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Abstract

The genetic architecture of common traits, including the number, frequency, and effect sizes of 

inherited variants that contribute to individual risk, has been long debated. Genome-wide 

association studies have identified scores of common variants associated with type 2 diabetes, but 

in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-

frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia 

performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome 

sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, 

we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants 

associated with type 2 diabetes after sequencing were overwhelmingly common and most fell 

within regions previously identified by genome-wide association studies. Comprehensive 

enumeration of sequence variation is necessary to identify functional alleles that provide important 

clues to disease pathophysiology, but large-scale sequencing does not support a major role for 

lower-frequency variants in predisposition to type 2 diabetes.
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There is compelling evidence that individual risk of type 2 diabetes (T2D) is strongly 

influenced by genetic factors1. Progress in characterizing the specific T2D-risk alleles 

responsible has been catalyzed by the ability to perform genome-wide association studies 

(GWAS). Over the past decade, successive waves of T2D GWAS – featuring ever larger 

samples, progressively denser genotyping arrays supplemented by imputation against more 

complete reference panels, and richer ethnic diversity – have delivered >80 robust 

association signals2-8. However, in these studies, the alleles interrogated for association are 

predominantly common (minor allele frequency [MAF]>5%), and with limited 

exceptions7,9, the variants driving known association signals are also common, with 

individually-modest impacts on T2D risk 2-8,10. Variation at known loci explains only a 

minority of observed T2D heritability2,3,11.

Residual genetic variance is partly explained by a long tail of common variant signals of 

lesser effect2. However, the contribution to T2D risk attributable to lower-frequency variants 

remains a matter of considerable debate, not least because of the relevance of disease 

architecture to clinical application11. Next-generation sequencing enables direct evaluation 

of the role of lower-frequency variants to disease risk7,12,13. This paper describes the efforts 

of the coordinated, complementary strategies pursued by the Genetics of Type 2 Diabetes 

(GoT2D) and T2D-GENES (Type 2 Diabetes Genetic Exploration by Next-generation 

sequencing in multi-Ethnic Samples) Consortia. GoT2D collected comprehensive genome-

wide sequence data from 2,657 T2D cases and controls; T2D-GENES focused on exome 

sequence variation, assembling data (after inclusion of GoT2D exomes) from a multiethnic 

sample of 12,940 individuals. Both consortia used genotype data to expand the sample size 

available for association testing for a subset of the variants exposed by sequencing.

Analysis of genome-wide variation

The GoT2D consortium selected for whole genome sequencing cases of type 2 diabetes 

(T2D) and ancestry-matched normoglycemic controls from northern and central Europe 

(Methods; Supplementary 1). To increase power to identify low-frequency 

(0.5%<MAF<5%) and rare (MAF<0.5%) T2D variants of large effect, we preferentially 

ascertained individuals from the extremes of genetic risk (Methods). The genome sequence 

of 1,326 cases and 1,331 control individuals was determined through joint statistical analysis 

of low-coverage whole-genome sequence (~5x), deep-coverage exome sequence (~82x), and 

array-based genotypes at 2.5M single nucleotide variants (SNVs) (Extended Data Fig. 1; 
Extended Data Table 2).

We detected, genotyped, and estimated haplotype phase for 26.7M genetic variants 

(Extended Data Fig. 1; Extended Data Table 3), including 1.5M short insertion-deletion 

variants (indels) and 8.9K large deletions. Individual diploid genomes carried a mean of 

3.30M variants (range: 3.20M-3.35M), including 271K indels (262K-327K), and 669 

(579-747) large deletions. These data include many variants not directly studied by previous 

GWAS, including all of the indels as well as 420K common and 2.4M low-frequency SNVs 

poorly tagged (r2≤0.30)3,4 by genotype arrays. We estimate near-complete ascertainment 

(98.2%) of SNVs with minor allele count >5 (MAF>0.1%), and high accuracy (>99.1%) at 

heterozygous genotypes (Methods; Fig. 1a). As half the sequenced individuals were T2D 
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cases, ascertainment was enhanced for any rare or low-frequency variants that substantially 

increase T2D risk (Fig. 1a). Specifically, we estimate ≥80% power to detect (at genome-

wide significance, α=5×10−8) T2D risk variants with MAF≥5% and OR≥1.87, or 

MAF≥0.5% and OR≥4.70 (Extended Data Fig. 4).

We tested all 26.7M variants for T2D association by logistic regression assuming an additive 

genetic model (Supplementary 2). Analyses using a mixed-model framework to account for 

population structure and relatedness generated almost identical results. At genome-wide 

significance, 126 variants at four loci were associated with T2D (Fig. 1b). This included two 

previously-reported common-variant loci (TCF7L2, ADCY5), a previously-reported low-

frequency variant in CCND27 (rs76895963, MAF=2.6%, pseq=4.2×10−9), and a novel 

common-variant association near EML4 (MAF=34.8%, pseq=1.0×10−8). There was no 

significant evidence of T2D association for sets of low-frequency or rare variants within 

coding regions, nor within specified non-coding regulatory elements (Methods).

Power to detect association with low-frequency and rare variants of modest effect is limited 

in 2,657 individuals. To increase power for variants discovered via genome sequencing, we 

imputed sequence-based genotypes into 44,414 additional European-origin individuals 

(11,645 T2D cases, 32,769 controls; Methods) from 13 studies (Supplementary 3). We 

estimated power in the combined sequence plus imputed data, adjusting for imputation 

quality, to be ≥80% for variants with MAF≥5% and OR≥1.23, or MAF≥0.5% and OR≥1.92 

(Extended Data Fig. 4). Meta-analysis combining results for the sequence and imputed data 

identified 674 variants across 14 loci associated with T2D at genome-wide significance (Fig. 
1c). All were common except the CCND2 variant described above. We observed a novel 

association with a common variant near CENPW (rs11759026, MAF=23.2%, 

pmeta=3.5×10−8; Fig. 1c) and replicated this association in an additional 14,201 cases and 

100,964 controls from the DIAGRAM consortium (p=2.5×10−4; pcombined=1.1×10−11; 

Methods). The EML4 signal detected in the sequence data did not replicate in the imputed 

data (p=0.59; pmeta=0.26; Fig. 1c).

To test for additional association signals we performed conditional analysis at loci 

previously associated with risk of T2D (Methods). We identified two novel association 

signals, both involving low-frequency variants, at a corrected significance threshold 

(α<1.8×10−6; Methods): one at the IRS1 locus (rs78124264, MAF=2.2%, 

pconditional=2.5×10−7) and one upstream of PPARG (rs79856023, MAF=2.2%, 

pconditional=9.2×10−7) (Extended Data Table 5). The PPARG signal overlaps regulatory 

elements in hASC pre-adipose and HepG2 cells, consistent with evidence that altered 

adipose regulation drives the primary PPARG signal14.

Analysis of coding variation

The T2D-GENES consortium adopted a complementary strategy, focused on variants in 

protein-coding sequence, and seeking to improve power to detect rare-variant association by 

exploiting the more robust functional annotation of coding variation and the potential to 

aggregate multiple alleles of presumed similar impact in the same gene12,15. We combined 

exome sequence data from 10,437 T2D cases and controls of diverse ancestry generated by 

Fuchsberger et al. Page 3

Nature. Author manuscript; available in PMC 2017 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T2D-GENES, with the equivalent data from GoT2D. This created a joint data set (after all 

QC) comprised of 12,940 individuals (6,504 cases; 6,436 controls) drawn from five ancestry 

groups: 4,541 of European origin, and ~2,000 [range: 1,943-2,217] each of South Asian, 

East Asian, Hispanic, and African American origin (Extended Data Fig. 1; Extended Data 

Table 2; Supplementary 4). Mean coverage was 82x across the coding sequence of 18,281 

genes, identifying 3.04M variants (1.19M protein-altering) (Supplementary 5,6). Each 

diploid genome carried a mean of 9,243 (range: 8,423-11,487) synonymous, 7,636 

(6,935-9,271) missense, and 250 (183-358) protein-truncating alleles (Supplementary 7).

We tested for T2D association within the five ancestral groups, assuming an additive genetic 

model, using mixed-model approaches that account for population structure and 

relatedness16, and combined ancestry-specific results via trans-ethnic meta-analysis 

(Methods). We estimate ≥80% power to detect (at genome-wide significance) T2D risk 

variants with MAF≥5% and OR≥1.36, or MAF≥0.5% and OR≥2.29 (Methods; Extended 
Data Fig. 4). Only one variant reached genome-wide significance (PAX4 Arg192His, 

rs2233580, p=9.3×10−9) (Table 1; Extended Data Figs. 6,7; Supplementary 8). This 

association was exclusive to East Asians, in whom the 192His allele is, in fact, common 

(MAF~10%) with a substantial effect size (allelic OR=1.79 [1.47-2.19]); 192His is virtually 

absent in other ancestries (MAF=0.014%). The rs2233580 association replicated in 

independent East Asian case-control data (n=3,301; p=5.9×10−7: Supplementary 9) and 

was distinct (r2<0.05) from previously-reported GWAS SNVs at the GCC1-PAX4 locus6,8. 

PAX4 encodes a transcription factor involved in islet differentiation and function17 

(Supplementary 10), and PAX4 variants have been implicated in early-onset monogenic 

diabetes18. However, in East Asian cases, 192His was not associated with age of diabetes 

diagnosis (p=0.64), indicating this variant influences risk of type 2 rather than early-onset 

monogenic diabetes (Supplementary 9).

To increase power to detect association of rare variants that cluster in individual genes, we 

deployed gene-level variant aggregation tests15 across the exome sequence data (Methods; 

Supplementary 11). We observed no deviation from the null distribution of association 

statistics, and no single gene reached exome-wide significance (α=2.5×10−6) (Methods; 
Supplementary 12,13). When we focused on 634 genes mapping to known GWAS regions, 

only FES exceeded a reduced significance threshold of α=7.9×10−5 (psouthAsian=7.2×10−6, 

pmultiethnic=1.9×10−5) (Method; Supplementary 14). This aggregate signal was driven 

entirely by the South Asian-specific Pro536Ser variant (MAF=0.9%, OR=6.7 [2.6-17.3], 

p=7.5×10−6), indicating that FES is likely to be the effector gene at the PRC1 GWAS locus4.

To increase power to detect coding variant associations (Extended Data Fig. 4), we 

contributed early T2D-GENES exome data to the design of Illumina exome array9, and then 

collected genotypes from an additional 28,305 T2D cases and 51,549 controls of European-

ancestry from 13 studies (Extended Data Fig. 1; Extended Data Table 2; Supplementary 15). 

Of 27,904 protein-altering variants with MAF>0.5% detected in exome sequence data from 

n=4,541 European individuals, variation at 81.6% was captured on the array 

(Supplementary 16).
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Association analysis in the combined sequence and array data from >90,000 individuals 

identified 18 coding variants (17 nonsynonymous), at 13 loci, which exceeded genome-wide 

significance (α=5×10−8) (Table 1; Extended Data Figs. 6,7). All of these were common 

(MAF>5%) and all but one mapped within established common-variant GWAS regions2,3. 

The exception, which we replicated in the INTERACT study19 (n=9,292; 

pINTERACT=2.4×10−4; pmeta=2.2×10−11), involved a common haplotype of four strongly-

correlated coding variants in MTMR3 and ASCC2 (Table 1). Of these, MTMR3 Asn960Ser 

(MAF=8.3%) had the strongest residual association signal on conditional analysis, 

implicating MTMR3, encoding a phosphatidylinositol phosphatase20, as the probable 

effector transcript at this locus (Extended Data Table 5; Extended Data Figs. 6,7; 

Supplementary 10,17).

The remaining coding variant signals provided an opportunity to highlight causal alleles and 

effector transcripts for known GWAS signals. For five loci (SLC30A8, GCKR, PPARG, 
KCNJ11-ABCC8, PAM), the coding variants identified had previously been nominated as 

causal for their respective GWAS signals2,7,13. For the other seven loci, GWAS meta-

analyses had previously highlighted a lead variant in non-coding sequence2,5,6. We 

(re)evaluated these relationships with conditional and credible set analyses, finding that, at 

most, the evidence supported a direct causal role for the coding variants concerned 

(Extended Data Table 5; Extended Data Figs. 6,7; Supplementary 10,17).

For example, at the CILP2 locus2, previous GWAS had identified the non-coding variant 

rs10401969 as the lead SNV. However, direct genotyping of TM6SF2 Lys167Glu on the 

exome array revealed complete linkage disequilibrium with rs10401969, and reciprocal 

signal extinction in conditional analyses (Extended Data Table 5; Extended Data Figs. 
6,7). In previous GWAS, the association at Lys167Glu had been obscured by incomplete 

genotyping and poor imputation (Supplementary 18). The TM6SF2 Lys167 allele has been 

shown to underlie predisposition to hepatic steatosis21, and was associated with fasting 

hyperinsulinemia (p=1.0×10−4) in 30,824 non-diabetic controls from the present study. This 

combination of genetic and functional data, consistent with known mechanistic links 

between insulin resistance, T2D, and fatty liver disease22, implicates TM6SF2 Lys167Glu as 

the likely T2D-risk variant at this locus.

In contrast, the association at RREB1 Asp1171Asn represented a novel signal, conditionally 

independent of the adjacent common-variant GWAS signal. This association, together with 

that involving a second associated coding variant, Ser1554Tyr, which has a marked 

association with fasting glucose (p=2.7×10−9 in levels in 38,338 non-diabetic subjects from 

the present study) (Supplementary 19), establishes RREB123 as the probable effector gene 

at the SSR1 locus.

Given the concentration of coding-variant associations within established GWAS loci, we 

sought to nominate additional single-variant signals in 634 genes mapping to established 

T2D GWAS regions using a Bonferroni-corrected α=1.6×10−5 (Methods; Supplementary 
14,20). At HNF4A, we confirmed a T2D association at Thr139Ile (European MAF range 

0.7-3.8%, OR=1.15 [1.08-1.22], p=2.9×10−6)10 distinct both from the common non-coding 

lead GWAS SNV2,3,5, and multiple rare HNF4A variants implicated in monogenic 
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diabetes24. Additional coding variant associations in TSPAN8 and THADA highlighted 

these two genes as probable effector transcripts in their respective GWAS regions 

(Supplementary 10,21).

Rare alleles in Mendelian genes

We extended gene-based tests for rare-variant associations to gene-sets implicated in 

monogenic or syndromic diabetes or in altered glucose metabolism24. Across 81 genes 

harboring rare alleles causal for monogenic or syndromic diabetes or related glycemic traits 

(‘Monogenic All’; Supplementary 22), the only variant or gene association genome-wide 

significance involved the previously-mentioned PAX4 Arg192His. However, across the 

entire gene-set, we observed a weak aggregate association with T2D-risk (p=0.023: Fig. 2a). 

The association was considerably stronger in two subsets of genes more directly implicated 

in monogenic and syndromic diabetes: a manually-curated set of 28 genes for which 

diabetes was the primary phenotype (‘Monogenic Primary’) and a partially-overlapping set 

of 13 genes reported in OMIM as causal for MODY or neonatal diabetes (‘Monogenic 

OMIM’) (Supplementary 22).

The ‘Monogenic OMIM’ gene-set had a statistically robust signal of association 

(p=2.8×10−5, OR=1.51 [1.25-1.83]) driven by allelic burden of MAF<1% alleles. Effect size 

estimates tracked with increasing stringency of variant annotation and gene-set definition, 

consistent with progressive enrichment for functional over neutral alleles (Fig. 2b). This 

signal does not reflect inclusion among T2D cases of individuals who, in reality, had 

monogenic diabetes: the association was not concentrated among genes most frequently 

responsible for monogenic diabetes24 (Fig. 2c), and age of diabetes diagnosis was no 

younger in variant carriers than non-carriers (Supplementary 23). The association signal 

remained after all alleles listed as ’disease-causing’ within the Human Genetic Mutation 

Database were excluded (p=2.9×10−4, OR=1.50 [1.21-1.86]).

These analyses point to widespread enrichment for T2D association among rare coding 

alleles in genes causal for monogenic diabetes. In these genes, alleles of penetrance 

sufficient to drive familial segregation of early-onset diabetes coexist alongside those of 

more modest effect predisposing to later-onset T2D. No other compelling signals of rare-

variant enrichment were detected using gene-set enrichment or protein-protein interaction 

analysis in other pre-defined gene-sets (Supplementary 24-26).

No evidence for synthetic association

In 2010, Goldstein and colleagues proposed that common-variant GWAS signals may be the 

consequence of low-frequency and rare variants that by chance cluster on common 

haplotypes25. While this hypothesis has been debated26,27 and assessed indirectly3,28, we 

used the near-complete ascertainment of genetic variation in 2,657 genome-sequenced 

individuals to directly test the importance of ‘synthetic’ associations29. We focused on the 

ten T2D GWAS loci at which our sample provided the strongest statistical evidence for 

association (p<0.001), implementing a conditional analysis procedure to assess whether 
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combinations of SNVs within a 5Mb window could explain the common-variant signal 

(Extended Data Table 8; Methods).

We first focused on missense variants, finding that none of the ten signals could be explained 

by low-frequency and rare variants within 2.5Mb of the common index SNV (Extended 
Data Fig. 9). For example, at the IRS1 locus, including the five observed missense IRS1 
alleles in the model did not meaningfully diminish the index SNV association 

(punconditional=2.8×10−6, pconditional=4.3×10−6). With 99.7% ascertainment of low-frequency 

coding variants (Methods), these results rule out synthetic associations produced by 

missense variants at these ten loci.

We expanded the search to include all low-frequency and rare variants, non-coding and 

coding, within 2.5Mb of index SNVs. At no locus was a single low-frequency or rare variant 

sufficient to explain the GWAS signal (Extended Data Fig. 9). At 8 of the 10 loci, ≥10 low-

frequency and rare variants were needed to reverse the direction of effect at the common 

index SNV; at TCF7L2, even 50 were insufficient (Extended Data Fig. 9). We note that the 

statistical procedure we developed and deployed is biased in favor of the synthetic 

association hypothesis, since it is highly prone to over-fitting. Nonetheless, at 8 of the 10 

loci the data were indistinguishable from a null model of no synthetic association (Extended 
Data Table 8; Supplementary 27).

Nominating candidate functional alleles

Using the GoT2D whole genome sequence data, we constructed 99% ‘credible sets’ for each 

T2D GWAS locus on the assumption of one causal variant per locus (Methods)30. Across 78 

published autosomal loci at which the reported index SNV had MAF>1%, 99% credible set 

sizes ranged from 2 (CDKN2AB) to ~1,000 (POU5F1) variants; at 71 loci, the credible set 

contained >10 variants (Extended Data Fig. 9; Supplementary 28). The GoT2D dataset 

provides near-complete ascertainment of common and low-frequency variants to support 

more comprehensive credible set analysis than studies based on genotyping or imputation 

alone3,31: of the credible set variants identified from whole genome sequence data, ~60% are 

absent from HapMap and ~5% from 1000G Phase 1 (Extended Data Fig. 9).

Genomic maps of chromatin state or transcription factor binding32-35 have been used to 

prioritize causal variants within credible sets36,37. We jointly modeled genetic association 

and genomic annotation data at T2D GWAS loci using fgwas38. Consistent with previous 

reports34,35, associated variants were enriched in coding exons, transcription factor binding 

sites, and enhancers active in pancreatic islets and adipose tissue (Extended Data Fig. 10). 

Overall, including the functional annotation data reduced credible set size by 35%. At 

several loci, access to complete sequence data prioritized variants that overlap relevant 

regulatory annotations and were previously overlooked. For example, at the CCND2 locus, 

three variants not present in HapMap Phase 2 have combined probability of 90.0% of 

explaining the common-variant signal2 (Extended Data Fig. 10); one of these (rs3217801) 

is a 2bp indel overlapping an islet enhancer element.
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Modelling disease architecture

To evaluate the overall contribution of low-frequency coding variation to T2D risk, we 

estimated the proportion of variance in T2D-liability attributable to each such variant39 

(Methods; Extended Data Fig. 11). We focused on exome array data to maximize sample 

size, and on variants with MAF>0.1%; sensitivity of variant ascertainment and accuracy of 

OR estimation decline below this threshold. Among the 31,701 variants on the exome array 

with 0.1%<MAF<5% there was a progressive increase in the maximum OR estimates with 

decreasing frequency. However, the liability variance explained for these variants rarely 

exceeded 0.05%, limiting power to detect association in the sample size available (Extended 
Data Fig. 11). We estimated (Methods) that the liability variance collectively attributable to 

coding variants in the 0.1%<MAF<5% range was 2.9%, compared to 6.3% for common 

variants.

Finally, we compared our whole genome T2D association results with predictions from 

population genetic simulations40 under twelve models that vary widely with respect to the 

proportion of heritability explained by common, low-frequency, and rare variants. We 

mirrored the GoT2D study design (with imputation) and performed in parallel the same 

association analysis on empirical and simulated data, focusing on variants with MAF>0.1% 

and allowing for power loss due to imperfect imputation (Methods).

Figure 3 displays results for three representative models: a ‘purifying selection’ model in 

which low-frequency and rare variants explain ~75% of T2D heritability, an intermediate 

model in which low-frequency/rare and common variants both contribute substantially, and a 

‘neutral’ model in which common variants explain ~75% of T2D heritability. Predictions of 

the first two models differ markedly in the numbers of low-frequency and rare risk variants 

that are associated with T2D. Specifically, these two models predict a larger number and 

greater effect size of low-frequency variants found in our whole genome sequencing study as 

compared to those observed in the empirical data. In contrast, empirical data are consistent 

with predictions under the ‘neutral’ common-variant model.

The century-old Mendelian-biometrician debate pitted those who attributed trait variation to 

rare variants of large effect against those who argued that trait variation is largely due to 

many common variants of small effect. The debate today is about whether the ‘missing 

heritability’ after GWAS is due largely to individually rare, highly-penetrant variants41 or to 

a large universe of common alleles of modest effect42. The results are of more than 

academic interest, since genetic architecture plays out powerfully in relation to the power of 

genetic diagnosis and the application of precision medicine.

Our data and analysis indicate that for T2D, nearly all common-variant associations 

detectable by whole genome sequencing were previously found by GWAS based on 

genotyping arrays and imputation: concerns about incomplete coverage due to ‘holes’ in 

HapMap11 coverage were, we show, unfounded. Of more lasting interest, the combination of 

genome and exome sequencing in large samples provides limited evidence of a role for 

lower-frequency variants — coding or genome wide — in T2D predisposition. Of course, 

rare risk alleles have long been known to contribute in families with early-onset forms of 
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diabetes, and sequencing of Mendelian and GWAS genes has identified rare variants that 

influence disease risk43,44. Sequencing of T2D cases in much larger samples will 

undoubtedly uncover additional low-frequency and rare variants that provide biological and 

potentially clinical value. Nonetheless, our empirical and simulated data argue that these 

lower-frequency variants contribute much less to T2D heritability than do common variants. 

Moreover, the frequency spectrum of variant association signals is consistent with a model 

whereby limited selective pressure distributes most the genetic variance influencing T2D 

risk among common alleles40, consistent with the frequency distribution of inter-individual 

sequence variation. Similar large-scale sequencing-based exploration of other complex traits 

will be required to determine the extent to which the genetic architecture of T2D is 

representative of other late-onset diseases.

Our results further strengthen the case for sequencing of diverse samples: the population-

enriched T2D risk variant in PAX4 dovetails with similar findings involving SLC16A1145 in 

East Asian and Native American populations and TBC1D446 in Greenland Inuits. Study of 

populations subject to bottlenecks and/or extreme selective pressures43,46,47 may be 

particularly fruitful.

Understanding the inherited basis of T2D will require much further progress in identifying 

the mechanisms whereby common, mostly non-coding, variants influence disease risk. The 

combination of global epigenetic measurements, genome editing48, and high-throughput 

functional assays49 make it increasingly practical to characterize large numbers of non-

coding variants and the processes they impact. Genome sequencing in much larger numbers 

of individuals than included in the current study are needed and will no doubt provide 

foundational information to guide such experimentation and connect the results to human 

population variation, physiology, and disease. Integration of biological insights gleaned from 

common and rare variant associations to T2D into a unified picture of disease 

pathophysiology will be required to fully understand the basis of this common but 

challenging disease.

EXTENDED METHODS

Ethics statement

All human research was approved by the relevant institutional review boards and conducted 

according to the Declaration of Helsinki. All participants provided written informed consent.

1 Data generation

1.1 GoT2D integrated panel generation

1.1.1. GoT2D sequenced samples—Here we describe how we generated, processed, 

and carried out quality control (QC) on sequence and genotype data for the 2,891 individuals 

initially chosen for GoT2D from four studies, and how this resulted in 2,657 individuals 

(1,326 T2D cases and 1,331 non-diabetic controls) for analysis (Extended Data Figure 1). 

We preferentially sampled early-onset, lean, and/or familial T2D cases and overweight 

controls with low fasting glucose levels50. Specific details of selected samples are provided 

in Extended Data Table 2 and Supplementary 1.
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1.1.2. DNA sample preparation—De-identified DNA samples were sent to the Broad 

Institute (DGI, FUSION), Wellcome Trust Centre for Human Genetics in Oxford (UKT2D), 

and Helmholtz Zentrum München (KORA) and prepared for genetic analysis. DNA quantity 

was measured by Picogreen (all), and samples with sufficient total DNA and minimum 

concentrations for downstream experiments were genotyped for a set of 24 SNVs using the 

Sequenom iPLEX assay (DGI, FUSION, UKT2D): one gender assay and 23 SNVs located 

across the autosomes. The genotypes for these SNVs were used as a quality filter to advance 

samples and a technical fingerprint for subsequent sequencing and genome-wide array 

genotypes.

1.1.3. Exome sequencing—Genomic DNA was sheared, end repaired, ligated with 

barcoded Illumina sequencing adapters, amplified, size selected, and subjected to in-solution 

hybrid capture using the Agilent SureSelect Human All Exon 44Mb v2.0 (DGI, FUSION, 

UK2T2D) and v3.0 (KORA) bait set (Agilent Technologies, USA). Resulting Illumina 

exome sequencing libraries were qPCR quantified, pooled, and sequenced with 76bp paired-

end reads using Illumina GAII or HiSeq 2000 sequencers to ~82-fold mean coverage.

1.1.4. Genome sequencing—Whole-genome Illumina sequencing library construction 

was performed as described for exome capture above, except that genomic DNA was 

sheared to a larger target size and hybrid capture was not performed. Resulting libraries were 

size selected to contain fragment insert size of 380bp±20% (DGI, FUSION, KORA) and 

420bp±25% (UKT2D) using gel electrophoresis or the SAGE Pippin Prep (Sage Science, 

USA). Libraries were qPCR quantified, pooled, and sequenced with 101bp paired-end reads 

using Illumina GAII or HiSeq 2000 sequencers to ~5-fold mean coverage.

1.1.5. HumanOmni2.5 array genotyping—Genotyping was performed by the Broad 

Genetic Analysis Platform. DNA samples were placed on 96-well plates and genotyped 

using the Illumina HumanOmni2.5-4v1_B SNV array.

1.1.6. Alignment and processing of exome and genome sequence data

1.1.6.1. Alignment of sequence reads to reference genome: Sequence data were processed 

and aligned to hg19 using the Picard (broadinstitute. github.io/picard/), BWA51, and 

GATK52,53 pipelines. Resulting BAM and VCF files were submitted to NCBI and are 

available in dbGaP (accession number phs000840.v1.p1, study name NIDDK_GoT2D).

1.1.6.2. Coverage and QC of aligned sequence reads: We excluded 151 exome samples 

with average coverage ≤20x in >20% of the target bases and 68 genome samples with 

average coverage ≤5x. After sequence alignment and post-processing, aligned sequence 

reads were screened based on multiple QC criteria, including number of mapped reads, 

number of mapped bases with <1% estimated base call error rate (>Q20), fraction of 

duplicate reads, fraction of properly paired reads, distribution of insert sizes, distribution of 

mean base quality with respect to sequencing cycles, and GC bias (Extended Data Figure 
1).
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1.1.6.3. Detecting and handling contamination of sequence reads: We assessed possible 

DNA contamination in the genome and exome sequence data using verifyBamID54 using 

two methods. First, we estimated the contamination level of sequenced samples using allele 

frequencies estimated from the HumanOmni2.5 array on a thinned set of 100,000 markers 

with minor allele frequency (MAF)>5%. Second, for samples with HumanOmni2.5 

genotypes, we used these genotypes together with sequence data to estimate contamination 

and identify possible sample swaps. We excluded exome sequence data for 7 individuals and 

genome sequence data for 59 individuals with estimated contamination ≥2% using either 

method. Prior to variant calling, uncontaminated sample swaps were assigned to the correct 

sample label after searching for the matching pairs using the same method.

1.1.7. GoT2D integrated panel genotype calling

1.1.7.1. SNV identification: We processed whole-genome sequence reads across the 

remaining 2,764 QC-passed individuals by two SNV calling pipelines: GotCloud 

(www.gotcloud.org) and GATK UnifiedGenotyper55. We merged unfiltered SNV calls 

across the two call sets and then processed the merged site list through the SVM and VQSR 

filtering algorithms implemented by those pipelines. SNVs that failed both filtering 

algorithms were removed before genotyping and haplotype integration. For the 2,733 QC-

passed exome sequenced individuals, we used GATK UnifiedGenotyper to call SNVs.

1.1.7.1.1. Illumina HumanOmni2.5 array genotyping: We used Illumina GenomeStudio 

v2010.3 with default clusters to call HumanOmni2.5 genotypes after comparing different 

clustering algorithms and observing that the default cluster resulted in highest concordance 

with sequence-based genotypes. Called genotypes were run through a standard QC pipeline; 

samples passing a call rate threshold of 95%, and genetic fingerprint (24 marker panel) and 

gender concordance were passed on to downstream GWAS QC. SNVs with GenTrain 

score<0.6, cluster separation score<0.4, or call rate<97% were considered technical failures 

at the genotyping laboratory and deleted before data release. We removed samples with call 

rate<98%, and SNVs monomorphic across all samples, failed by 1000G Omni 2.5 QC filter, 

or with Hardy-Weinberg equilibrium p<10−6 (Extended Data Figure 1). 85 samples were 

removed in this process.

1.1.7.2. Short insertion and deletion (indel) identification: For the whole-genome 

sequence data, we used the GATK UnifiedGenotyper to call short indels (<50bp). Because 

short indels are known to have high false positive rates due to systematic sequencing and 

alignment errors55, we used stringent filtering criteria in SVM and VQSR and excluded 

indels that failed either algorithm. For exome sequencing, we used GATK UnifiedGenotyper 

to call short indels, following best practices described elsewhere52.

1.1.7.3. Large deletion identification: We used GenomeSTRiP56 to call large (>100bp) 

deletions in the whole-genome sequence data. After initial discovery of large deletions in 

2,764 QC-passed individuals, we merged the discovered sites with deletions identified in 

1,092 sequenced individuals from the 1000G Project to increase sensitivity and then 

genotyped the merged site lists across the 2,764 individuals. After applying the default 

filtering implemented in GenomeSTRiP, pass-filtered sites variable in any of the samples 
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were identified as candidate variant sites. Among these candidate sites, we excluded variants 

in known immunoglobin loci to reduce the impact of possible cell-line artifacts. We then 

excluded 136 more individuals owing to an unusually large number of variants per sample 

(>median+3×mean absolute deviation). Variants present only in these excluded individuals 

were removed from further analysis.

1.1.8. GoT2D integrated panel haplotype integration

1.1.8.1. Genotype likelihood calculation: We merged SNVs discovered from the three 

experimental platforms into one site list and calculated genotype likelihoods across all sites 

separately by platform. Because exome sequence data have substantial off-target coverage, 

we calculated likelihoods across the genome combining data from the genome and exome 

sequence experiments. For genome sequence, we calculated likelihoods using GotCloud; for 

exomes, we used GATK UnifiedGenotyper; for HumanOmni2.5 genotypes, we converted 

hard genotype calls into genotype likelihoods assuming a genotype error rate of 10−6. For 

indels, we calculated likelihoods in a similar way except the HumanOmni2.5 data could not 

be used. For structural variants (SVs), genotype likelihoods were calculated from 

GenomeSTRiP using the whole-genome sequence data.

1.1.8.2. Integration of genotype and sequence data: We calculated combined genotype 

likelihoods across each of the 2,874 individuals as the product of the corresponding genome, 

exome, and HumanOmni2.5 likelihoods assuming independent data across platforms 

(Extended Data Figure 1). We then phased the genotype data using the strategy developed 

for 1000G Phase 155. Specifically, we phased the integrated likelihoods using Beagle57 with 

10,000 SNVs per chunk and 1,000 overlapping SNVs between consecutive chunks. We 

refined phased sequences using Thunder58 as implemented in GotCloud 

(genome.sph.umich.edu/wiki/GotCloud) with 400 states to improve genotype and haplotype 

quality.

1.1.9. GoT2D integrated panel QC—2,874 individuals were available in the integrated 

haplotype panel. To identify population outliers, we carried out principal components 

analysis (PCA). We computed PCs for each of the three variant types (SNVs, short indels, 

large deletions) using EPACTS on an LD-pruned (r2<0.20) set of autosomal variants 

obtained by removing large high-LD regions59,60, variants with MAF<0.01, and variants 

with Hardy-Weinberg equilibrium p<10−6. Inspecting the first ten PCs for each variant type, 

we identified 43 population outliers and 136 additional outliers for large deletions only; we 

excluded these 179 individuals. We excluded an additional 38 individuals based on close 

relationships (estimated genome-wide identity-by-descent proportion of alleles shared 

>0.20) with other study members. 2,657 individuals remained available for downstream 

analyses (Extended Data Figure 1).

1.1.10. GoT2D integrated panel evaluation of variant detection sensitivity—
Since we had no external data to evaluate SNV and indel variant detection sensitivity and 

genotype accuracy for our integrated haplotype panel, we evaluated accuracy for the low-

pass whole-genome sequence data using the exome sequence data as gold standard for 

variants at which exome sequence depth was ≥10. We consider the resulting sensitivity and 
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accuracy estimates as lower bounds for the integrated panel, which combined information 

from the genome, exome, and HumanOmni2.5 data.

We estimated the sensitivity of low-pass genome sequence data to detect true SNVs by 

calculating the proportion of exome-sequencing-detected SNVs detected by low-pass 

genome sequencing in the 2,538 individuals with data for all three experimental platforms. 

For exome sequence allele counts <1,000, we merged adjacent allele count bins until the 

number of alleles was >1,000. We estimated the sensitivity of low-pass genome sequencing 

to detect common, low-frequency, and rare SNVs as 99.8%, 99.0%, and 48.2%, respectively. 

Similarly, we estimated the sensitivity of low-pass genome sequence to detect true short 

indels by calculating the proportion of exome sequencing-detected short indels detected by 

low-pass genome sequencing. Sensitivity estimates were >99.9%, 93.8%, and 17.9% for 

common, low-frequency, and rare short indels, respectively.

To estimate the sensitivity of the combined low-pass genome and exome sequence data, we 

focused on coding SNVs and calculated the proportion of HumanOmni2.5 SNVs detected by 

either sequencing platform. Because HumanOmni2.5 SNVs are enriched for common 

variants, we calculated a weighted averaged sensitivity at each allele count, weighted by the 

number of exome-detected variants given the allele count. Sensitivity estimates were 99.9%, 

99.7%, and 83.9% for common, low-frequency, and rare variants.

1.1.11. GoT2D integrated panel evaluation of genotype accuracy—To evaluate 

genotype accuracy for SNVs, we focused on chromosome 20, and compared the 

concordance of low-pass whole-genome-sequence-based genotypes with those based on 

exome sequence. Overall genotype concordance was 99.86%. Homozygous reference, 

heterozygous, and homozygous non-reference concordances were 99.97%, 98.34%, and 

99.72%. We also compared genotype concordance between exome sequence and 

HumanOmni2.5 genotypes. Overall concordance was 99.4%. When the HumanOmni2.5 

genotypes were homozygous reference, heterozygous, and homozygous non-reference, 

concordances were 99.97%, 99.69%, and 99.88%. We evaluated genotype accuracy of indels 

for the 210 chromosome 20 indels that overlapped between those discovered by exome and 

genome sequencing. Overall genotype concordance was 99.4%. When the exome genotypes 

were homozygous reference, heterozygous, and homozygous non-reference, concordances 

were 99.8%, 95.8%, and 98.6%.

To evaluate the genotype accuracy of our low-pass genome sequence data to detect true 

structural variants, we took advantage of the 181 individuals in our study previously 

included in the WTCCC array-CGH based structural variant detection experiment61. Taking 

the WTCCC data as gold standard, we estimated genotype accuracy across 1,047 

overlapping structural variants (with reciprocal overlap>0.8) genome-wide. The overall 

genotype concordance was 99.8%. When the WTCCC genotypes were homozygous 

reference, heterozygous, and homozygous non-reference, concordances were 99.9%, 99.6%, 

and 99.7%.
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1.2. GoT2D+T2D-GENES multiethnic exome panel generation and QC

1.2.1. Samples—We considered 6,504 T2D cases and 6,436 controls from 14 studies of 

African American, East Asian, South Asian, Hispanic, and European ancestry. In contrast to 

the GoT2D whole-genome integrated panel, this data set also includes GoT2D individuals 

for whom whole genome data were not available. Sample characteristics are provided in 

Extended Data Table 2 and Supplementary 4. Sequence reads were processed and aligned 

to the reference genome (hg19) with Picard (http://picard.sourceforge.net). Polymorphic 

sites and genotypes were called with GATK, with filtering of sites performed using Variant 

Quality Score Recalibration (VSQR) for SNVs, and hard filters for indels. Genotype 

likelihoods were computed controlling for contamination.

Hard calls (the GATK-called genotypes but set as missing at a genotype quality (GQ)<20 

threshold52) and dosages (the expected value of the genotype, defined as Pr(RX|data)

+2Pr(XX|data), where X is the alternative allele) were computed for each sample at each 

variant site. Hard calls were used only for quality control, while dosages were used in all 

downstream association analyses. Multi-allelic SNVs and indels were dichotomized by 

collapsing alternate alleles into one category because downstream association analyses 

required bi-allelic variants.

Individuals were excluded from analysis if they were outliers on one of multiple metrics: 

poor array genotype concordance (where available), high number of variant alleles or 

singletons, high or low allele balance (average proportion of non-reference alleles at 

heterozygous sites), or excess mean heterozygosity or ratio of heterozygous to homozygous 

genotypes.

Within this reduced set of individuals, we then performed extended QC using ethnicity and 

T2D status to provide high-quality genotype data for downstream association analyses. 

Within each ethnicity, we excluded variants based on hard call rate (<90% in any cohort), 

deviation from Hardy-Weinberg equilibrium (p<10−6 in any ancestry group), or differential 

call rate between T2D cases and controls (p<10−4 in any ancestry group). We then 

considered autosomal variants that passed extended QC and with MAF>1% in all ancestry 

groups for trans-ethnic kinship analyses. We calculated identity-by-state (IBS) between each 

pair of samples based on independent variants (trans-ethnic r2<0.05) and constructed axes of 

genetic variation through PCA implemented in EIGENSTRAT62 to identify ethnic outliers 

(Supplementary 29). We also identified duplicates based on IBS, and excluded the sample 

from each pair with lowest call rate and/or mismatch with external information. The 

extended QC excluded 68 individuals, and 9.9% of SNVs and 90.8% of indels from the 

clean dataset.

2. Association analysis

2.1.1. Power calculation

We used the genetic power calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/) to 

estimate power to detect T2D association assuming 8% prevalence. For the T2D-GENES

+GoT2D exome sequence data set we assumed: (i) a fixed-effect across all five ancestry 

groups (12,940 individuals); and (ii) an effect specific to one group (2,000 individuals) 
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(Extended Data Figure 4). We repeated our calculations for combined exome sequence and 

exome array data, assuming a fixed effect across all ethnicities, for an effective total sample 

size of 82,758 individuals (Extended Data Figure 4).

For the GoT2D integrated panel we allowed for incomplete variant detection by multiplying 

power by the estimated sensitivity to detect the variant as a function of MAF. For imputed 

variants, we first multiplied the sample size by the median imputation quality (rsq_hat) 

obtained from MaCH/Thunder or minimac63 for the corresponding MAF bin across the 

analyzed cohorts, and then multiplied the estimated power by the fraction of variants that 

passed the imputation quality cutoff for that MAF bin.

For gene-based tests in the T2D-GENES+GoT2D data, we made use of a Bonferroni 

correction for 20,000 genes, corresponding to p<2.5×10−6. We used a simulated haplotype 

dataset from the SKAT package (http://cran.r-project.org/web/packages/SKAT/vignettes/

SKAT.pdf) and estimated the power of SKAT-O to detect association of variants within a 

gene at this threshold as a function of the phenotypic variance (1%) in a liability scale 

explained by additive genetic effects and the percentage of variants that were causal (50% 

and 100%). As for single-variant power calculations, we considered: (i) a fixed-effect across 

all ethnicities (12,940 individuals); and (ii) an effect specific to one ancestry group (2,000 

individuals) (Extended Data Figure 4).

2.2. GoT2D integrated panel association analysis

2.2.1. Single-variant association analysis—We tested for T2D association in a 

logistic regression framework assuming an additive genetic model. We used the Firth bias-

corrected likelihood ratio test64,65 as our primary analysis strategy; we repeated association 

analysis using the score test for inclusion in sample-size-weighted meta-analysis 

(Supplementary 2). Tests were adjusted for sex, the first two genotype-based PCs to 

account for population stratification, and an indicator function for observed temporal 

stratification based on sequencing date and center. PCs were calculated using linkage-

disequilibrium (LD) pruned (r2<0.20) HumanOmni2.5M array variants with MAF>1% after 

removing large high-LD regions59,60.

2.2.2. Aggregate association analysis—To test for aggregate association within 

coding regions of the genome, we used the approach described in 2.3.6. For every gene and 

mask tested, p-values were greater than 2.5 × 10−4. We also tested for aggregate association 

among variants in non-coding regions of the genome. We aggregated variants in individual 

pancreatic islet enhancer elements (see 6.1), as these elements collectively demonstrated 

strongest genome-wide enrichment of T2D association. We performed both the burden and 

SKAT tests using genotypes from the integrated panel on variants with MAF<5% in each 

islet enhancer element. We used a Bonferroni threshold p<1.68×10−7 based on a nominal 

significance level of α=0.05 corrected for 298,240 elements with at least one variant. All 

elements tested in this manner had p-value greater than 2.5 × 10−6.
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2.3. GoT2D+T2D-GENES multiethnic association analysis

2.3.1. Kinship analysis—Within each ancestry group, we considered autosomal variants 

that passed QC with MAF>1% for ethnic-specific kinship analyses. We calculated IBS 

between each pair of samples in the ancestry group based on independent variants (ethnic-

specific r2<0.05) and constructed a kinship matrix to account for intra-ethnic population 

structure and relatedness in downstream mixed-model (EMMAX) based association 

analyses16. We also used IBS to identify pairs of related individuals within each ancestry 

group (defined by pi-hat>0.3). We then defined intra-ethnic related exclusion lists for 

downstream non-EMMAX association analyses using the following steps: (i) remove the 

control from each T2D-status discordant pair; and (ii) remove the sample with lowest call 

rate from each T2D-status concordant pair. We also constructed intra-ethnic axes of genetic 

variation through PCA implemented in EIGENSTRAT62. We identified axes of genetic 

variation in each ancestry group for inclusion as covariates in downstream non-EMMAX 

association analyses to account for intra-ethnic population structure that: (i) explain at least 

0.5% genotypic variation; and/or (ii) demonstrate nominal association (p<0.05) with T2D in 

logistic regression analysis.

2.3.2. Single-variant association analysis—Within each ancestry group, we 

performed a score test of T2D association with each variant passing ethnic-specific QC in a 

linear regression framework under an additive model in EMMAX16. We also performed a 

Wald test of T2D association with each variant passing ethnic-specific QC in a logistic 

regression framework under an additive model with adjustment for ethnic-specific axes of 

genetic variation after exclusion of related samples (Supplementary 30). Within each 

ancestry group, we calculated genomic control inflation factors (score EMMAX and Wald) 

based on independent variants used for the ethnic-specific kinship analyses and corrected 

association summary statistics (p-value and SE) to account for residual population structure.

Subsequently, we performed trans-ethnic fixed-effects meta-analysis of ancestry-specific 

association summary statistics at each variant based on: (i) sample size weighting of score 

EMMAX directed p-values; and (ii) inverse-variance weighting of Wald beta/SE (to obtain 

unbiased estimates of allelic odds ratios and confidence intervals that cannot be constructed 

from EMMAX effect estimates). We also performed trans-ethnic meta-analysis of ancestry-

specific association summary statistics (score EMMAX beta/SE) at each variant using 

MANTRA66, using pair-wise mean allele frequency differences at the subset of independent 

variants used for trans-ethnic kinship analyses as a prior for relatedness between ancestry 

groups.

2.3.3. Validation of PAX4 association signal in additional East Asian studies—
We validated the PAX4 Arg192His (rs2233580) association signal in an additional 1,789 

T2D cases and 1,509 controls of East Asian ancestry from Hong Kong, Korea, and 

Singapore (Supplementary 9). Within each study, we tested for association with T2D in a 

logistic regression model, and combined association summary statistics across studies 

through fixed-effects meta-analysis (Supplementary 9). Among T2D cases, we also tested 

for association with age of diagnosis in a linear regression model, and combined association 

summary statistics across studies through fixed-effects meta-analysis (Supplementary 9).
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2.3.4. Admixture analysis—Admixed populations can offer greater statistical power to 

detect association because diverse ancestry increases genetic variation. However, admixture 

can also introduce false-positive signals due to population stratification and heterogeneity of 

effects because of differential LD67. To assess the contribution of ancestral background in 

the two admixed groups (African American and Hispanic), we inferred local ancestry based 

on SNVs in available GWAS data using two approaches. For African Americans, we ran 

HAPMIX68 using CEU and YRI haplotypes from HapMap as reference, and estimated the 

proportion of European ancestry at each genomic position. For Hispanics, we ran 

Multimix69 using European, West African, and Native American haplotypes from HapMap 

as reference, and estimated the proportion of European ancestry at each genomic position, 

since we observe only a very low West African contribution (1.1-3.2%, Supplementary 31). 

We then repeated our intra-ethnic EMMAX-based analyses within African American and 

Hispanic ancestry groups, this time adjusting for local ancestry by including the estimated 

proportion of European ancestry at each variant as a covariate. Adjustment for local ancestry 

resulted in numerically similar association statistics as those from unadjusted analyses in the 

African American and Hispanic samples.

2.3.5. Gene-based analysis—We generated four variant lists (‘masks’) based on MAF 

and functional annotation. We mapped variants to transcripts in Ensembl 66 (GRCh37.66). 

Using annotations from CHAoS v0.6.3, SnpEFF v3.1, and VEP v2.7, we identified variants 

predicted to be protein-truncating (e.g. nonsense, frameshift, essential splice site) denoted 

PTV-only or ‘Mask 1’; or protein-altering (e.g. missense, in-frame indel, non-essential splice 

site) in at least one mapped transcript (by at least one of the three algorithms) with 

MAF<1%, denoted PTV+missense or ‘Mask 2’. We additionally used the procedure 

described by Purcell et al.70 to identify subsets of missense variants with MAF<1% meeting 

‘strict’ or ‘broad’ criteria for being deleterious, using annotation predictions from 

Polyphen2-HumDiv, PolyPhen2-HumVar, LRT, Mutation Taster, and SIFT; variants 

predicted deleterious by all five algorithms or by at least one algorithm were denoted PTV

+NSstrict or ‘Mask 3’ and PTV+NSbroad or ‘Mask 4’, respectively. Indels predicted by 

CHAoS, SnpEFF, or VEP to introduce frameshifts were included in the ‘strict’ category. We 

calculated MAFs for each ancestry using high-quality genotype calls (GQ>20) for all 

samples passing extended QC. We considered a variant to have MAF<1% if MAF estimates 

for every ancestry group were <1%.

We used the MetaSKAT R package (v0.32)15 with the SKAT v0.93 library to perform 

SKAT-O71 analysis within each ancestry, and in meta-analysis. Within each ancestry group, 

we analyzed genotype dosages with adjustment for ethnic-specific axes of genetic variation 

after exclusion of 96 related individuals. We assumed homogenous allele frequencies and 

genetic affects for all studies within an ancestry group. We performed meta-analysis using 

genotype-level data, allowing for heterogeneity of allele frequencies and genetic effects 

between (but homogeneity within) ancestry groups. All analyses were completed using the 

recommended rho vector for SKAT-O: (0, 0.12, 0.22, 0.32, 0.52, 0.5, 1).
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2.4. Imputed data

2.4.1. Samples—We carried out genotype imputation into 44,414 individuals (11,645 T2D 

cases and 32,769 controls) from 13 studies using the GoT2D integrated haplotypes as 

reference panel. Characteristics of the imputed studies are provided in Extended Data Table 
2 and Supplementary 3.

2.4.2. Single-variant association meta-analysis—The one sequenced and thirteen 

imputed studies totaled 12,971 T2D cases and 34,100 controls. Each study performed its 

own sample- and variant-based QC. In each study, SNVs with minor allele count (MAC)≥1 

passing QC were tested for T2D association assuming an additive genetic model adjusting 

for study-specific covariates. Association testing was performed using logistic regression 

Firth bias-corrected, likelihood ratio, or score tests as implemented in EPACTS 

(genome.sph.umich.edu/wiki/EPACTS) or SNPTEST72. To account for related samples in 

the Framingham Heart Study, generalized estimating equations (GEE) were used, as 

implemented in R. Residual population stratification for each study was accounted for using 

genomic control73. We then carried out fixed-effects sample-size weighted meta-analysis as 

implemented in METAL74.

2.4.3. Conditional analyses in established GWAS loci—We compiled a list of 143 

previously-reported genome-wide significant SNVs in 81 T2D autosomal loci (a) from 

Morris et al.2 and Voight et al.4; (b) from papers they referenced; and (c) from references in 

the NHGRI GWAS catalog75. We LD pruned these SNVs (r2<0.95), yielding a list of 129 

SNVs. We deleted the CILP2 locus (and two SNVs) from subsequent whole-genome 

analyses owing to large regions in which no variants passed QC, resulting in a list of 127 

index SNVs at 80 autosomal loci. To identify additional T2D-associated variants within 

these 80 T2D autosomal loci in the genome-wide data, we repeated GWA analysis for 12 of 

the 13 studies (conditional analysis results for FHS were unavailable), conditioning on the 

127 index SNVs. We performed fixed-effects inverse-variance meta-analysis to combine 

conditional analysis results from the studies totaling 12,298 cases and 26,440 controls. For 

each known locus, we analyzed all SNVs within 500kb of the known index SNVs; if there 

were multiple known index SNVs, we analyzed all SNVs within 500kb of the most proximal 

and distal index SNVs. We imposed a conditional-analysis significance threshold of 

α=1.8×10−6 based on a proportional number of multiple tests for ~83Mb of the ~3000Mb 

genome.

2.5. Exome array data

2.5.1. Samples—We considered 28,305 T2D cases and 51,549 controls from 13 studies of 

European ancestry, genotyped with the Illumina exome array. Characteristics of the studies 

are provided in Extended Data Table 2 and Supplementary 15.

2.5.2. Overlap of exome sequence variation with exome array—We assessed 

overlap of variants present on the exome array with those observed in our trans-ethnic 

exome-sequence data. Since exome array primarily contains SNVs that are predicted to be 

protein altering, we focused on nonsense, essential splice site, and missense variants. Only 
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variants passing QC in both sequence and array data were included in our overlap 

assessment.

2.5.3. Data processing, QC, and kinship analysis—Within each study, exome array 

genotypes were initially called using GenCall (https://support.illumina.com/downloads/

gencall_software.html) and Birdseed76. Sample and variant QC was then undertaken within 

each study based on several quality control filters. Criteria for sample exclusion included 

low call rate (<99%), mean heterozygosity, high singleton counts, non-European ancestry, 

sex discrepancy, GWAS discordance (where data were available), genotyping platform 

fingerprint discordance, and duplicate discordance. Variants were excluded based on call 

rate (<99%), deviation from Hardy-Weinberg equilibrium (p<10−6), duplicate, chromosome 

or allele mismatch, GenTrain score <0.6, Cluster separation score <0.4, and manual cluster 

checks. Missing genotypes were subsequently re-called using zCall, with a second round of 

QC to exclude poor quality samples (call rate <99% and mean heterozygosity) and variants 

(call rate <99%). Within each study, we considered independent autosomal variants that 

passed QC with MAF>1% for kinship analyses, and calculated IBS between each pair of 

samples. We used these statistics to: (i) identify non-European ancestry samples to be 

excluded from all downstream analyses; (ii) construct a kinship matrix to account for fine-

scale population structure and relatedness in downstream EMMAX-based association 

analyses; (iii) identify related samples to be excluded from downstream non-EMMAX 

association analyses; and (iv) calculate axes of genetic variation for inclusion as covariates 

in downstream non-EMMAX association analyses to account for fine-scale population 

structure (if required).

2.5.4. Single-variant association analysis—Within each study, we performed a score 

test of T2D association with each variant passing QC in a mixed-model regression 

framework under an additive model in EMMAX16. We also performed a Wald test of T2D 

association with each variant in a logistic regression framework under an additive model 

with adjustment for axes of genetic variation after exclusion of related samples. For each 

test, we corrected SE and p-value for the genomic control inflation factor (if >1) calculated 

based on the independent autosomal variants used for kinship analysis.

Across studies, we performed fixed-effects meta-analysis of association summary statistics 

at each variant based on: (i) inverse-variance weighting of score EMMAX beta/SE; (ii) 

sample size weighting of score EMMAX directed p-values; and (iii) inverse-variance 

weighting of Wald beta/SE. For each of these meta-analyses, we applied a second round of 

correction of SE and p-value by genomic control, again calculated based on the independent 

autosomal SNVs used for kinship analyses.

2.5.5. Combined exome sequence and exome array single-variant analysis—
We considered variants that were represented both in the exome sequence and on the exome 

chip. We began by performing fixed-effects meta-analysis of association summary statistics 

(after correction for genomic control, as described above) from the exome-chip meta-

analysis and the European ancestry sequenced samples using: (i) inverse-variance weighting 

of score EMMAX beta/SE; (ii) sample size weighting of score EMMAX directed p-values; 

and (iii) inverse-variance weighting of Wald beta/SE. Subsequently, we performed trans-
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ethnic fixed-effects meta-analysis of ancestry-specific association summary statistics (after 

correction for genomic control, as described above) at each variant based on: (i) sample size 

weighting of score EMMAX directed p-values; and (ii) inverse-variance weighting of Wald 

beta/SE.

2.5.6. Gene-based analyses—We made use of the four variant masks defined for exome 

sequence gene-based analyses, but with MAF calculated across all exome array studies. 

Within each study, we performed SKAT-O analyses71, with adjustment for axes of genetic 

variation after exclusion of related samples. We combined p-values for association across 

studies via meta-analysis with Stouffer's method77.

2.5.7. Evaluating relationships between association signals for coding 
variants and previously reported lead SNVs at established GWAS loci—For 

coding variants mapping to established T2D susceptibility loci and achieving genome-wide 

significance in combined exome sequence and/or exome array analysis, we used 

complementary approaches with a range of available genetic data resources to evaluate their 

contribution to the association signals of previously reported lead SNVs. If the previously 

reported lead SNV (or a good proxy, r2≥0.8) was genotyped on the exome array, we 

performed reciprocal conditional analyses with the available exome array data. Within each 

study, we repeated EMMAX analyses in GWAS loci, including additively coded genotypes 

at the previously reported2 lead SNV or genome-wide significant coding variant as an 

additional covariate in the regression model. Across studies, we performed fixed-effects 

meta-analysis of association summary statistics at each variant based on: (i) inverse-variance 

weighting of score EMMAX beta/SE; (ii) sample size weighting of score EMMAX directed 

p-values. If the previously reported lead SNV (or a good proxy) was not genotyped on the 

exome array, we performed approximate reciprocal conditional analysis, implemented in 

GCTA78, using genome-wide meta-analysis association summary statistics from 12,971 T2D 

cases and 34,100 controls from the combined GoT2D integrated panel and imputed data. 

Patterns of LD between variants were estimated using a subset of the GoT2D integrated 

panel, restricted to 2,389 individuals with pairwise genetic relationship <0.025, as defined 

by the GCTA A statistic79. Finally, we interrogated 99% credible sets of variants at each 

GWAS locus, which together represent ≥99% of the probability of driving each association 

signal. We determined whether the coding variant at each locus was included in the credible 

set for the association signal for the previously reported lead SNV, and recorded its rank.

3. Enrichment of exome association signals in GWAS

To define T2D-associated intervals, we first identified all SNVs associated with T2D in 

published genome-wide association studies (GWAS) by searching literature and the NHGRI 

GWAS catalog (see also 2.4.3). We identified 143 autosomal SNVs, with some associated in 

more than one ancestry (167 SNV-ancestry pairs). For each SNV-ancestry pair, we identified 

the most distant pair of SNVs with r2>0.5 in 1000 Genomes Phase I data, using the 

appropriate continental subset of 1000 Genomes samples (EUR, AMR, or ASN). We used 

1000 Genomes data, rather than our own exome sequence data, because most reported 

associations for T2D are with common, intergenic SNVs. We then extended each region of 

interest by moving out 0.02 cM from those two SNVs (to encompass nearby recombination 
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hotspots), and added an additional 300kb upstream and downstream. We merged 

overlapping intervals, yielding 81 unique associated regions, and identified 634 genes 

completely or partially included within associated regions. In single-variant analyses, we 

analyzed 3,147 non-synonymous variants within these genes in the combined exome 

sequence and exome array datasets, using a Bonferroni corrected significance threshold of 

α=0.05/3,147=1.6×10−5. We considered gene-level association statistics from exome 

sequence for these 634 genes using a Bonferroni-corrected significance threshold of 

α=0.05/634=7.9×10−5.

We note that by reducing the stringency of the significance threshold for variants within 

GWAS loci, we increase the ‘experiment-wise’ type I error rate across the entire exome. 

Assuming that 3% of 100,000 coding variants interrogated in this study map to T2D GWAS 

loci, as defined above, we would need to change the threshold of significance outside of 

these regions to p<2.1×10−8 to maintain an ‘experiment-wise’ type I error rate of 5%.

4. Testing for ‘synthetic associations’ at T2D loci in GoT2D genome 

sequence data

To identify low-frequency or rare variants that could potentially define synthetic 

associations, we analyzed the ten T2D loci at which a previously-reported tag SNV achieved 

p<0.001 in our single-variant analysis of the genome sequence dataset. We defined as 

candidates at each locus all low-frequency or rare variants (excluding singletons) within a 

5Mb window (centered on the prior GWAS signals) and tested for synthetic associations 

caused by either (1) a single low-frequency or rare variant or (2) multiple low-frequency or 

rare variants on a common haplotype.

To identify synthetic associations driven by a single low-frequency or rare variant at each of 

the ten loci, we performed a series of conditional analyses in which we tested for association 

between gene dosage at the previously reported GWAS index SNV and T2D risk via logistic 

regression, while including each candidate low-frequency or rare SNV (excluding 

singletons) as an additional covariate, one-by-one. If inclusion of the low-frequency or rare 

variant resulted in a conditional association p>0.05 for the tag SNV, we considered the 

common-variant association signal a potential synthetic association.

To identify synthetic associations based on sets of low-frequency or rare variants, we 

extended this approach. We (1) defined common haplotypes segregating at each T2D locus; 

(2) identified all low-frequency or rare (excluding singletons) variants occurring on T2D-

associated haplotypes (haplotypes on which the T2D-associated GWAS index SNV minor 

allele is present); and (3) asked whether any combination of these low-frequency or rare 

variants could explain the effect observed at the T2D GWAS index SNV. We carried out 

these analyses restricting attention to protein-coding variants within the window and then 

again for all low-frequency and rare SNVs in the 5Mb window.

To define common haplotypes at each locus, we used the phased whole-genome sequence 

data. We first employed the phased genotypes for common (MAF>5%) variants segregating 

in the interval between recombination hotspots at the locus (to minimize the number of 
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recombinant haplotypes identified). We next identified the haplotypes on which the T2D-

associated (risk or protective) GWAS index SNV minor allele was present. We then 

assembled the set of low-frequency and rare variants from across the 5Mb interval which 

occurred on the background of these T2D-associated common-variant haplotypes. Due to 

recombination and imperfect phasing, low-frequency or rare (excluding singletons) variants 

are often observed on more than one haplotype background. We included all low-frequency 

or rare variants that occurred more frequently on a T2D-associated haplotype than on other 

haplotypes.

From this pool of low-frequency and rare variants, we considered only variants with the 

same direction of effect as the common GWAS index SNV minor allele, as required by the 

synthetic association hypothesis, which posits that low-frequency or rare variants of larger 

effect than the common SNV could induce a weaker association signal. We then used a 

greedy algorithm to select the low-frequency or rare variant which, when added to the index 

GWAS SNV's dosage in a logistic regression, most reduced the residual effect remaining at 

the index SNV, as measured by estimated conditional odds ratio. We repeated this process, 

adding variants to the model, until the estimated effect at the index SNV genotype or gene 

dosage changed sign, representing no residual effect of the index SNV. At each locus, we 

also counted the number of variants required to increase the association p-value at the 

GWAS index SNV beyond the nominal p=0.05 significance threshold (Extended Data 
Table 8).

5. Credible set analysis of GoT2D genome sequence data

At 78 of the 80 T2D GWAS loci (2.4.3), the previously reported index SNV had MAF>1% 

in our GoT2D genome-sequenced sample. At these 78 loci, we constructed credible sets of 

common variants that, with some minimum specified probability (e.g. ≥99%), contain the 

variant causal for the corresponding association signal. Our analysis assumes a single causal 

SNV per signal and that the SNV was genotyped30,31. We constructed credible sets for up to 

two independent association signals at each locus; at 5 loci with multiple independent 

(r2<0.10) GWAS index SNVs, we constructed two distinct credible sets.

For each GWAS index SNV, we identified the set of common variants with r2≥0.10 with the 

index SNV within a 5Mb window centered on the index SNV. For each variant in this set, we 

calculated the posterior probability of being causal31. We first calculated an approximate 

Bayes’ factor (ABF) for each variant as:

where r=0.04/[SE2+0.04], z=β/SE, and β and SE are the estimated effect size (log odds 

ratio) and its standard error from logistic regression. We then calculated the posterior 

probability for each variant as ABF/T, where T is the sum of the ABF values over all 

candidate variants across the interval. This calculation assumes a Gaussian prior with mean 

0 and variance 0.04 for β, the same prior employed in the commonly used single-variant 

association program SNPTEST72.
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We based the analysis on the genome-wide meta-analysis results, since most common 

variants were included in this analysis, and sample sizes were significantly larger than for 

the genome sequence data alone.

We calculated the effective imputed sample size for each variant in the meta-analysis data as 

, where  is the imputation quality and  is the effective sample size 

for imputation cohortj. To ensure approximately uniform sample size across variants, we 

considered to be well-imputed only those variants with effective imputed sample size (Neff)

≥80% of the maximum observed across all variants in the window.

Indels were not imputed or meta-analyzed in this study, and <2% of common SNVs were 

not well-imputed by the above effective sample size criterion. To include these common 

variants while using the most precise estimates available, we calculated posterior 

probabilities separately from each genome-wide data source. Where an indel from the 

sequence dataset had a SNV proxy in high LD (r2≥0.80) in the meta-analysis dataset, we 

used the proxy's information instead. Where a common SNV that was poorly imputed had 

high-quality association data from the genome sequence data alone, the posterior probability 

from the genome sequence dataset was used instead. In each case, the final posterior 

probabilities for all SNVs were re-scaled such that their sum across a locus equaled one.

We used these final posterior probabilities to rank variants in decreasing order. To define 

credible sets of a specified level (e.g. 99%), we included variants with highest final posterior 

probabilities until their sum reached or exceeded that level (Supplementary 28).

6. Genome enrichment analyses of the GoT2D genome sequence data

6.1. Genomic annotation

We collected genome annotation data from several sources. First, we obtained gene 

transcript information from GENCODEv1480. For protein-coding genes, we included 

transcripts with a protein-coding tag that either were present in the conserved coding DNA 

sequence (CCDS) database or had experimentally confirmed mRNA start and end; we then 

included 5’ UTR, exon, and 3’ UTR regions from the resulting transcripts. For non-coding 

genes, we included transcripts with a lncRNA, miRNA, snoRNA, or snRNA tag.

Second, we defined regulatory chromatin states in 12 cell types. We collected sequence 

reads generated for the following assays: H3K4me1, H3K4me3, H3K27ac, H3K27me3, 

H3K36me3, and CTCF ChIP, in 9 ENCODE cell types (GM12878, K562, HepG2, Hsmm, 

HUVEC, NHEK, NHLF, hESC, HMEC)32, pancreatic islets35, and hASC (adipose stromal 

cell) pre- and mature adipocytes33. We mapped reads to hg19 using BWA51 and used the 

resulting mapped reads for all cell types to call regulatory states using ChromHMM81, 

assuming ten states. We then assigned names to the resulting state definitions: (1) 

H3K4me3, H3K27ac (active promoter); (2) H3K4me3, H3K27ac, H3K4me1 (active 

enhancer 1); (3) H3K27ac, H3K4me1 (active enhancer 2); (4) H3K4me1 (weak enhancer); 

(5) H3K27me3, H3K4me3, H3K4me1 (poised promoter); (6) H3K27me3 (repressed); (7) 
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low/no signal 1; (8) CTCF (insulator); (9) low/no signal 2; and (10) H3K36me3 

(transcription).

Third, we obtained transcription factor binding ChIP sites from three sources: 141 proteins 

from ENCODE32, 5 from Pasquali et al.35, and 1 from Mikkelsen et al.33.

From gene transcript data we defined CDS (protein coding transcript exons); ncRNA (non-

coding RNA transcripts); and 3’ and 5’ UTR (UTR regions of coding transcripts). From 

chromatin state data for each of the 12 cell types we identified active enhancers (pooled 

active enhancer 1 and 2 elements); weak enhancers; and active promoters. From 

transcription factor binding sites we defined transcription factor binding sites (TFBS) (sites 

pooled across all factors). This resulted in a total of 41 annotation categories (Extended 
Data Figure 10).

6.2. Enrichment of genome annotation

We jointly modeled variants in credible sets using T2D association and the functional 

annotation classes using the method described by Pickrell38. First, we tested each annotation 

individually and identified the annotation that most improved the model likelihood. We then 

iteratively added annotations in this manner until the likelihood did not increase further. 

Using this set of annotations, we tested a range of penalized likelihoods (from 0-1 in .01 

increments) using 10-fold cross-validation, and identified the penalty that gave the best 

cross-validation likelihood. Using this penalty, we then iteratively dropped annotations to 

identify the model with the maximal cross-validation likelihood. The resulting model 

included coding exons, TFBS, hASC mature adipose active enhancers and promoters, 

pancreatic islet active and weak enhancers and active promoters, hASC pre-adipose active 

and weak enhancers, NHEK active enhancers, NHLF active enhancers, K562 weak 

enhancers, HMEC weak enhancers and active promoters, H1-hESC active promoters, 

ncRNA, and 5’ and 3’ UTR (Extended Data Figure 10). Finally, we used this model to 

update posterior probabilities for each variant and re-calculate 99% credible sets.

7. Gene enrichment analyses in the GoT2D+T2D-GENES exome sequence 

data

We first used the SMP (statistics/matrix/permutation) gene-set enrichment procedure 

implemented in the PLINK/Seq package (http://atgu.mgh.harvard.edu/plinkseq/). This 

approach calculates enrichment statistics for large sets of genes to establish whether case-

enrichment of rare variants is preferentially concentrated in a particular set of genes, 

controlling for any exome-wide/baseline difference in case and control rates. The procedure 

uses gene-based association statistics, and forms sums of these statistics over all genes in a 

set, the significance of which is evaluated by permutation. We considered the relative 

enrichment statistic, SSET/SEXOME, with significance evaluated empirically (10,000 

replicates) based on the null distribution of this ratio. The reported effect sizes from the 

gene-set enrichment analysis are estimates of the unconditional odds ratio that do not take 

exome-wide differences in case/control rates into account70. We selected 18 ‘premium’ sets 

of genes (Supplementary 32) that reflect the current knowledge of pathways (N=15) 
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involved in type 2 diabetes and the three sets of genes involved in monogenic form of 

diabetes defined above: ‘Monogenic All’ (N=81); ‘Monogenic Primary’ (N=28); and 

‘Monogenic OMIM’ (N=13). We restricted these analyses to singleton and ultra-rare 

(MAF<0.1%) protein-truncating variants.

We then used biological knowledge to test for enrichment of association signal across 

established sets of genes from Gene Ontology, KEGG, Reactome, and Biocarta collections 

from MSigDB (version 4.0) as well as a number of hand-curated gene-sets (Supplementary 
32) that had been generated for the SMP analyses. These analyses calculated measures of 

gene-set enrichment from gene-level association results (i.e. from SKAT-O) by means of a 

pre-ranked GSEA82 method (version 2.0.13), which consists of a weighted Kolmogorov-

Smirnov (random bridge) statistic. In our analysis we performed 10,000 permutations on 

gene-set sizes from 5 to 5,000 genes.

8. Investigation of genes implicated in Mendelian forms of diabetes in the 

exome data

We first curated a list of 81 genes termed the ‘Monogenic All’ gene-set (Supplementary 
22), consisting of genes with pathogenic mutations reported to co-segregate with diabetes or 

a syndrome associated with an increased prevalence of diabetes. Two subsets of the 

‘Monogenic All’ gene-set were then additionally defined: the ‘Monogenic Primary’ gene-set 

(N=28), consisting of genes with mutations leading to diabetes as a primary feature, and the 

‘Monogenic OMIM’ gene-set (N=13), consisting of genes linked to Maturity Onset Diabetes 

of the Young (MODY) or Neonatal Diabetes in the OMIM catalog (entry #606391 and 

#606176). In addition to examining the significance of single-variant and gene-based tests 

within these gene-sets, we also performed an aggregate analysis of all variants in the gene-

set. For each of the three gene-sets, we constructed five variant lists by applying the same 

four masks as in the exome-wide gene-level analysis (PTV-only, PTV+missense, PTV

+NSbroad and PTV+NSstrict), as well as an additional mask containing all variants reported 

as ‘high confidence’ and ‘disease-causing’ in the Human Gene Mutation Database (HGMD), 

annotated using Biobase ‘GenomeTrax’ software (http://www.biobase-international.com/

product/genome-trax). We then analyzed each of the fifteen variant lists with the SKAT-O 

test, using the same meta-analysis procedure and covariates as in the exome-wide gene-

based analysis. To obtain effect-size estimates, for each variant list we applied a collapsing 

burden test, in which logistic regression of T2D status was performed on individual 

genotypes encoded as 0 (if they carried no variants in the list) or 1 (if they carried at least 

one variant in the list). Effect size estimates and standard errors were determined using the 

Firth penalized likelihood method. Analysis in the exome array dataset was performed by 

first generating fifteen variant lists based on the content of the exome array, computing the 

collapsing burden test for each cohort, and then combining associations and effect size 

estimates using an inverse variance weighted meta-analysis. To compare the age of diagnosis 

of variant carriers to those of non-carriers, we used a two-sided t-test.
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9. Protein-protein interaction analyses in the exome data

We performed data-driven extraction of association signal enriched sub-networks (rather 

than relying on pre-defined gene-sets) from protein-protein interaction (PPI) data. We used 

two different approaches, both run using the curated PPI database InWeb383.

The first approach consists of two steps. First, the entire human PPI network was searched 

for protein complexes (clusters) using the algorithm implemented in clusterONE84, which 

identifies protein complexes with high cohesiveness. The method was run with default 

parameter settings (0.3 as density threshold, 0.8 as merging threshold, and 2 as the penalty-

value node), and with the --fluff option activated, which allows the addition of highly 

connected boundary nodes to the cluster. Second, gene-based association p-values derived 

from SKAT-O analyses of the 12,940 multiethnic exome sequences were aggregated, using 

Fisher's method, for the genes encoding each of the proteins within a cluster to generate a 

‘cluster association’ statistic.

An empirical p-value for the significance of these aggregated cluster association statistics 

was derived by comparing each cluster to a large number of complexes of the same 

topology, but composed of randomly sampled proteins. Specifically, a background 

distribution was obtained for each protein complex as follows: each protein in the cluster 

was randomly substituted by a different protein represented in the InWeb3 database, 

matched for number of minor allele carriers in the data set. SKAT-O p-values were assigned 

to each protein from the exome sequencing results, and an aggregated p-value was obtained 

for each pseudo-complex using Fisher's method, as above. This process was repeated 

100,000 times, and the empirical p-value for each complex was calculated as the proportion 

of the iterations for which the Fisher's p-value of the observed complex was more significant 

than that of p-values for the pseudo-complexes. This procedure was repeated for all gene-

level masks (PTV-only, PTV+missense, PTV+NSstrict and PTV+NSbroad).

To test the study-wide significance of apparently associated clusters, we used two 

permutation designs. In the first design, we generated 100,000 pseudo-complexes for each 

cluster, replacing each protein within each cluster with one protein from InWeb3, matched 

for the number of minor allele carriers in the data set. We calculated the number of permuted 

datasets which generated any ‘pseudocluster’ association p-value more significant than our 

most enriched cluster. In the second design, we used a Monte-Carlo algorithm to generate 

10,000 random PPI networks, with the same degree as observed in the InWeb3 database, ran 

clusterONE on each, and once again compared the distribution of ‘best’ cluster association 

p-value with that observed in the real data.

The second approach uses the dense module searching algorithm (a heuristic ‘greedy’ 

method) described in dmGWAS85, where a module is defined as a sub-network within the 

whole network if it contains a locally increased proportion of low p-value genes. This 

method differs from the earlier method in using the association p-values, in combination 

with the PPI data, to construct the networks. The module is grown for each protein in the 

PPI by adding the neighboring nodes within a pre-defined distance (d=2) that can yield a 

maximum increment of the module score  for module m, where k is the 
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number of genes in the module and Zi is calculated from the p-value of exome gene-based 

tests using an inverse normal distribution function. The addition of neighborhood nodes is 

stopped when the increment is less than 10% of Z(k)
m (that is, Z(k+1)

m< +Z(k)
m × 0.1). As 

with the clusterONE approach, this procedure was conducted for all four exome gene-based 

level masks.

To evaluate whether the top ranked-modules are significantly associated with T2D, we 

permuted case-control status across the 12,940 exomes (maintaining ethnic strata) 10,000 

times and generated 10,000 SKAT-O gene-based association tests on all genes in the top 15 

modules (once for each gene-based variant mask, 40,000 in total). During each permutation, 

Zm was re-calculated for each module, and a set of empirical p-values was obtained by 

comparing the p-value of the original module to these modules with the SKAT-O results 

from the swapped labels. Following the above procedure, all 15 top modules were found 

significantly enriched for the PTV+NSstrict and PTV+NSbroad gene-based variant masks 

(p<10−4, after the 10,000 case-control permutations).

10. Modelling disease architecture

10.1. T2D liability risk and architecture bounding in the exome array data

We used a Bayesian framework implemented in R to compute the probability that each 

variant explains more than a defined amount of the T2D-risk liability-scale variance (LVE). 

The joint distribution in the MAF-OR space is computed by assuming a T2D prevalence of 

8% and beta and normal distributions for the MAF and the odds ratio (OR) respectively. The 

OR is calculated with reference to the minor allele. The MAF is adjusted to take account of 

apparent allele frequency heterogeneity between cohorts (subjects from missing cohorts are 

excluded from calculations). Analyses are restricted to variants with MAF>0.1% since the 

representation of variants with MAF below this threshold on the exome array is poor. The 

probability is obtained by numerically integrating over the joint distribution for MAF-OR 

combinations that explain more than the defined amount of liability-scale variance. For 

bounding the maximum number of variants that could contribute to T2D risk variance, we 

performed a sensitivity analysis on the 88 known T2D index SNVs present on the exome 

array to define the thresholded variance explained and the probability: this analysis shows 

that for a probability of >0.8 to explain 0.01% of the T2D risk variance, we were able to 

identify 91% of these known T2D SNVs. Ranges of OR and MAF consistent with 80% 

power to detect single-variant association in this dataset (for exome-wide significance, 

p<5×10−7) were calculated to reflect the fact that differences in sample size for individual 

variants (due to differences in allele frequency distribution and genotyping QC) also 

influence power. The relationship between power and LVE differs for risk and protective 

alleles because of unequal numbers of cases and controls.

10.2. Genetic architecture simulations based on GoT2D data and results

10.2.1. Range of simulated disease models—Following our previously published 

framework40, we conducted population genetic simulations of T2D architecture using the 

forward simulation program ForSim86. We assumed T2D prevalence 8% and heritability 

~45%, and chose the mutation rate, recombination rate, a gamma distribution of selection 
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coefficients, and other parameters of demographic history by fitting the simulated site 

frequency spectrum to empirical high coverage exome sequence data from GoT2D.

We then considered a wide range of disease models by varying two parameters: coupling 

parameter τ which regulates how strongly selection against a disease-causing allele depends 

on the per-allele disease risk87; and target size T, the summed lengths of the genomic regions 

within which mutations can influence T2D risk. Specifically, a variant's additive contribution 

to disease risk g is given by g=sτ(1+ε) where s is the selection coefficient under which the 

variant evolves and ε is drawn from a normal distribution40.

By varying τ and T, we generated a wide range of joint distributions for allele frequency and 

effect size. In total, we evaluated 12 models: τ=0, 0.1, 0.3, and 0.5 crossed with T=750kb, 

2.0Mb, and 3.75Mb. Under models with higher selection against strongly deleterious alleles 

(larger τ), rare variants explain the bulk of heritability and can have large effects, while 

under models with weak dependence (smaller τ), common variants explain the bulk of 

heritability and rare variants collectively have weaker effects. Although we had previously 

excluded many models as producing predictions inconsistent with observed sibling relative 

risk, GWAS, and linkage results, prior work showed that models varying widely in the 

proportion of total heritability attributable to rare versus common variation were still 

plausible88. In this study, we explored whether the space of plausible disease models could 

be further constrained using whole genome sequence, imputation, and meta-analysis results.

10.2.2. Simulation procedure—ForSim enables simulation of variants across user-

specified loci in large populations. Inputs include a demographic history (trained on 

European sequence data) and a gamma distribution of selection coefficients for a subset of 

variants under natural selection. We simulated genotypes for a current population of 

effective size 500,000 individuals40 and selected potential disease risk variants from those 

under selection appropriate to the intended target size. Each risk variant received a disease-

specific effect size depending on the selection coefficient under which it evolved and the 

assumed degree of dependence between selection and effect size. Each individual was then 

designated as case or control depending on his/her cumulative genetic risk score plus a 

random environmental risk component chosen to achieve the estimated T2D heritability of 

~45%. From this population simulated with both phenotypes and genotypes, we selected 

appropriate numbers of cases and controls and conducted single-variant association tests in 

order to compare the distribution of p-values from simulation to that observed in the current 

study. Results shown are the average of 25 independent simulation replicates for each 

disease model.

10.2.3. Comparison of simulated outcomes to empirical T2D results—We 

focused on comparing simulated outcomes under three disease models, each of which were 

previously found to be consistent with sibling relative risk, GWAS, and linkage results for 

T2D, but vary widely in causal variant properties (Fig. 3): a rare-variant model in which rare 

variants explain ~75% of T2D heritability (small target size T=750kb and moderate 

dependence between effect size and selection τ=0.5), an intermediate model in which rare, 

low-frequency, and common variants all contribute significantly to T2D heritability 

(T=2.0Mb and τ=0.3), and a common polygenic model in which common variants explain 
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~75% of T2D heritability (T=3.75Mb and weak dependence τ=0.1). We first compared the 

simulated outcomes of a whole-genome sequencing study in ~3K samples under each 

model. All three models predicted similar distributions of variant association test statistics 

using the sequenced individuals alone (data not shown).

However, the predictions began to diverge when we simulated imputation into GWAS 

samples and studied the distribution of test statistics after meta-analysis. For each simulated 

model, we sampled 14,175 cases and 14,175 controls (to match the effective sample size of 

the actual imputation cohorts used for meta-analysis). Because genotyping accuracy in 

simulated samples is perfect (unlike in imputation), we calculated average imputation 

quality as a function of MAC in the empirical data (using the r2 value reported by the 

imputation software that was used in each cohort). We then corrected, for each variant, the 

association test statistic in simulated data by multiplying the chi-squared value by the 

average imputation r2 for the variant MAC. We then re-computed association p-values from 

the corrected chi-squared statistics to compare p-value distributions in simulated versus 

empirical data. We plotted the distribution of association p-values for variants of different 

frequency classes in a quantile-quantile (QQ) plot, and compare these curves to the 

empirical T2D results (Fig. 3). Focusing on low-frequency variants, we also asked how 

many unique low-frequency signals achieved significant association to T2D risk under each 

simulated model, and compared these quantities to empirical observation (Fig. 3). These 

analyses demonstrate that the intermediate and rare-variant models produce an excess of 

association signal among low-frequency variants compared to observation, whereas the 

common polygenic model is consistent with the genome-wide distribution of association 

signals observed.
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Extended Data

Extended Data Figure 1. Summary of samples and quality control procedures
This figure summarises data generation for whole genome sequencing (GoT2D), exome 

sequencing (GoT2D and T2D-GENES) and exome array genotyping (DIAGRAM). In 

addition, GoT2D whole genome sequence data was imputed into GWAS data from 44,414 

subjects of European descent.
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Extended Data Figure 4. Power for single and aggregate variant association
a-g. Power to detect single-variant association (α=5×10−8) at varying minor allele frequency 

(x-axis) and allelic odds-ratio (y-axis) for seven effective sample size (Neff) scenarios 

relevant to the genomes (a-c) and exomes (dg) component of this project. a. variant 

observed in 2,657 samples (the effective size of the GoT2D integrated panel); b. variant 

observed in 28,350 samples (the effective size of the imputed data set); c. variant observed in 

the GoT2D integrated panel and the imputed data set (effective sample size 31,007); d. 
ancestry-specific variant in 2,000 samples (the size of each of the non-European exome 

sequence data sets); e. European specific variant in 5,000 samples (the combined size of the 

European exome sequence data sets); f. variant observed with shared frequency across all 

ancestry groups in 12,940 samples (the size of the combined exome sequence data set); and 

g. variant observed in the combined exome array and sequencing data set (effective sample 

size 82,758). h-i. Power for gene based test of association (SKAT-O) according to liability 

variance explained. In h, 50% of the variants contribute to disease risk while the remaining 

50% have no effect on disease risk; in i., 100% of the variants contribute to disease risk. For 

each, sample sizes considered are 2,000 (ancestry-specific effects; green) and 12,940 

(ancestry-shared effects; blue). Power is shown for two levels of significance (α=2.5×10−6 

and α=0.001). From these simulation studies, it is clear that under the optimistic model, 

where effects are shared across all ethnicities (blue line) and all variants contribute, power is 
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>60% for 1% variance explained and α=2.5×10−6. However, power declines rapidly if either 

criterion is relaxed.

Extended Data Figure 6. Single variant analyses
Manhattan plot of single-variant analyses generated from a. exome sequence data in 6,504 

cases and 6,436 controls of African American, East Asian, European, Hispanic, and South 

Asian ancestry; b. exome array genotypes in 28,305 cases and 51,549 controls of European 

ancestry; and c. combined meta-analysis of exome array and exome sequence samples. 

Coding variants are categorized according to their relationships to the previously reported 

lead variant from GWAS region. Loci achieving genome-wide significance only in the 

combined analysis are highlighted in bold. The HNF1A variant reaching genome-wide 

significance in the combined analysis is a synonymous variant (Thr515Thr). The dashed 

horizontal line in each panel designates the threshold for genome-wide significance 

(p<5×10−8).

Fuchsberger et al. Page 32

Nature. Author manuscript; available in PMC 2017 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 7. Classification of coding variants according to their relationship to 
reported lead variants for each GWAS region
The ideogram shows the location of 25 coding variant associations at 16 loci described in the 

text. The number in each circle corresponds to the number of associated variants at each 

locus. Variants are grouped into five categories based on inferred relationship with the 

GWAS lead variant. For some of these categories, the figure includes representative regional 

association plots based on exome array meta-analysis data from 28,305 cases and 51,549 

controls. The locus displayed for each category is designated in bold. The first plot in each 

panel shows the unconditional association results; middle plot the association results after 

conditioning on the non-coding GWAS SNP; and the last plot the results after conditioning 

on the most significantly associated coding variant. Each point represents a SNP in the 

exome array meta-analysis, plotted with their p-value (on a –log10 scale) as a function of the 

genomic position (hg19). In each panel, the lead coding variant is represented by the purple 

symbol. The color-coding of all other SNPs indicates LD with the lead SNP (estimated by 

European r2 from 1000 Genomes March 2012 reference panel: red r2≥0.8; gold 0.6≤r2<0.8; 

green 0.4≤r2<0.6; cyan 0.2≤r2<0.4; blue r2<0.2; grey r2unknown). Gene annotations are 

taken from the University of California Santa Cruz genome browser. GWS: genome-wide 

significance. *Seven variants, three at ASCC2, and one each at THADA, TSPAN8, FES and 

HNF4A did not achieve genome-wide significance themselves, but are included because 

they fall into genes and/or regions with other significant association signals (see text).
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Extended Data Figure 9. Exclusion of synthetic associations and construction of credible causal 
variant sets at T2D GWAS loci
Ten T2D GWAS loci were selected for synthetic association testing (p<0.001; Methods). a, 

The effect size observed at the GWAS index SNV (sequence data) before (navy blue) and 

after (light blue, grey) conditioning on candidate rare and low-frequency (MAF<5%) 

variants which could produce synthetic association. b, Example of synthetic association 

exclusion at the TCF7L2 locus. c, Credible sets for T2D GWAS loci where credible set 

consisted of <80 variants displaying the proportion of credible set variants present in the 

HapMap and 1000G catalogs.

Extended Data Figure 10. 
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Genome enrichment analysis in GoT2D whole genome sequence data (n=2,657) a, 
Functional annotation categories were defined using transcription, chromatin state and 

transcription factor binding data from GENCODE, ENCODE and other studies. b, T2D 

association statistics for variants at each T2D locus were jointly modelled with functional 

annotation using fgwas. In the resulting model we identified enrichment of coding exons 

(CDS), transcription factor binding sites (TFBS), mature adipose active enhancers and 

promoters (hASC-t4 EnhA, TssA), pancreatic islet active and weak enhancers (HI EnhA, 

EnhWk), pre-adipose active and weak enhancers (hASC-t1 EnhA, EnhWk), embryonic stem 

cell active promoters (H1-hESC TssA) and 5’ UTR. Dots represent enrichment estimates 

and horizontal lines the 95% confidence intervals. c, At the CCND2 locus, three variants not 

present in HapMap2 have a combined 90% posterior probability of being causal (rs4238013, 

rs3217801, rs73040004). One of these variants, rs3217801, is a 2-bp indel that overlaps an 

islet enhancer element.

Extended Data Figure 11. Low frequency variants in exome array data
Results from meta-analysis of 43,045 low-frequency and common coding variants on the 

exome array (assayed in 79,854 European subjects). a. Observed allelic ORs as a property of 

allele MAF. Variants missing in >8 cohorts or polymorphic in only one cohort were 

excluded. Colored lines represent contours for liability variance explained. Regions shaded 

grey denote ranges of OR and MAF consistent with 80% power (in this case, at α=5×10−7) 

to detect single-variant associations in this data set (given the observed range of missing 
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data). Variants with a black collar are those highlighted by a bounding analysis as having a 

probability>0.8 of having LVE>0.1%; b. Distribution of each variant in the MAF/OR space 

was computed by assuming T2D prevalence of 8% and a beta and normal distribution for 

MAF and OR respectively. Probability is obtained by integrating the joint MAF-OR 

distributions over ranges of LVE; c. Single variant association, liability and bounding results 

for the known T2D GWAS variants on the exome array (Methods).

Extended Data Table 2

Summary information for samples sets used in the association analyses.

Ancestry Study Countries of Origin Num. of 
Cases (% 
female)

Num. of 
Controls 

(% female)

Effective Sample Size

Whole Genome Sequencing Studies

European Finland-United States 
Investigation of NIDDM 

Genetics (FUSION) Study

Finland 493 (41.5) 486 (45.2) 979

European Kooperative 
Gesundheitsforschung in 

der Region Augsburg 
(KORA)

Germany 101 (44.5) 104 (66.3) 205

European Malmo-Botnia Study Finland, Sweden 410 (51.5) 419 (44.1) 829

European UK Type 2 Diabetes 
Genetics Consortium 

(UKT2D)

UK 322 (46.2) 322 (82.2) 644

Total Whole Genome 
Sequence

1,326 1,331 2,657

Genome-Wide Array Studies

European INTERACT France, Germany, Italy, 
Netherlands, Spain, 

Sweden, UK

4624 (51.8) 4668 (64.2) 9292

European Wellcome Trust Case 
Control Consortium 

(WTCCC)

UK 1586 (40.9) 2938 (50.8) 4120

European Kooperative 
Gesundheitsforschung in 

der Region Augsburg 
(KORA)

Germany 993 (45.1) 2985 (52.2) 2980

European Framingham Heart Study 
(FHS)

US 673 (42.6) 7660 (55.1) 2475

European Finland-United States 
Investigation of NIDDM 

Genetics (FUSION) Study

Finland 1060 (43.1) 1090 (51.3) 2150

European Diabetes Genetics Initiative 
(DGI)

Finland, Sweden 899 (46.6) 1057 (49.6) 1943

European Estonian Genome Center, 
University of Tartu 
(EGCUT-OMNI)

Estonia 389 (58.6) 6013 (54.2) 1461

European Diabetes Gene Discovery 
Group (DGDG)

France, Canada 677 (39.3) 697 (59.7) 1374

European Mt Sinai BioMe Biobank 
Platform (BioMe 

(Illumina))

US 255 (29.0) 1647 (51.4) 883

European Uppsala Longitudinal Study 
of Adult Men (ULSAM)

Sweden 166 (0) 953 (0) 565
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Ancestry Study Countries of Origin Num. of 
Cases (% 
female)

Num. of 
Controls 

(% female)

Effective Sample Size

European Mt Sinai BioMe Biobank 
Platform (BioMe)

US 132 (26.5) 455 (34.7) 409

European Prospective Investigation of 
the Vasculature in Uppsala 

Seniors (PIVUS)

Sweden 111 (41.4) 838 (51.2) 392

European Estonian Genome Center, 
University of Tartu 

(EGCUT-370)

Estonia 80 (48.8) 1768 (51) 306

Total Genome-Wide Array 11,645 32,769 28,350

Total Whole Genome 
Sequence + Genome-Wide 

Array

12,971 34,100 31,007

Whole Exome Sequencing Studies

African American Jackson Heart Study US 500 (66.6) 526 (63.3) 1,026

African American Wake Forest School of 
Medicine Study

US 518 (59.5) 530 (56.0) 1,048

East Asian Korea Association Research 
Project

Korea 526 (45.6) 561 (58.5) 1,086

East Asian Singapore Diabetes Cohort 
Study; Singapore 

Prospective Study Program

Singapore (Chinese) 486 (52.1) 592 (61.3) 1,068

European Ashkenazi US, Israel 506 (47.0) 355 (56.9) 834

European Metabolic Syndrome in 
Men Study (METSIM)

Finland 484 (0) 498 (0) 982

European Finland-United States 
Investigation of NIDDM 

Genetics (FUSION) Study

Finland 472 (42.6) 476 (45.0) 948

European Kooperative 
Gesundheitsforschung in 

der Region Augsburg 
(KORA)

Germany 97 (44.3) 90 (63.3) 186

European UK Type 2 Diabetes 
Genetics Consortium 

(UKT2D)

UK 322 (45.7) 320 (82.8) 642

European Malmo-Botnia Study Finland, Sweden 478 (54.8) 443 (43.8) 920

Hispanic San Antonio Family Heart 
Study, San Antonio Family 
Diabetes/Gallbladder Study, 

Veterans Administration 
Genetic Epidemiology 

Study, and the Investigation 
of Nephropathy and 

Diabetes Study Family 
Component

US 272 (58.8) 218 (58.7) 484

Hispanic Starr County, Texas US 749 (59.7) 704 (71.9) 1,452

South Asian London Life Sciences 
Population Study 

(LOLIPOP)

UK (Indian Asian) 531 (14.1) 538 (15.8) 1,068

South Asian Singapore Indian Eye Study Singapore (Indian Asian) 563 (44.4) 585 (49.2) 1,148

Total Whole Exome 
Sequence

6,504 6,436 12,892

Exome Array Studies
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Ancestry Study Countries of Origin Num. of 
Cases (% 
female)

Num. of 
Controls 

(% female)

Effective Sample Size

European ADDITION; Steno Diabetes 
Centre (SDC); Health06; 
Health08; Vejle Biobank; 

Inter99

Denmark 5813 (40.0) 7987 (54.4) 13,458

European Wellcome Trust Case 
Control Consortium (UK 

Type 2 Diabetes 
Consortium); Young 

Diabetics Study (YDX); 
Genetics of Diabetes and 
Audit Research Tayside 

Study (GoDARTS); Oxford 
Biobank; TwinsUK; 1958 

Birth Cohort (BC58)

UK 3576 (51.7) 12675 (41.2) 11,156

European Finland-United States 
Investigation of NIDDM 

Genetics (FUSION) Study; 
Finrisk2007; Metabolic 
Syndrome in Men Study 

(METSIM); Dose-
Responses to Exercise 

Training (DR'sEXTRA); 
D2D2007

Finland 3593 (33.4) 8222 (26.0) 10,001

European Malmo Diabetes Cohort 
(MDC); All New Diabetics 

in Skane (ANDIS)

Sweden 4633(41.0) 5404 (59.5) 9,978

European Prevalence, Prediction and 
Prevention of Diabetes 

(PPP); Diabetes Register in 
Vaasa (DIREVA)

Finland 2910 (43.7) 4596 (53.7) 7,127

European Nurses’ Health Study 
(NHS)

US 1413 (100.0) 1695 (100.0) 3,082

European Health Professionals 
Follow-up Study (HPFS)

US 1184 (0.0) 1287 (0.0) 2,467

European The Exeter Family Study of 
Child Health (EFSOCH)

UK 1446 (39.0) 1567 (52.0) 3,008

European Kooperative 
Gesundheitsforschung in 

der Region Augsburg 
(KORA)

Germany 933 (45.3) 2705 (51.7) 2,775

European Estonian Genome Center at 
the University of Tartu 

(EGCUT)

Estonia 882 (43.7) 1506 (44.2) 2,225

European Gene-Lifestyle Interactions 
and Complex Traits 
Involved in Elevated 

Disease Risk (GLACIER)

Sweden 960 (47.6) 957 (54.5) 1,917

European Fenland cohort of the 
European Prospective 

Investigation of Cancer 
(Fen-EPIC)

UK 691(47.0) 1157 (54.5) 1,730

European The Prospective 
Investigation of the 

Vasculature in Uppsala 
Seniors (PIVUS); Uppsala 

Longitudinal Study of Adult 
Men (ULSAM)

Sweden 271(16.9) 1791 (23.9) 942

Total Exome Array 28,305 51,549 69,866
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Ancestry Study Countries of Origin Num. of 
Cases (% 
female)

Num. of 
Controls 

(% female)

Effective Sample Size

Total Whole Exome 
Sequence + Exome Array

34,809 57,985 82,758

Extended Data Table 3
Counts and properties of variants identified in 
sequenced subjects

a. Variant numbers for the 2,657 individuals with whole genome sequence data passing QC 

and included in the association analysis data set; b. Variant numbers are provided for the 

13,008 individuals passing initial rounds of QC from which further QC defined the 12,940 

subjects included in the association analysis data set. Private refers to variants seen in only a 

single ancestral group; cosmopolitan to variants seen in all five major ancestral groups.

a

Genomes integrated panel

SNV Indel SV

Variant Type
N (%total)

25.2M (94%) 1.50M (5.6%) 8,876 (0.03%)

Coding Non-coding

Function
N (%total)

888K (3.3%) 25.8M (97%)

Rare (MAF<0.5%) Low frequency (0.5<MAF<5%) Common (MAF>5%)

Frequency spectrum
N (%total)

6.26M (23%) 4.16M (16%) 16.3M (61%)

b137 Novel

dbSNV
N (%total)

14.6M (55%) 12.1M (45%)

b

Exome sequence data

All samples African-American East-Asian European Hispanic South-Asian

Samples: 13,008 2,086 2,165 4,579 1,959 2,219

    T2D cases 6,504 1,018 1,012 2,359 1,021 1,094

    T2D controls 6,436 1,056 1,153 2,182 922 1,123

Excluded from association analysis 68 12 0 38 16 2

Coverage:

        Coding:

    Mean (Mc) per gene 81.7 ±23.7 83.2 ±24.0 84.6 ±23.8 78.6 ±23.3 83.8 ±24.1 78.2 ±23.2

    # of genes with Mc <20 368 302 302 351 269 325

        Non-coding:
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b

Exome sequence data

All samples African-American East-Asian European Hispanic South-Asian

    Mean per gene 59.0 ±21.0 60.9 ±21.5 62.2 ±21.6 57.5 ±20.6 59.2 ±21.2 55.4 ±20.3

    # of genes with Mc <20 1,150 738 731 1,102 804 945

Variant annotations:

    Synonymous SNV 627,630 237,430 178,232 192,282 156,231 211,218

    Missense SNV 1,110,897 354,797 296,707 327,049 231,351 344,191

    Start SNV 2,055 593 523 639 384 583

    Nonsense SNV 26,321 7,188 6,668 8,030 4,660 7,339

    Frameshift INDEL 26,901 6,605 6,159 7,515 4,155 6,609

    Inframe INDEL 11,090 3,471 2,963 3,145 2,068 3,165

    3′UTR SNV, INDEL 65,013 24,583 19,149 21,102 16,959 22,177

    5′UTR SNV, INDEL 43,965 16,920 13,520 15,562 11,634 15,595

    Intron SNV, INDEL 931,449 352,398 270,564 296,970 243,139 314,810

    Essential splicing SNV, INDEL 14,286 3,648 3,454 4,108 2,301 3,744

    Other splicing SNV, INDEL 128,644 45,876 35,413 38,263 30,301 41,122

    Non-coding RNA SNV, INDEL 18,113 7,247 5,996 6,715 5,084 6,706

    Intergenic SNV, INDEL 37,345 14,335 11,498 13,614 10,700 12,937

All 3,043,709 1,075,091 850,846 934,994 718,967 990,196

Coding frequency spectrum:

    Rare (MAF<0.5%) 95.79% 83.30% 90.06% 89.19% 84.56% 89.89%

private 77.93% 53.79% 65.47% 51.80% 37.26% 61.55%

cosmopolitan 0.35% 1.80% 3.02% 1.88% 2.24% 1.73%

    Low frequency (0.5<MAF<5%) 2.57% 10.36% 4.61% 5.52% 8.21% 5.10%

private 0.17% 1.43% 1.10% 0.26% 0.52% 1.02%

cosmopolitan 0.60% 1.50% 1.54% 1.94% 2.74% 1.62%

    Common (MAF>5%) 1.65% 6.35% 5.33% 5.29% 7.23% 5.00%

private 0.09% 0.00% 0.00% 0.00% 0.01% 0.00%

cosmopolitan 1.50% 4.35% 5.17% 4.97% 6.88% 4.86%

Intron/UTR frequency spectrum:

    Rare (MAF<0.5%) 94.09% 78.68% 86.91% 86.17% 81.43% 86.68%

private 74.76% 49.81% 61.36% 45.26% 31.03% 56.96%

cosmopolitan 0.46% 2.07% 3.98% 2.49% 2.66% 2.19%

    Low frequency (0.5<MAF<5%) 3.52% 12.57% 5.63% 6.51% 9.43% 6.32%

private 0.25% 1.74% 1.25% 0.29% 0.47% 1.18%

cosmopolitan 0.80% 1.81% 2.11% 2.53% 3.30% 2.17%

    Common (MAF>5%) 2.39% 8.76% 7.46% 7.32% 9.14% 7.00%

private 0.15% 0.00% 0.00% 0.01% 0.00% 0.00%

cosmopolitan 2.17% 5.94% 7.26% 6.93% 8.77% 6.81%
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Figure 1. Ascertainment of variants and single-variant results
a, Sensitivity of low-coverage genome sequence data to detect SNVs in the deep exome 

sequence data, relative to other variant catalogs. Points represent results for a specific minor 

allele count. All results assume OR=1 for all variants, unless stated otherwise. Manhattan 

plots of single-variant association analyses for: b, sequence data alone (1,326 cases and 

1,331 controls) and c, meta-analysis of sequence and imputed data (total of 14,297 cases and 

32,774 controls).
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Figure 2. Association between T2D and variants in genes for Mendelian forms of diabetes
a, p-values of aggregate association for variants from 6,504 T2D cases and 6,436 controls in 

three sets of Mendelian diabetes genes, for five variant “masks” (Methods). Dotted line: 

p=0.05. b, Estimated T2D odds ratio (OR) for carriers of variants in each gene-set and mask. 

Error bars: one standard error. c, Estimated ORs (bars, left axis) and p-values (dots, right 

axis) for carriers of variants in the PTV+NSstrict mask for each gene. Error bars: one 

standard error. Red: OR > 1; blue: OR < 1; dotted line: p=0.05.
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Figure 3. Empirical T2D association results compared to results under different simulated 
disease models
Observed number of rare and low-frequency (MAF<5%) genetic association signals for T2D 

detected genome-wide after imputation compared to the numbers seen under three simulated 

disease models for T2D which were plausible given results (T2D recurrence risks, GWAS, 

linkage) prior to large-scale sequencing. Simulated models were defined by two parameters: 

disease target size T and degree of coupling τ between the causal effects of variants and the 

selective pressure against them40. Simulated data were generated to match GoT2D 

imputation quality as a function of MAF (Methods).
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