns

model confidence in the encoder-decoder segmentation net-
works by maximizing the evidence lower bound (ELBO). Us-
ing the first-order Taylor series approximation, we propagate
(forward and backward) and learn the first two moments (mean
and covariance) of the posterior distribution of the model
parameters given the training data. We derive mathematical
relations for all operations; thus, rendering a method that is
adaptable to other models, e.g., Variational Autoencoders, and
to other tasks as well;

(2) develop a Bayesian DL architecture that instantaneously
outputs two maps, (1) the segmented image, and (2) the un-
certainty map of the predicted segmentation. These two maps
are delivered simultaneously and without requiring any Monte
Carlo sampling at the inference time. The uncertainty map is
especially valuable for integrating the proposed segmentation
model in critical areas of application, e.g., disease diagnosis
and surveillance;

(3) evaluate the performance of the proposed approach for
various medical segmentation tasks. A thorough robustness
analysis is conducted by assessing the performance of the
proposed Bayesian segmentation framework when the test data
is affected by random noise and adversarial attacks.

II. RELATED WORK

Image segmentation is a fundamental problem in computer
vision and application areas range from medical image anal-
ysis to scene understanding for autonomous vehicles. Several
DL-based techniques have been proposed over the years to
tackle pixel-level segmentation; a detailed review of all such
methods is out of the scope of this paper and the reader is
referred to a recent survey on the topic [19].

The success of Convolutional Neural Networks (CNNs) in
classification tasks has led researchers to extend these models
for performing segmentation. Fully Convolutional Networks
(FCNs) represent a powerful class of CNNs that are trained
end-to-end to perform pixel-wise predictions. Specifically,
a standard CNN architecture was moderately modified to
perform pixel-wise classification by deleting fully-connected
layers, adding an upsampling step, and employing a pixel-
wise loss function [20]–[24]. For example, ResNet [25] and

DenseNet [26] have been extended by adding an upsampling
path to perform pixel-level segmentation [21], [22], [24].

More recently, the encoder-decoder types of architecture
have gained popularity [27], [28]. The encoder path reduces
the dimensionality of the input by extracting low-dimensional
(salient) features of the data, while the decoder expands the
encoded features to a map that has the same size as the
input to perform pixel-wise classification. Several works have
focused on modifying and fine-tuning the encoder-decoder
architecture to improve segmentation, e.g., by introducing
skip connections, dilated convolutions, wide contest blocks or
compression extraction modules [27]–[31].

Generally, the machine learning community has focused its
efforts on producing accurate point estimates for the segmen-
tation and less on investigating and improving the reliability
and trustworthiness of these models. Evidently, an unreliable
model is vulnerable and can jeopardize the clinical system by
exposing it to possible fraud, large monetary losses, technical
vulnerabilities, lawsuits, and even loss of lives [9].

In the context of semantic segmentation, estimating pixel-
wise uncertainty has rarely been explored [32]–[37]. Monte
Carlo Dropout (MC-Dropout) is the most popular approach
as it does not require major changes in the neural network
architecture [32]–[35]. The uncertainty information is obtained
from the variance of multiple MC forward passes through the
network at inference time. Uncertainty estimation in segmen-
tation has also been tackled by ensemble methods [38]. After
training multiple networks with random initialization, several
estimates (of segmentation) are produced, and their variation
is used as a measure of confidence. The concept of generating
several segmentation samples was leveraged in various ways,
e.g., by combining hierarchical probabilistic models with
variational autoencoders or by using data augmentation at test
time [36], [37].

All the above approaches from the literature for quantifying
uncertainty in segmentation networks adopt a frequentist ap-
proach where the uncertainty is computed at test time from
the sample variance of multiple runs through the network.
The segmentation networks are not “trained” to learn uncer-
tainty or variance as a network parameter. This gap is due
to the mathematical challenges in propagating the posterior
distribution or its moments, e.g., mean and variance, through
the multiple (non)linear layers of a network. Building upon
the work in [14], we develop a Bayesian framework that
propagates (forward pass and backpropagation) the first and
the second moment of the variational posterior distribution
across all layers of a segmentation DL model. At test time, the
uncertainty in the predicted segmentation decision is produced
by the network as the covariance matrix of the predictive
distribution simultaneously alongside the segmentation.

III. VARIATIONAL MOMENT PROPAGATION (VMP) IN
SEGMENTATION

The proposed VMP framework for segmentation consists
of an encoder and a decoder. In the following, we present our
mathematical results for various operations performed in the
encoder and decoder.
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A. Mathematical Notations

Scalars are represented by lower-case letters, e.g., x, xi.
Vectors are represented by bold lower-case letters, e.g., y.
All vectors are column vectors. yi denotes the ith element of
vector y. Matrices are represented by bold upper-case letters,
e.g., A. Tr(·) denotes the trace of a matrix, i.e., the sum of its
diagonal elements. T denotes the transpose operator, and vec(·)
denotes the vectorization operator. The Hadamard product,
i.e., the element-wise product, is denoted with �, while ×
represents matrix-matrix or matrix-vector product. Tensors
with three or more dimensions are represented by curly bold
upper-case letters, e.g., X. If x is a random variable, E[x]
denotes the expected value of x. We use W(kc)

e to represent
kth
c convolutional kernel of the cth layer. Kc denotes the total

number of kernels in layer c. The subscripts e and d represent
the encoder and decoder path operations, respectively.

B. Bayesian Deep Learning and Variational Inference

In Bayesian statistics, the unknown parameters are fully
characterized by their posterior distribution given the observa-
tions. In Bayesian DL, the network parameters Ω are endowed
with a prior probability distribution p(Ω) and all information
about the parameters is embedded in the posterior distribution
p(Ω|D) given the (training) data D = {Xi,yi}Ni=1. Once
the posterior is estimated, the predictive distribution, i.e., the
distribution of the test data, can be derived as:

p(y∗|X∗,D) =

∫
p(y∗|X∗,Ω) p(Ω|D) dΩ, (1)

where X∗ is the input, y∗ is its corresponding predicted output
and p(y∗|X∗,Ω) is the likelihood.

Unfortunately, direct inference of the posterior is intractable
due to the large parameter space and nonlinear nature of DL
architectures. A popular approximation technique known as
Variational Inference (VI) formulates the problem of high-
dimensional posterior inference as an optimization problem
[39]. The VI approach considers a simple family of distri-
butions over the network parameters and attempts to find a
distribution, called the variational distribution qθ(Ω), within
this family that is “close” to the true unknown posterior. The
notion of distributional closeness is captured by the Kullback-
Leibler (KL) divergence and the optimization is performed
with respect to the variational distribution parameters θ:

KL
(
qθ(Ω)

∣∣∣∣p(Ω∣∣D)
)

=

∫
qθ(Ω) log

qθ(Ω)

p(Ω)p(D|Ω)
dΩ. (2)

By rearranging terms in (2), the well-known Evidence
Lower Bound (ELBO) objective function is obtained [13]:

L(θ) = − Eqθ(Ω) [log(p(D|Ω)] + KL
(
qθ(Ω)

∣∣∣∣p(Ω)
)
. (3)

Most Bayesian DL frameworks that use the VI approach
sample one set of parameters θ and perform a deterministic
forward pass and backpropagation. The second moment or
the variance of the predictive distribution is obtained using
MC samples at the inference time [40]. This practice is based
on the assumption that the single set of sampled parameters
θ represents the variational distribution qθ(Ω) with sufficient
accuracy, which may not be the case [14].

Fig. 1. An illustration of the convolution operation. We extract sub-tensors bj

from the input tensor B having the same size of convolutional kernels W(kc)
e .

Convolution operation is performed as a matrix-vector multiplication. The
resulting feature maps z

(kc)
e are random variables represented by the mean

µ
z
(kc)
e

and the covariance Σ
z
(kc)
e

for kc = 1, · · · ,Kc .

C. Encoder Operations

We define a multivariate Gaussian distribution as a prior
distribution for all convolution kernels. We assume that kernels
are independent within each layer as well as across layers
in both the encoder and decoder paths. The independence
assumption results in a single additional parameter (i.e., vari-
ance) for each kernel, limiting the increase in the number
of parameters due to the Bayesian formulation. Moreover,
independent kernels help extract uncorrelated features and
better explore the input space [14].

1) Convolution Between Input and Network Parameters:
The convolution operation in the first layer is performed
between the input data (assumed deterministic for simplicity)
and network parameters (random variables). We assume that
network parameters W(k1)

e follow a Gaussian distribution, i.e.,
vec(W(k1)

e ) ∼ N
(
m

(k1)
e ,Σ

(k1)
e

)
. We write the convolution

as a matrix-vector multiplication, where X denotes the matrix
having rows equal to the vectorized sub-tensors of the input
X. Then, the convolution operation is expressed as z

(k1)
e =

X× vec(W(k1)
e ), for k1 = 1, · · · ,K1. Thus, the output of the

first convolutional layer follows a Gaussian distribution where
the mean and covariance are given by:

z(k1)
e ∼ N

(
Xm(k1)

e , XΣ(k1)
e XT

)
. (4)

2) Convolution Between Two Random Variables: We con-
sider a generic case of convolution between two random
variables. Let B be the incoming input to any convolution
layer, except the first layer, i.e., c 6= 1. The convolution
operation is expressed as a matrix-vector multiplication; how-
ever, in this case both the input and the kernels are random
tensors. We form B by vectorizing the sub-tensors of the
incoming input B, i.e., B = [bT1 ,b

T
2 , · · · ,bTJ ]T , where

bTj represents jth row of B. Let µbj
and Σbj

represent
the mean and covariance of bj . Then, the output of the
convolution is formulated as z

(kc)
e = B × vec(W(kc)

e ) with
vec(W(kc)

e ) ∼ N
(
m

(kc)
e ,Σ

(kc)
e

)
for kc = 1, · · · ,Kc . Given

that the input B (known as a feature map) is independent
from the subsequent layer kernels, we compute elements of
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the mean of z
(kc)
e as the product of the two mean vectors,

µbj and m
(kc)
e , i.e.,

[µ
z
(kc)
e

]j = µTbj
m(kc)
e , j = 1, · · · , J. (5)

The elements of the covariance matrix Σ
z
(kc)
e

are derived as:

Non-diagonal elements (i 6= j) :

µTbi
Σ(kc)
e µbj

, (6)
Diagonal elements (i = j) :

Tr
(
ΣbiΣ

(kc)
e

)
+ µTbi

Σ(kc)
e µbj + m(kc)T

e Σbjm
(kc)
e . (7)

We illustrate the convolution layer in Fig. 1.
3) Nonlinear Activation Function: Convolutional layers are

commonly followed by an element-wise nonlinear activation
function, e.g. Rectified Linear Unit (ReLU). Let ψ denote the
activation function and g

(kc)
e denote the output of the activation

function, i.e., g
(kc)
e = ψ[z

(kc)
e ] for kc = 1, · · · ,Kc . We use

the first-order Taylor series approximation to derive the mean
and covariance of the random variable g

(kc)
e , i.e.,

µ
g
(kc)
e
≈ ψ

(
µ

z
(kc)
e

)
, (8)

Σ
g
(kc)
e
≈ Σ

z
(kc)
e
�
[
∇ψ
(
µ

z
(kc)
e

)
∇ψ
(
µ

z
(kc)
e

)T ]
, (9)

where ∇ is the gradient with respect to z
(kc)
e .

4) Max-Pooling Operation: The max-pooling operation is
often used to downsample the incoming feature map. We
propagate the mean through the max-pooling layer using the
classical operation of selecting the largest value from a patch
in the feature map. The pooling for the covariance is achieved
by only retaining the rows and columns (of the incoming
covariance matrix) corresponding to the retained elements
(pooled elements) of the mean vector. We write the mean and
covariance as follows:

µ
p

(kc)
e

= pool(µ
g
(kc)
e

), (10)

Σ
p

(kc)
e

= co-pool(Σ
g
(kc)
e

). (11)

An encoder may consists of multiple layers of convolution
operations, nonlinear activation functions, and max-pooling to
get a low-dimensional representation of the input.

D. Decoder Operations
The operations in the decoder path start with the low-

dimensional representation produced by the encoder. The
decoder may also include multiple convolutional layers, which
are performed following the mathematical relationships pro-
vided in eqs. (5)-(7).

1) Up-sampling: The up-sampling is an essential part of the
decoder path that increases the resolution of the input. Using
g

(kc)
d to represent the input to the up-sampling operation and

u
(kc)
d as the output, we have:

u
(kc)
d = up-sample

(
g

(kc)
d

)
. (12)

The mean of u
(kc)
d is computed by inserting 0s between two

consecutive elements of the input and padding with 0s. The
covariance matrix is obtained by adding rows and columns of
0s at locations corresponding to the newly added 0s in the
mean.

2) Up-convolution: The up-sampling operation may pro-
duce sparse feature maps with many 0s. Generally, a 2 × 2
convolution operation is performed to get a dense high-
resolution output. The mean and covariance are computed
using results presented in eqs. (5)-(7).

3) Padding: The padding operation applied to the mean
is the same as the classical zero-padding operation. For the
covariance matrix, we add a new row and a new column for
each element padded to the mean. The new elements added in
the covariance matrix are all set to 0 to enforce independence
and the variance (diagonal) elements are set to a user-defined
small value with σpa > 0.

4) Concatenation: The features from the encoder side are
generally concatenated with the corresponding features from
the decoder to improve localization of various objects in the
input. The feature maps from the encoder path may need to
be resized or cropped before they can be concatenated with
the decoder features due to the differences in the their size.

Let Gce be the cth encoder feature map, and g
(kc)
e the kth

c

slice from such map with mean and covariance µ
g
(kc)
e

and
Σ

g
(kc)
e

, respectively. The cropped feature map is denoted with

G∗c
e where kth

c slice is g
∗(kc)
e . For kc = 1, . . . ,Kc, µg

∗(kc)
e

=

crop(µ
g
(kc)
e

) while Σ
g
∗(kc)
e

is obtained removing rows and
columns from Σ

g
(kc)
e

corresponding to the cropped elements
of µ

g
(kc)
e

.
The output of the concatenation operation is a feature map

G∗c
d = {Gcd,G

∗c
e }, where Gcd is the cth decoder feature map.

The concatenation operation is done along the dimension that
represents channels in the feature maps (generally the third
dimension).

5) Softmax Function: Pixel-level segmentation can be con-
sidered as a dense classification problem where we assign a
label to each pixel. Hence, for a multi-class problem, a softmax
function φ is applied to the output of the last layer.

Let F represent the output of the last layer with mean µF

and covariance ΣF, and Y denote the output of the network
after the softmax operation. We can approximate the mean µY

and covariance ΣY using first-order Taylor series, that is:

µY ≈ φ(µF), (13)

ΣY ≈ JφΣFJ
T
φ , (14)

where Jφ is the Jacobian matrix of φ computed with respect
to F evaluated at µF.

The mathematical results presented above for various oper-
ations can be used to build any type of deep neural network in
addition to the proposed encoder-decoder based segmentation
networks.

IV. EXPERIMENTAL METHODS

We focus on medical image segmentation for validating the
efficacy of the proposed VMP framework. We employ three
different datasets and compare VMP with two state-of-the-art
segmentation networks, a deterministic U-Net and a Bayesian
U-Net [27], [32].
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TABLE I
DSC FOR LUNGS DATASET - PERFORMANCE COMPARISON OF DIFFERENT

NETWORKS UNDER ADDITIVE GAUSSIAN NOISE.

U-Net Bayes U-Net VMP U-Net
Noise Free 0.79 0.82 0.82

Gaussian noise added to the entire image
SNR ≈ 35 dB 0.78 0.82 0.82
SNR ≈ 3 dB 0.15 0.19 0.20

Gaussian noise added to lung pixels only
SNR ≈ 31 dB 0.79 0.82 0.82
SNR ≈ 14 dB 0.60 0.61 0.61

TABLE II
DSC FOR HIPPOCAMPUS DATASET - PERFORMANCE COMPARISON UNDER

ADDITIVE GAUSSIAN NOISE.

U-Net Bayes
U-Net

VMP
U-Net U-Net Bayes

U-Net
VMP
U-Net

Anterior Posterior
Noise Free 0.79 0.79 0.79 0.76 0.76 0.74

Gaussian noise added to entire image
SNR ≈ 23 dB 0.77 0.77 0.78 0.74 0.73 0.73
SNR ≈ 15 dB 0.49 0.53 0.69 0.54 0.43 0.64
SNR ≈ 8 dB 0.09 0.12 0.36 0.13 0.07 0.28

Gaussian noise added to Anterior pixels only
SNR ≈ 23 dB 0.77 0.77 0.77 0.76 0.75 0.74
SNR ≈ 15 dB 0.51 0.55 0.69 0.66 0.63 0.69
SNR ≈ 9 dB 0.11 0.15 0.38 0.28 0.24 0.43

Gaussian noise added to Posterior pixels only
SNR ≈ 23 dB 0.78 0.78 0.78 0.76 0.74 0.73
SNR ≈ 15 dB 0.62 0.66 0.69 0.55 0.45 0.69
SNR ≈ 9 dB 0.23 0.29 0.51 0.14 0.07 0.29

A. Segmentation Network Architectures

1) U-Net - The Base Segmentation Architecture: Among
all architectures proposed for medical image segmentation, U-
Net is the most widely used [27]. U-Net is built using the
encoder-decoder structure with a contracting path and almost
identical expanding path. The contracting path may consist of
multiple encoder blocks, which, in turn, may include various
convolution layers, max-pooling, and nonlinear activations.
The expanding path consists of multiple decoder blocks, which
are made of multiple layers of convolution, activation func-
tions, up-convolution, up-sampling and padding. Additionally,
there are connections between the encoder and decoder blocks
that concatenate feature maps from the encoder with the
corresponding feature maps of the decoder. Finally, a 1 × 1
convolution and softmax are applied to the decoded feature
maps before calculating the cross-entropy loss function.

In this original U-Net architecture [27], the border pixels
are lost due to un-padded convolution operations and the
missing regions are extrapolated by mirroring. Such process-
ing may yield erroneous results for some medical image
segmentation datasets. Hence, in our settings, we apply the
padding operation to increase the size of the feature maps and
reconstruct the full-image at the output of the network. We
include the padding operation twice in each decoder block on
the expanding path. The first padding operation is performed
before the concatenation and the second is performed before
the second convolution in each decoder block. In our experi-
ments, we refer to this U-Net architecture as the deterministic
segmentation network.

Fig. 2. We compare the performance of the three networks when various
levels of Gaussian noise are added to the BraTS test data. The three sub-
plots show DSC values for a range of SNRs for three different tumor regions,
i.e., whole tumor, core, and enhancing. We note that VMP U-Net shows high
performance and robust behavior, especially at low SNR values.

2) Bayes U-Net: Bayes U-Net is built with the MC-Dropout
technique following the implementation of [32]. The dropout is
used only in the central blocks with the probability of dropping
a neuron set to p = 0.5. Bayes U-Net uses cross-entropy loss
function. At the inference time, we use N = 20 MC samples.

3) VMP U-Net: VMP U-Net uses the mathematical op-
erations presented in Sections III-C and III-D to propagate
the first two moments of the variational distribution through
the U-Net architecture. The output of VMP U-Net consists
of a segmentation map and an uncertainty map. The former
is given by the mean of the predictive distribution, while the
latter is built using the variance of the predictive distribution.
We use a Gaussian variational distribution and employ the
ELBO loss function defined in Eq. (3). We optimize the ELBO
loss function with respect to the variational parameters, i.e.,
the mean and covariance of the variational distribution. To
reduce the computational complexity, we propagate diagonal
covariance matrices in all cases.

B. Datasets and Networks

We use three different medical segmentation datasets, in-
cluding lung CT, hippocampus MRIs and brain tumor MRIs
[41]–[43]. Our experiments use only the publicly available
annotated data from the respective datasets, i.e., unlabeled data
is not used for training, validating or testing. The datasets are
divided into training, validation and testing bins with approx-
imately 80% selected for training, 10% for the validation and
10% for testing.

1) Lungs Dataset: The dataset includes 20 CT scans from
the chest region, including the lungs. This heterogeneous
dataset consists of both COVID-19 and non-COVID-19 pa-
tients. The data annotations include left lung, right lung and
infections (if found). We consider a binary segmentation task
for this dataset, i.e., delineating the boundaries of lungs in
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TABLE III
DSC FOR BRATS DATASET - PERFORMANCE COMPARISON UNDER ADDITIVE GAUSSIAN NOISE.

Whole Core Enhancing
U-Net Bayes U-Net VMP U-Net U-Net Bayes U-Net VMP U-Net U-Net Bayes U-Net VMP U-Net

Noise free .77 .77 .83 .58 .58 .64 .57 .57 .69
Gaussian noise added to entire image

SNR ≈ 24 dB .73 .74 .83 .57 .57 .64 .56 .56 .69
SNR ≈ 18 dB .68 .69 .83 .54 .55 .63 .54 .55 .69
SNR ≈ 9 dB .49 .50 .81 .35 .36 .60 .38 .38 .66

Gaussian noise added to tumor pixels only
SNR ≈ 32 dB .70 .70 .83 .54 .55 .64 .55 .55 .68
SNR ≈ 25 dB .62 .62 .83 .48 .48 .64 .49 .49 .64
SNR ≈ 13 dB .21 .22 .79 .11 .11 .46 .10 .10 .37

TABLE IV
DSC FOR LUNGS DATASET - PERFORMANCE COMPARISON UNDER

UN-TARGETED ADVERSARIAL ATTACKS.

U-Net Bayes U-Net VMP U-Net
Noise Free 0.79 0.82 0.82

Un-targeted attacks generated using FGSM
SNR ≈ 55 dB 0.78 0.80 0.80
SNR ≈ 29 dB 0.53 0.65 0.66
SNR ≈ 10 dB 0.21 0.35 0.44

TABLE V
DSC FOR HIPPOCAMPUS DATASET - PERFORMANCE COMPARISON UNDER

VARIOUS LEVELS OF TARGETED ADVERSARIAL ATTACKS.

Anterior Posterior

U-Net Bayes
U-Net

VMP
U-Net U-Net Bayes

U-Net
VMP
U-Net

Noise Free 0.79 0.79 0.79 0.76 0.76 0.74
Targeted adversarial attacks - source: label 1, target: label 2

SNR ≈ 29 dB 0.75 0.76 0.75 0.60 0.60 0.64
SNR ≈ 23 dB 0.71 0.72 0.72 0.52 0.55 0.59
SNR ≈ 15 dB 0.40 0.45 0.52 0.19 0.27 0.34

Targeted adversarial attacks - source: label 2, target: label 1
SNR ≈ 23 dB 0.65 0.69 0.69 0.67 0.71 0.71
SNR ≈ 15 dB 0.59 0.64 0.65 0.65 0.70 0.70
SNR ≈ 9 dB 0.28 0.32 0.42 0.39 0.40 0.46

the given CT images. Specifically, we assign a label of 0 to
the background and 1 to lung tissue. The pre-processing steps
include (1) windowing the Hounsfield units range between
−1250 and 250, (2) normalizing all pixel values between 0
and 1, (3) deleting empty slices, i.e., slices that include only
the label 0 corresponding to the background, and (4) cropping
all images to a single size, i.e., 512× 512 pixels.

The U-Net architecture used for this dataset includes 3
encoder blocks and 2 decoder blocks. The number of kernels
in the encoder blocks is set to 16, 32, and 64, while to 32 and
16 in the decoder blocks. We train all three networks (i.e.,
U-Net, Bayes U-Net and VMP U-Net) for 50 epochs using
a batch size of 10 with the Adam optimizer and the learning
rate of 0.001. In VMP U-Net, we set σpa = 0.05.

2) Hippocampus Dataset: The dataset consists of 394
single-modality MRI scans. The segmentation task requires
the precise delineation of two adjacent structures, i.e., anterior
(label 1) and posterior (label 2). The pre-processing steps
include (1) normalizing data to reduce the image bias (which

is a characteristic of MRI data), (2) deleting empty slices,
i.e., those that include only the label 0 corresponding to the
background, and (3) padding images to have the same input
size of 64× 64 pixels.

For the hippocampus task, the U-Net architecture consists
of 3 encoder blocks and 2 decoder blocks. The convolutional
kernels are set to 32, 64, and 128 on the encoder side and
64, and 32 on the decoder side. All three networks (i.e., U-
Net, Bayes U-Net and VMP U-Net) are trained with Adam
optimizer for a total of 100 epochs using a batch size of 20.
In VMP U-Net, we set σpa = 0.02.

3) Brain Tumor Segmentation (BraTS) Dataset: The dataset
includes about 300 multi-modal (T1, T1c, T2, and FLAIR)
MRI scans from 274 brain tumor patients (some patients have
multiple MRI scans) [43]. The dataset is divided into two
main types of tumors, low-grade gliomas (LGG) and high-
grade gliomas (HGG). We focus on the more challenging
HGG dataset in our experiments. The pre-processing steps
include (1) normalizing data to reduce the image bias, (2)
deleting images that do not include any tumor structure, and
(3) cropping each image to the size of 240× 240 pixels. The
input data size for each sample in the dataset is 240×240×4
pixels, where the last number represents the four modalities,
i.e., T1, T1c, T2, and FLAIR. All three networks (U-Net,
Bayes U-Net, and VMP U-Net) are trained to segment 5
different labels in the HGG MRIs, i.e., normal tissue (label
0), necrosis (label 1), edema (label 2), non-enhancing tumor
(label 3), and enhancing tumor (label 4). In most clinical
applications, generally, three tumor regions are considered for
evaluating the results of segmentation, (1) whole tumor (labels
1, 2, 3 and 4), (2) tumor core (labels 1, 3 and 4), and (3)
enhancing tumor region (label 4) [43].

We use the original U-Net architecture with 5 encoder and
4 decoder blocks [27]. The number of kernels in each encoder
block is 64, 128, 256, 512, and 1024. The number of kernels
used in the decoder blocks is 512, 256, 128, and 64. We set
σpa = 0.1 for the VMP U-Net. All three networks are trained
for 100 epochs using Adam optimizer with a learning rate of
0.001 and a batch size of 20.

C. Other Experimental Settings

We report the Dice Similarity Coefficient (DSC) as the
metric to compare the performance of all three networks.
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TABLE VI
DSC FOR BRATS DATASET - PERFORMANCE COMPARISON UNDER VARIOUS LEVELS OF UN-TARGETED AND TARGETED ADVERSARIAL ATTACKS.

Whole Core Enhancing
U-Net Bayes U-Net VMP U-Net U-Net Bayes U-Net VMP U-Net U-Net Bayes U-Net VMP U-Net

Noise free .77 .77 .83 .58 .58 .64 .57 .57 .69
Un-targeted attacks generated using FGSM

SNR ≈ 39 dB .67 .68 .82 .46 .47 .62 .46 .46 .64
SNR ≈ 12 dB .34 .37 .58 .20 .23 .31 .19 .20 .30

Targeted adversarial attacks - source: label 3, target: label 1
SNR ≈ 44 dB .69 .70 .82 .48 .50 .61 .48 .50 .67
SNR ≈ 19 dB .34 .35 .55 .22 .23 .35 .24 .24 .36

Targeted adversarial attacks - source: label 1, target: label 3
SNR ≈ 44 dB .70 .71 .82 .50 .50 .63 .48 .49 .67
SNR ≈ 19 dB .38 .38 .56 .24 .25 .35 .25 .26 .37

Targeted adversarial attacks - source: label 3, target: label 2
SNR ≈ 44 dB .70 .71 .82 .52 .53 .64 .50 .53 .67
SNR ≈ 19 dB .35 .35 .54 .24 .24 .36 .24 .25 .39

Targeted adversarial attacks - source: label 2, target: label 3
SNR ≈ 44 dB .70 .71 .82 .51 .53 .62 .51 .52 .68
SNR ≈ 19 dB .35 .35 .58 .23 .24 .37 .25 .26 .38

The choice of the loss function in segmentation can sig-
nificantly impact the performance of the network [44]. For
example, the loss function based on DSC may result in
better performance as compared to the cross-entropy loss
[44]. However, for a fair comparison, we used the same loss
functions, i.e., cross-entropy, for both U-Net and Bayes U-Net.

We conduct a detailed robustness analysis of the perfor-
mance of all three networks using two types of noise, i.e.,
Gaussian and adversarial. We compare the performance of all
three networks under various levels of Gaussian noise added to
the test data of all three datasets. We measure the noise level
using the Signal-to-Noise Ratio (SNR) in the units of decibels
(dB). For the adversarial noise, we employ the Fast Gradient
Sign Method (FSGM) and generate un-targeted attacks [45].
On the other hand, we use the Projected Gradient Descent
(PGD) method to generate targeted adversarial attacks [46].
We set the maximum number of iteration to 20 and use the
step-size of 1. We select a source class and a target class to
generate targeted attacks. The adversarial attack algorithm will
try to fool the trained network into predicting pixels belonging
to the source class as the pixels of the target class.

V. RESULTS AND DISCUSSION

We report our results in three parts. First, we present the
performance analysis (measured using DSC) of three networks
(U-Net, Bayes U-Net, and VMP U-Net) under various levels
of Gaussian noise added to the test data. Next, we analyze the
same three networks under various levels of targeted and un-
targeted adversarial attacks. Finally, we present our analysis of
the uncertainty maps generated by the proposed VMP U-Net
at the inference time.

A. Evaluation Under Gaussian Noise

Tables I, II, and III report DSC values for U-Net, Bayes
U-Net and VMP U-Net under different levels of Gaussian
noise, including the noise-free case. For each dataset, we report
results for two cases, i.e., noise added to the entire input
image or only to the structures that the networks are trying
to segment, e.g., tumor in the BraTS dataset.

Fig. 3. DSC values for comparing the performance of three networks. Various
levels of un-targeted attacks are applied to the Lungs test data. We plot the
DSC vs SNR (dB) for the 3 approaches. Note the VMP method is showing a
more robust behaviour when data is corrupted with higher levels of adversarial
attacks.

We note that the proposed VMP U-Net generally demon-
strates more robust behavior as compared to deterministic U-
Net and Bayes U-Net, especially at low SNR values, i.e., high
levels of noise. In Fig. 2, we plot DSCs vs. SNR for the three
tumor regions. Each subplot compares the performance of the
three networks for multiple levels of Gaussian noise added to
the entire image.

B. Evaluation Under Adversarial Attacks

We present the robustness of all three networks against
targeted and un-targeted adversarial attacks in Tables IV, V,
and VI. The tables present DSC values for various levels of
adversarial attacks, quantified using SNR. We observe that
VMP U-Net shows better performance (i.e., high DSC values)
as compared to the other two networks, especially for stronger
attacks (i.e., low values of SNR).

In Fig. 3, we show DSC values for a range of un-targeted
adversarial attacks against the lung test dataset generated
using the FGSM. We show the DSC vs. SNR for the three
approaches.

C. Uncertainty Maps and Predictive Variance

1) Uncertainty Maps: The output of VMP U-Net consists
of a segmentation map (prediction) and an uncertainty map.
In Fig. 4, and 5, we present representative cases selected
from the hippocampus and BraTS test data. We show (a)
one input modality (only FLAIR for the BraTS data), (b)
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Fig. 4. A representative image from the hippocampus test data. We show (a) the input image, (b) the ground-truth segmentation, (c) the noise-free case, (d)
the Gaussian noise case, (d) the targeted adversarial attack. For each case, we show (1) the U-Net segmentation prediction, (2) the proposed VMP U-Net
segmentation prediction, and (3) the corresponding uncertainty map. The arrows point to regions incorrectly classified by our network. We note that the
corresponding pixels in the uncertainty maps reflect the low confidence by responding with higher variance values.

Fig. 5. A representative image from BraTS test data. We show (a) the input image (FLAIR modality only), (b) the ground-truth segmentation, (c) the noise-free
case, (d) the Gaussian noise case, and (e) the targeted adversarial attack. For each case, (1) shows the U-Net segmentation prediction, (2) the segmentation
prediction by VMP U-Net, and (3) the corresponding uncertainty map. The arrows point to regions incorrectly classified by the network. We note that the
corresponding pixels in the uncertainty maps reflect the low confidence by responding with higher variance values.

the ground-truth label, (c) the noise-free case, (d) a Gaussian
noise case and (e) a targeted attack example. For each case,
we illustrate (1) the segmentation prediction obtained with U-
Net, (2) the proposed VMP U-Net prediction, and (3) the
corresponding VMP uncertainty map. We point to regions
(pixels) incorrectly classified by the network with the arrows
(sub-figure (2c), (2d), (2e)). In the uncertainty maps, we place
arrows in the same spot as in the prediction figures (sub-figure
(3c), (3d), (3e)). It is evident from the figure that VMP U-
Net associates high uncertainty with incorrect predictions and
pixels belonging to targeted regions. We also note that when
the predicted segmentation is (almost) identical to the ground-
truth, the model is confident in its segmentation predictions
and is only uncertain at the boundary between the structures
of interest (noise-free case, sub-figures (2c) and (3c)). On the
other hand, when noise or adversarial attacks are detected,
or when the network’s segmentation predictions are incorrect,
higher uncertainty values are associated with the predictions
(sub-figure (2d), (3d), (2e) and (3e)). The comparison with
the point-estimate approach, i.e., U-Net, demonstrates the need
for the uncertainty maps. The reliability of the segmentation
prediction can be assessed using the uncertainty maps.

2) Predictive Variance: We calculate the average predictive
variance from uncertainty maps and plot these values against
various levels of Gaussian noise in Fig. 6 and adversarial
attacks in Fig. 7 for hippocampus and BraTS datasets, re-
spectively. It is more instructive and insightful if sub-plots in
both figures are interpreted from right to left, i.e., decreasing
SNR or equivalently increasing noise in the test data. We
note that the predictive variance monotonically increases with
increasing noise (i.e., decreasing SNR) for all three sub-figures

in Fig. 6 and all four sub-figures in Fig. 7. This behavior,
i.e., increasing variance with increasing noise, demonstrates
that the network is aware of higher noise in the input. Such
information is valuable for detecting when the network may
fail, and its predictions may become untrustworthy.

We report the average inference time of all three networks in
Table VII. We note that VMP U-Net requires almost twice the
time to process a single image at the inference time compared
to the deterministic U-Net. The increased processing time is
related to the propagation of the covariance information that
requires performing additional operations. The Bayes U-Net
takes the same time as that of a deterministic U-Net for one
pass. However, it will need multiple passes to calculate the
variance of the prediction. We used N = 20, which will lead
to the inference time of 16.4 ms for each image, almost 8
times more than VMP U-Net.

D. Discussion

We build an efficient and scalable Bayesian network for
segmentation, referred to as VMP U-Net, based on the encode-
decoder architecture. We derive mathematical relations to train
VMP U-Net for accurate segmentation and simultaneously
estimate uncertainty in segmentation decisions. We use three
medical datasets to test the validity of our approach. Our
simulations show that VMP U-Net delivers superior robustness
to noise and adversarial attacks. In the noise-free case, simple
datasets, and binary task, e.g., hippocampus dataset, VMP U-
Net performs equally well compared to the state-of-the-art
models. However, as the noise levels increase (Gaussian or
adversarial), the task or the dataset becomes more complicated,
e.g., BraTS data (multiple segmentation labels and multiple
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Fig. 6. Accuracy (DSCs) and average predictive variance of VMP U-Net for various levels of Gaussian noise added in the test data for hippocampus dataset.
It is more instructive if each sub-figure is interpreted from right to left. The black lines indicate DSCs and red light show the average predictive variance. (a)
Noise added to the entire input. (b) Noise added to the anterior pixels only. (c) Noise added to the posterior pixels only.

Fig. 7. Accuracy (DSCs) and average predictive variance of VMP U-Net for various levels of adversarial attacks applied to the test data for BraTS dataset.
The black lines indicate DSCs and red lines show the average predictive variance. Test data is corrupted with targeted attacks: (a) source class 3 and target
class 1, (b) source class 1 and target class 3, (c) source class 3 and target class 2, (d) source class 2 and target class 3.

TABLE VII
INFERENCE TIME PER IMAGE

U-Net Bayes U-Net VMP U-Net
Time (ms) 0.81 0.82 N∗ 1.92
∗N is the number of runs through the network at inference time.

modalities), VMP U-Net outperforms both U-Net and Bayes
U-Net. The superior performance and robustness to noise,
especially at high noise levels and complex task/data, can
be attributed to the propagation of the variance information
(in addition to the mean) through the network layers from
input to output. In our formulation, the second moment, which
represents uncertainty, is learned during the training rather than
being estimated using MC runs through the network at the
inference time.

VI. CONCLUSION

We proposed a novel Bayesian framework, VMP U-Net,
to quantify uncertainty in segmentation tasks. We employed
the probability density function tracking techniques used for
nonlinear systems to develop a framework that propagates the
mean and the covariance matrix of the variational posterior dis-
tribution across all layers of DNNs. We targeted the encoder-
decoder architecture for medical image segmentation, i.e., U-
Net. At test time, the uncertainty in the decision is captured
by the covariance matrix of the predictive distribution, which
is available at the output of the VMP U-Net along with the
prediction. The predictive variance information is used to build
uncertainty maps that provide crucial information about the

network’s self-awareness on the reliability of its prediction
(i.e., segmentation). We have shown that areas incorrectly clas-
sified by our network are accompanied by higher uncertainty
regions. Our results also demonstrate that the VMP configu-
ration enhances the performance of the DNN in the presence
and absence of noise or adversarial attacks. Furthermore, the
uncertainty maps offer transparency that attracts the attention
of supervising physicians. Nonetheless, clinical situations may
arise where AI segmentation may not be under direct and
continuous physician control; in such cases, it is important
that the networks recognize high measures of uncertainty to
generate an appropriate notification. Hence, our work paves
the way for developing trustworthy and self-aware DL systems
that can be safely deployed in mission-critical applications,
such as healthcare.
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