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Abstract

The genetic architecture of common traits, including the number, frequency, and effect sizes of
inherited variants that contribute to individual risk, has been long debated. Genome-wide
association studies have identified scores of common variants associated with type 2 diabetes, but
in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-
frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia
performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome
sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power,
we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants
associated with type 2 diabetes after sequencing were overwhelmingly common and most fell
within regions previously identified by genome-wide association studies. Comprehensive
enumeration of sequence variation is necessary to identify functional alleles that provide important
clues to disease pathophysiology, but large-scale sequencing does not support a major role for
lower-frequency variants in predisposition to type 2 diabetes.
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There is compelling evidence that individual risk of type 2 diabetes (T2D) is strongly
influenced by genetic factorst. Progress in characterizing the specific T2D-risk alleles
responsible has been catalyzed by the ability to perform genome-wide association studies
(GWAYS). Over the past decade, successive waves of T2D GWAS - featuring ever larger
samples, progressively denser genotyping arrays supplemented by imputation against more
complete reference panels, and richer ethnic diversity — have delivered >80 robust
association signals2-8. However, in these studies, the alleles interrogated for association are
predominantly common (minor allele frequency [MAF]>5%), and with limited
exceptions’:9, the variants driving known association signals are also common, with
individually-modest impacts on T2D risk 2-8:10, Variation at known loci explains only a
minority of observed T2D heritability2:3-11,

Residual genetic variance is partly explained by a long tail of common variant signals of
lesser effectZ. However, the contribution to T2D risk attributable to lower-frequency variants
remains a matter of considerable debate, not least because of the relevance of disease
architecture to clinical application!l. Next-generation sequencing enables direct evaluation
of the role of lower-frequency variants to disease risk’1213, This paper describes the efforts
of the coordinated, complementary strategies pursued by the Genetics of Type 2 Diabetes
(GoT2D) and T2D-GENES (Type 2 Diabetes Genetic Exploration by Next-generation
sequencing in multi-Ethnic Samples) Consortia. GoT2D collected comprehensive genome-
wide sequence data from 2,657 T2D cases and controls; T2D-GENES focused on exome
sequence variation, assembling data (after inclusion of GoT2D exomes) from a multiethnic
sample of 12,940 individuals. Both consortia used genotype data to expand the sample size
available for association testing for a subset of the variants exposed by sequencing.

Analysis of genome-wide variation

The GoT2D consortium selected for whole genome sequencing cases of type 2 diabetes
(T2D) and ancestry-matched normoglycemic controls from northern and central Europe
(Methods, Supplementary 1). To increase power to identify low-frequency
(0.5%<MAF<5%) and rare (MAF<0.5%) T2D variants of large effect, we preferentially
ascertained individuals from the extremes of genetic risk (M ethods). The genome sequence
of 1,326 cases and 1,331 control individuals was determined through joint statistical analysis
of low-coverage whole-genome sequence (~5x), deep-coverage exome sequence (~82x), and
array-based genotypes at 2.5M single nucleotide variants (SNVs) (Extended Data Fig. 1;
Extended Data Table 2).

We detected, genotyped, and estimated haplotype phase for 26.7M genetic variants
(Extended Data Fig. 1; Extended Data Table 3), including 1.5M short insertion-deletion
variants (indels) and 8.9K large deletions. Individual diploid genomes carried a mean of
3.30M variants (range: 3.20M-3.35M), including 271K indels (262K-327K), and 669
(579-747) large deletions. These data include many variants not directly studied by previous
GWAS, including all of the indels as well as 420K common and 2.4M low-frequency SNVs
poorly tagged (r?<0.30)34 by genotype arrays. We estimate near-complete ascertainment
(98.2%) of SNVs with minor allele count >5 (MAF>0.1%), and high accuracy (>99.1%) at
heterozygous genotypes (M ethods; Fig. 1a). As half the sequenced individuals were T2D
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cases, ascertainment was enhanced for any rare or low-frequency variants that substantially
increase T2D risk (Fig. 1a). Specifically, we estimate =80% power to detect (at genome-
wide significance, a=5x1078) T2D risk variants with MAF=5% and OR>1.87, or
MAF=0.5% and OR=>4.70 (Extended Data Fig. 4).

We tested all 26.7M variants for T2D association by logistic regression assuming an additive
genetic model (Supplementary 2). Analyses using a mixed-model framework to account for
population structure and relatedness generated almost identical results. At genome-wide
significance, 126 variants at four loci were associated with T2D (Fig. 1b). This included two
previously-reported common-variant loci (7CF7L2, ADCY?5), a previously-reported low-
frequency variant in CCNDZ2” (1576895963, MAF=2.6%, pseq=4.2x1079), and a novel
common-variant association near EML4 (MAF=34.8%, pseq:1.0x10-8). There was no
significant evidence of T2D association for sets of low-frequency or rare variants within
coding regions, nor within specified non-coding regulatory elements (M ethods).

Power to detect association with low-frequency and rare variants of modest effect is limited
in 2,657 individuals. To increase power for variants discovered via genome sequencing, we
imputed sequence-based genotypes into 44,414 additional European-origin individuals
(11,645 T2D cases, 32,769 controls; M ethods) from 13 studies (Supplementary 3). We
estimated power in the combined sequence plus imputed data, adjusting for imputation
quality, to be =80% for variants with MAF=5% and OR=1.23, or MAF=0.5% and OR>1.92
(Extended Data Fig. 4). Meta-analysis combining results for the sequence and imputed data
identified 674 variants across 14 loci associated with T2D at genome-wide significance (Fig.
1c). All were common except the CCNDZ2 variant described above. We observed a novel
association with a common variant near CENPW (rs11759026, MAF=23.2%,
Pmeta=3-5%x1078; Fig. 1c) and replicated this association in an additional 14,201 cases and
100,964 controls from the DIAGRAM consortium (p=2.5%10"%; feombineq=1.1%x10711;
Methods). The EML4 signal detected in the sequence data did not replicate in the imputed
data (0=0.59; Pmeta=0.26; Fig. 1c).

To test for additional association signals we performed conditional analysis at loci
previously associated with risk of T2D (M ethods). We identified two novel association
signals, both involving low-frequency variants, at a corrected significance threshold
(a<1.8><10‘6; Methods): one at the /RS1 locus (rs78124264, MAF=2.2%,
Peonditional=2.5%1077) and one upstream of PPARG (rs79856023, MAF=2.2%,
Deonditional=9-2x1077) (Extended Data Table 5). The PRARG signal overlaps regulatory
elements in hASC pre-adipose and HepG2 cells, consistent with evidence that altered
adipose regulation drives the primary PPARG signall?.

Analysis of coding variation

The T2D-GENES consortium adopted a complementary strategy, focused on variants in
protein-coding sequence, and seeking to improve power to detect rare-variant association by
exploiting the more robust functional annotation of coding variation and the potential to
aggregate multiple alleles of presumed similar impact in the same genel215. We combined
exome sequence data from 10,437 T2D cases and controls of diverse ancestry generated by
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T2D-GENES, with the equivalent data from GoT2D. This created a joint data set (after all
QC) comprised of 12,940 individuals (6,504 cases; 6,436 controls) drawn from five ancestry
groups: 4,541 of European origin, and ~2,000 [range: 1,943-2,217] each of South Asian,
East Asian, Hispanic, and African American origin (Extended Data Fig. 1; Extended Data
Table 2; Supplementary 4). Mean coverage was 82X across the coding sequence of 18,281
genes, identifying 3.04M variants (1.19M protein-altering) (Supplementary 5,6). Each
diploid genome carried a mean of 9,243 (range: 8,423-11,487) synonymous, 7,636
(6,935-9,271) missense, and 250 (183-358) protein-truncating alleles (Supplementary 7).

We tested for T2D association within the five ancestral groups, assuming an additive genetic
model, using mixed-model approaches that account for population structure and
relatedness’®, and combined ancestry-specific results via trans-ethnic meta-analysis
(Methods). We estimate >80% power to detect (at genome-wide significance) T2D risk
variants with MAF=5% and OR>1.36, or MAF=0.5% and OR>2.29 (M ethods; Extended
Data Fig. 4). Only one variant reached genome-wide significance (PAX4 Arg192His,
rs2233580, p=9.3x1079) (Table 1; Extended Data Figs. 6,7; Supplementary 8). This
association was exclusive to East Asians, in whom the 192His allele is, in fact, common
(MAF~10%) with a substantial effect size (allelic OR=1.79 [1.47-2.19]); 192His is virtually
absent in other ancestries (MAF=0.014%). The rs2233580 association replicated in
independent East Asian case-control data (/=3,301; p=5.9x10~": Supplementary 9) and
was distinct (r?<0.05) from previously-reported GWAS SNVs at the GCC1-PAX4 locus®:8,
PAX4 encodes a transcription factor involved in islet differentiation and functionl’
(Supplementary 10), and PAX4 variants have been implicated in early-onset monogenic
diabetes!8. However, in East Asian cases, 192His was not associated with age of diabetes
diagnosis (p=0.64), indicating this variant influences risk of type 2 rather than early-onset
monogenic diabetes (Supplementary 9).

To increase power to detect association of rare variants that cluster in individual genes, we
deployed gene-level variant aggregation tests1® across the exome sequence data (M ethods;
Supplementary 11). We observed no deviation from the null distribution of association
statistics, and no single gene reached exome-wide significance (a=2.5x107%) (Methods;
Supplementary 12,13). When we focused on 634 genes mapping to known GWAS regions,
only FESexceeded a reduced significance threshold of a=7.9x107° (Osouthasian=7.2%107,
Pmuttiethnic=1.9%107°) (M ethod; Supplementary 14). This aggregate signal was driven
entirely by the South Asian-specific Pro536Ser variant (MAF=0.9%, OR=6.7 [2.6-17.3],
p=17.5x1079), indicating that FES is likely to be the effector gene at the PRCZI GWAS locus?.

To increase power to detect coding variant associations (Extended Data Fig. 4), we
contributed early T2D-GENES exome data to the design of Illumina exome array®, and then
collected genotypes from an additional 28,305 T2D cases and 51,549 controls of European-
ancestry from 13 studies (Extended Data Fig. 1; Extended Data Table 2; Supplementary 15).
Of 27,904 protein-altering variants with MAF>0.5% detected in exome sequence data from
n=4,541 European individuals, variation at 81.6% was captured on the array
(Supplementary 16).
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Association analysis in the combined sequence and array data from >90,000 individuals
identified 18 coding variants (17 nonsynonymous), at 13 loci, which exceeded genome-wide
significance (a=5x1078) (Table 1; Extended Data Figs. 6,7). All of these were common
(MAF>5%) and all but one mapped within established common-variant GWAS regions?-3,
The exception, which we replicated in the INTERACT study® (/7=9,292;
OINTERACT=2.4%x107%; Pmeta=2.2%10711), involved a common haplotype of four strongly-
correlated coding variants in MTMR3and ASCCZ (Table 1). Of these, MTMR3 Asn960Ser
(MAF=8.3%) had the strongest residual association signal on conditional analysis,
implicating MTMR3, encoding a phosphatidylinositol phosphatase??, as the probable
effector transcript at this locus (Extended Data Table 5; Extended Data Figs. 6,7;
Supplementary 10,17).

The remaining coding variant signals provided an opportunity to highlight causal alleles and
effector transcripts for known GWAS signals. For five loci (SLC30A8, GCKR, PPARG,
KCNJ11-ABCCS8, PAM), the coding variants identified had previously been nominated as
causal for their respective GWAS signals?’+13, For the other seven loci, GWAS meta-
analyses had previously highlighted a lead variant in non-coding sequence?>6. We
(re)evaluated these relationships with conditional and credible set analyses, finding that, at
most, the evidence supported a direct causal role for the coding variants concerned
(Extended Data Table 5; Extended Data Figs. 6,7; Supplementary 10,17).

For example, at the C/LP2locus?, previous GWAS had identified the non-coding variant
rs10401969 as the lead SNV. However, direct genotyping of 7M65F2 Lys167Glu on the
exome array revealed complete linkage disequilibrium with rs10401969, and reciprocal
signal extinction in conditional analyses (Extended Data Table 5; Extended Data Figs.
6,7). In previous GWAS, the association at Lys167Glu had been obscured by incomplete
genotyping and poor imputation (Supplementary 18). The TM6SF2 Lys167 allele has been
shown to underlie predisposition to hepatic steatosis?!, and was associated with fasting
hyperinsulinemia (p=1.0x1074) in 30,824 non-diabetic controls from the present study. This
combination of genetic and functional data, consistent with known mechanistic links
between insulin resistance, T2D, and fatty liver disease??, implicates TM6SF2 Lys167Glu as
the likely T2D-risk variant at this locus.

In contrast, the association at RREBI Asp1171Asn represented a novel signal, conditionally
independent of the adjacent common-variant GWAS signal. This association, together with
that involving a second associated coding variant, Ser1554Tyr, which has a marked
association with fasting glucose (p=2.7x1072 in levels in 38,338 non-diabetic subjects from
the present study) (Supplementary 19), establishes RREBI4 as the probable effector gene
at the SSR1 locus.

Given the concentration of coding-variant associations within established GWAS loci, we
sought to nominate additional single-variant signals in 634 genes mapping to established
T2D GWAS regions using a Bonferroni-corrected a=1.6x10"> (M ethods; Supplementary
14,20). At HNF4A, we confirmed a T2D association at Thr139lle (European MAF range
0.7-3.8%, OR=1.15 [1.08-1.22], p=2.9x1076)10 distinct both from the common non-coding
lead GWAS SNV23°, and multiple rare HNF4A variants implicated in monogenic
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diabetes?4. Additional coding variant associations in 7SPAN8and THADA highlighted
these two genes as probable effector transcripts in their respective GWAS regions
(Supplementary 10,21).

Rare alleles in Mendelian genes

We extended gene-based tests for rare-variant associations to gene-sets implicated in
monogenic or syndromic diabetes or in altered glucose metabolism?4. Across 81 genes
harboring rare alleles causal for monogenic or syndromic diabetes or related glycemic traits
(‘Monogenic All’; Supplementary 22), the only variant or gene association genome-wide
significance involved the previously-mentioned PAX4 Arg192His. However, across the
entire gene-set, we observed a weak aggregate association with T2D-risk (p=0.023: Fig. 2a).
The association was considerably stronger in two subsets of genes more directly implicated
in monogenic and syndromic diabetes: a manually-curated set of 28 genes for which
diabetes was the primary phenotype (‘Monogenic Primary’) and a partially-overlapping set
of 13 genes reported in OMIM as causal for MODY or neonatal diabetes (‘Monogenic
OMIM’) (Supplementary 22).

The “Monogenic OMIM’ gene-set had a statistically robust signal of association
(p=2.8x107°, OR=1.51 [1.25-1.83]) driven by allelic burden of MAF<1% alleles. Effect size
estimates tracked with increasing stringency of variant annotation and gene-set definition,
consistent with progressive enrichment for functional over neutral alleles (Fig. 2b). This
signal does not reflect inclusion among T2D cases of individuals who, in reality, had
monogenic diabetes: the association was not concentrated among genes most frequently
responsible for monogenic diabetes?4 (Fig. 2c), and age of diabetes diagnosis was no
younger in variant carriers than non-carriers (Supplementary 23). The association signal
remained after all alleles listed as ’disease-causing’ within the Human Genetic Mutation
Database were excluded (p=2.9x1074, OR=1.50 [1.21-1.86]).

These analyses point to widespread enrichment for T2D association among rare coding
alleles in genes causal for monogenic diabetes. In these genes, alleles of penetrance
sufficient to drive familial segregation of early-onset diabetes coexist alongside those of
more modest effect predisposing to later-onset T2D. No other compelling signals of rare-
variant enrichment were detected using gene-set enrichment or protein-protein interaction
analysis in other pre-defined gene-sets (Supplementary 24-26).

No evidence for synthetic association

In 2010, Goldstein and colleagues proposed that common-variant GWAS signals may be the
consequence of low-frequency and rare variants that by chance cluster on common
haplotypes?®. While this hypothesis has been debated?6:27 and assessed indirectly328, we
used the near-complete ascertainment of genetic variation in 2,657 genome-sequenced
individuals to directly test the importance of ‘synthetic’ associations2®. We focused on the
ten T2D GWAS loci at which our sample provided the strongest statistical evidence for
association (p<0.001), implementing a conditional analysis procedure to assess whether
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combinations of SNVs within a 5Mb window could explain the common-variant signal
(Extended Data Table 8; M ethods).

We first focused on missense variants, finding that none of the ten signals could be explained
by low-frequency and rare variants within 2.5Mb of the common index SNV (Extended
Data Fig. 9). For example, at the /RSI locus, including the five observed missense /RS1
alleles in the model did not meaningfully diminish the index SNV association
(Punconditional=2-8%107%, Beonditionai=4.3%1075). With 99.7% ascertainment of low-frequency
coding variants (M ethods), these results rule out synthetic associations produced by
missense variants at these ten loci.

We expanded the search to include all low-frequency and rare variants, non-coding and
coding, within 2.5Mb of index SNVs. At no locus was a single low-frequency or rare variant
sufficient to explain the GWAS signal (Extended Data Fig. 9). At 8 of the 10 loci, =10 low-
frequency and rare variants were needed to reverse the direction of effect at the common
index SNV; at 7CF7L2, even 50 were insufficient (Extended Data Fig. 9). We note that the
statistical procedure we developed and deployed is biased /n favor of the synthetic
association hypothesis, since it is highly prone to over-fitting. Nonetheless, at 8 of the 10
loci the data were indistinguishable from a null model of no synthetic association (Extended
Data Table 8; Supplementary 27).

Nominating candidate functional alleles

Using the GoT2D whole genome sequence data, we constructed 99% “credible sets’ for each
T2D GWAS locus on the assumption of one causal variant per locus (M ethods)30. Across 78
published autosomal loci at which the reported index SNV had MAF>1%, 99% credible set
sizes ranged from 2 (CDKNZAB) to ~1,000 (POU5FI) variants; at 71 loci, the credible set
contained >10 variants (Extended Data Fig. 9; Supplementary 28). The GoT2D dataset
provides near-complete ascertainment of common and low-frequency variants to support
more comprehensive credible set analysis than studies based on genotyping or imputation
alone331: of the credible set variants identified from whole genome sequence data, ~60% are
absent from HapMap and ~5% from 1000G Phase 1 (Extended Data Fig. 9).

Genomic maps of chromatin state or transcription factor binding32-3> have been used to
prioritize causal variants within credible sets36:37. We jointly modeled genetic association
and genomic annotation data at T2D GWAS loci using fgwas38. Consistent with previous
reports3*35, associated variants were enriched in coding exons, transcription factor binding
sites, and enhancers active in pancreatic islets and adipose tissue (Extended Data Fig. 10).
Overall, including the functional annotation data reduced credible set size by 35%. At
several loci, access to complete sequence data prioritized variants that overlap relevant
regulatory annotations and were previously overlooked. For example, at the CCNDZ2locus,
three variants not present in HapMap Phase 2 have combined probability of 90.0% of
explaining the common-variant signal? (Extended Data Fig. 10); one of these (rs3217801)
is a 2bp indel overlapping an islet enhancer element.

Nature. Author manuscript; available in PMC 2017 February 04.
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Modelling disease architecture

To evaluate the overall contribution of low-frequency coding variation to T2D risk, we
estimated the proportion of variance in T2D-liability attributable to each such variant3°
(Methods, Extended Data Fig. 11). We focused on exome array data to maximize sample
size, and on variants with MAF>0.1%; sensitivity of variant ascertainment and accuracy of
OR estimation decline below this threshold. Among the 31,701 variants on the exome array
with 0.1%<MAF<5% there was a progressive increase in the maximum OR estimates with
decreasing frequency. However, the liability variance explained for these variants rarely
exceeded 0.05%, limiting power to detect association in the sample size available (Extended
Data Fig. 11). We estimated (M ethods) that the liability variance collectively attributable to
coding variants in the 0.1%<MAF<5% range was 2.9%, compared to 6.3% for common
variants.

Finally, we compared our whole genome T2D association results with predictions from
population genetic simulations*° under twelve models that vary widely with respect to the
proportion of heritability explained by common, low-frequency, and rare variants. We
mirrored the GoT2D study design (with imputation) and performed in parallel the same
association analysis on empirical and simulated data, focusing on variants with MAF>0.1%
and allowing for power loss due to imperfect imputation (M ethods).

Figure 3 displays results for three representative models: a ‘purifying selection” model in
which low-frequency and rare variants explain ~75% of T2D heritability, an intermediate
model in which low-frequency/rare and common variants both contribute substantially, and a
‘neutral” model in which common variants explain ~75% of T2D heritability. Predictions of
the first two models differ markedly in the numbers of low-frequency and rare risk variants
that are associated with T2D. Specifically, these two models predict a larger number and
greater effect size of low-frequency variants found in our whole genome sequencing study as
compared to those observed in the empirical data. In contrast, empirical data are consistent
with predictions under the *neutral” common-variant model.

The century-old Mendelian-biometrician debate pitted those who attributed trait variation to
rare variants of large effect against those who argued that trait variation is largely due to
many common variants of small effect. The debate today is about whether the ‘missing
heritability’ after GWAS is due largely to individually rare, highly-penetrant variants*! or to
a large universe of common alleles of modest effect*2. The results are of more than
academic interest, since genetic architecture plays out powerfully in relation to the power of
genetic diagnosis and the application of precision medicine.

Our data and analysis indicate that for T2D, nearly all common-variant associations
detectable by whole genome sequencing were previously found by GWAS based on
genotyping arrays and imputation: concerns about incomplete coverage due to ‘holes’ in
HapMap!! coverage were, we show, unfounded. Of more lasting interest, the combination of
genome and exome sequencing in large samples provides limited evidence of a role for
lower-frequency variants — coding or genome wide — in T2D predisposition. Of course,
rare risk alleles have long been known to contribute in families with early-onset forms of
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diabetes, and sequencing of Mendelian and GWAS genes has identified rare variants that
influence disease risk#344. Sequencing of T2D cases in much larger samples will
undoubtedly uncover additional low-frequency and rare variants that provide biological and
potentially clinical value. Nonetheless, our empirical and simulated data argue that these
lower-frequency variants contribute much less to T2D heritability than do common variants.
Moreover, the frequency spectrum of variant association signals is consistent with a model
whereby limited selective pressure distributes most the genetic variance influencing T2D
risk among common alleles#?, consistent with the frequency distribution of inter-individual
sequence variation. Similar large-scale sequencing-based exploration of other complex traits
will be required to determine the extent to which the genetic architecture of T2D is
representative of other late-onset diseases.

Our results further strengthen the case for sequencing of diverse samples: the population-
enriched T2D risk variant in PAX4 dovetails with similar findings involving SLC16A11%° in
East Asian and Native American populations and 7BC1D4* in Greenland Inuits. Study of
populations subject to bottlenecks and/or extreme selective pressures#3:46:47 may be
particularly fruitful.

Understanding the inherited basis of T2D will require much further progress in identifying
the mechanisms whereby common, mostly non-coding, variants influence disease risk. The
combination of global epigenetic measurements, genome editing8, and high-throughput
functional assays*® make it increasingly practical to characterize large numbers of non-
coding variants and the processes they impact. Genome sequencing in much larger numbers
of individuals than included in the current study are needed and will no doubt provide
foundational information to guide such experimentation and connect the results to human
population variation, physiology, and disease. Integration of biological insights gleaned from
common and rare variant associations to T2D into a unified picture of disease
pathophysiology will be required to fully understand the basis of this common but
challenging disease.

EXTENDED METHODS

Ethics statement

All human research was approved by the relevant institutional review boards and conducted
according to the Declaration of Helsinki. All participants provided written informed consent.

1 Data generation

1.1 GoT2D integrated panel generation

1.1.1. GoT2D sequenced samples—Here we describe how we generated, processed,
and carried out quality control (QC) on sequence and genotype data for the 2,891 individuals
initially chosen for GoT2D from four studies, and how this resulted in 2,657 individuals
(1,326 T2D cases and 1,331 non-diabetic controls) for analysis (Extended Data Figure 1).
We preferentially sampled early-onset, lean, and/or familial T2D cases and overweight
controls with low fasting glucose levels®0. Specific details of selected samples are provided
in Extended Data Table 2 and Supplementary 1.
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1.1.2. DNA sample preparation—De-identified DNA samples were sent to the Broad
Institute (DGI, FUSION), Wellcome Trust Centre for Human Genetics in Oxford (UKT2D),
and Helmholtz Zentrum Miinchen (KORA) and prepared for genetic analysis. DNA quantity
was measured by Picogreen (all), and samples with sufficient total DNA and minimum
concentrations for downstream experiments were genotyped for a set of 24 SNVs using the
Sequenom iPLEX assay (DGI, FUSION, UKT2D): one gender assay and 23 SNVs located
across the autosomes. The genotypes for these SNVs were used as a quality filter to advance
samples and a technical fingerprint for subsequent sequencing and genome-wide array
genotypes.

1.1.3. Exome sequencing—Genomic DNA was sheared, end repaired, ligated with
barcoded Illumina sequencing adapters, amplified, size selected, and subjected to in-solution
hybrid capture using the Agilent SureSelect Human All Exon 44Mb v2.0 (DGI, FUSION,
UK2T2D) and v3.0 (KORA) bait set (Agilent Technologies, USA). Resulting Illumina
exome sequencing libraries were gPCR quantified, pooled, and sequenced with 76bp paired-
end reads using Illumina GAII or HiSeq 2000 sequencers to ~82-fold mean coverage.

1.1.4. Genome sequencing—Whole-genome Illumina sequencing library construction
was performed as described for exome capture above, except that genomic DNA was
sheared to a larger target size and hybrid capture was not performed. Resulting libraries were
size selected to contain fragment insert size of 380bp£20% (DGI, FUSION, KORA) and
420bp£25% (UKT2D) using gel electrophoresis or the SAGE Pippin Prep (Sage Science,
USA). Libraries were gPCR quantified, pooled, and sequenced with 101bp paired-end reads
using lllumina GAIIl or HiSeq 2000 sequencers to ~5-fold mean coverage.

1.1.5. HumanOmni2.5 array genotyping—Genotyping was performed by the Broad
Genetic Analysis Platform. DNA samples were placed on 96-well plates and genotyped
using the Illumina HumanOmni2.5-4v1_B SNV array.

1.1.6. Alignment and processing of exome and genome sequence data

1.1.6.1. Alignment of sequencereadsto reference genome: Sequence data were processed
and aligned to hg19 using the Picard (broadinstitute. github.io/picard/), BWA®L, and
GATK5253 pipelines. Resulting BAM and VCF files were submitted to NCBI and are
available in dbGaP (accession number phs000840.v1.p1, study name NIDDK_GoT2D).

1.1.6.2. Coverage and QC of aligned sequence reads: We excluded 151 exome samples
with average coverage <20x in >20% of the target bases and 68 genome samples with
average coverage <5x. After sequence alignment and post-processing, aligned sequence
reads were screened based on multiple QC criteria, including number of mapped reads,
number of mapped bases with <1% estimated base call error rate (>Q20), fraction of
duplicate reads, fraction of properly paired reads, distribution of insert sizes, distribution of
mean base quality with respect to sequencing cycles, and GC bias (Extended Data Figure
1).
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1.1.6.3. Detecting and handling contamination of sequence reads: We assessed possible
DNA contamination in the genome and exome sequence data using verifyBamlD®* using
two methods. First, we estimated the contamination level of sequenced samples using allele
frequencies estimated from the HumanOmni2.5 array on a thinned set of 100,000 markers
with minor allele frequency (MAF)>5%. Second, for samples with HumanOmni2.5
genotypes, we used these genotypes together with sequence data to estimate contamination
and identify possible sample swaps. We excluded exome sequence data for 7 individuals and
genome sequence data for 59 individuals with estimated contamination =2% using either
method. Prior to variant calling, uncontaminated sample swaps were assigned to the correct
sample label after searching for the matching pairs using the same method.

1.1.7. GoT2D integrated panel genotype calling

1.1.7.1. SNV identification: We processed whole-genome sequence reads across the
remaining 2,764 QC-passed individuals by two SNV calling pipelines: GotCloud
(www.gotcloud.org) and GATK UnifiedGenotyper®®. We merged unfiltered SNV calls
across the two call sets and then processed the merged site list through the SVM and VQSR
filtering algorithms implemented by those pipelines. SNVs that failed both filtering
algorithms were removed before genotyping and haplotype integration. For the 2,733 QC-
passed exome sequenced individuals, we used GATK UnifiedGenotyper to call SNVs.

1.1.7.1.1. Ilumina HumanOmni2.5 array genotyping: We used lllumina GenomeStudio
v2010.3 with default clusters to call HumanOmni2.5 genotypes after comparing different
clustering algorithms and observing that the default cluster resulted in highest concordance
with sequence-based genotypes. Called genotypes were run through a standard QC pipeline;
samples passing a call rate threshold of 95%, and genetic fingerprint (24 marker panel) and
gender concordance were passed on to downstream GWAS QC. SNVs with GenTrain
score<0.6, cluster separation score<0.4, or call rate<97% were considered technical failures
at the genotyping laboratory and deleted before data release. We removed samples with call
rate<98%, and SNVs monomorphic across all samples, failed by 1000G Omni 2.5 QC filter,
or with Hardy-Weinberg equilibrium p<107% (Extended Data Figure 1). 85 samples were
removed in this process.

1.1.7.2. Short insertion and deletion (indel) identification: For the whole-genome
sequence data, we used the GATK UnifiedGenotyper to call short indels (<50bp). Because
short indels are known to have high false positive rates due to systematic sequencing and
alignment errors®®, we used stringent filtering criteria in SVM and VQSR and excluded
indels that failed either algorithm. For exome sequencing, we used GATK UnifiedGenotyper
to call short indels, following best practices described elsewhere®2.

1.1.7.3. Large deletion identification: We used GenomeSTRiP26 to call large (>100bp)
deletions in the whole-genome sequence data. After initial discovery of large deletions in
2,764 QC-passed individuals, we merged the discovered sites with deletions identified in
1,092 sequenced individuals from the 1000G Project to increase sensitivity and then
genotyped the merged site lists across the 2,764 individuals. After applying the default
filtering implemented in GenomeSTRIP, pass-filtered sites variable in any of the samples
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were identified as candidate variant sites. Among these candidate sites, we excluded variants
in known immunoglobin loci to reduce the impact of possible cell-line artifacts. We then
excluded 136 more individuals owing to an unusually large number of variants per sample
(>median+3xmean absolute deviation). Variants present only in these excluded individuals
were removed from further analysis.

1.1.8. GoT2D integrated panel haplotype integration

1.1.8.1. Genotypelikelihood calculation: We merged SNVs discovered from the three
experimental platforms into one site list and calculated genotype likelihoods across all sites
separately by platform. Because exome sequence data have substantial off-target coverage,
we calculated likelihoods across the genome combining data from the genome and exome
sequence experiments. For genome sequence, we calculated likelihoods using GotCloud; for
exomes, we used GATK UnifiedGenotyper; for HumanOmni2.5 genotypes, we converted
hard genotype calls into genotype likelihoods assuming a genotype error rate of 1076, For
indels, we calculated likelihoods in a similar way except the HumanOmni2.5 data could not
be used. For structural variants (SVs), genotype likelihoods were calculated from
GenomeSTRIP using the whole-genome sequence data.

1.1.8.2. Integration of genotype and sequence data: We calculated combined genotype
likelihoods across each of the 2,874 individuals as the product of the corresponding genome,
exome, and HumanOmni2.5 likelihoods assuming independent data across platforms
(Extended Data Figure 1). We then phased the genotype data using the strategy developed
for 1000G Phase 15°. Specifically, we phased the integrated likelihoods using Beagle®” with
10,000 SNVs per chunk and 1,000 overlapping SNVs between consecutive chunks. We
refined phased sequences using Thunder®® as implemented in GotCloud
(genome.sph.umich.edu/wiki/GotCloud) with 400 states to improve genotype and haplotype
quality.

1.1.9. GoT2D integrated panel QC—2,874 individuals were available in the integrated
haplotype panel. To identify population outliers, we carried out principal components
analysis (PCA). We computed PCs for each of the three variant types (SNVs, short indels,
large deletions) using EPACTS on an LD-pruned (r?<0.20) set of autosomal variants
obtained by removing large high-LD regions®9-60, variants with MAF<0.01, and variants
with Hardy-Weinberg equilibrium p<1078. Inspecting the first ten PCs for each variant type,
we identified 43 population outliers and 136 additional outliers for large deletions only; we
excluded these 179 individuals. We excluded an additional 38 individuals based on close
relationships (estimated genome-wide identity-by-descent proportion of alleles shared
>0.20) with other study members. 2,657 individuals remained available for downstream
analyses (Extended Data Figure 1).

1.1.10. GoT2D integrated panel evaluation of variant detection sensitivity—
Since we had no external data to evaluate SNV and indel variant detection sensitivity and
genotype accuracy for our integrated haplotype panel, we evaluated accuracy for the low-
pass whole-genome sequence data using the exome sequence data as gold standard for
variants at which exome sequence depth was =10. We consider the resulting sensitivity and
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accuracy estimates as lower bounds for the integrated panel, which combined information
from the genome, exome, and HumanOmni2.5 data.

We estimated the sensitivity of low-pass genome sequence data to detect true SNVs by
calculating the proportion of exome-sequencing-detected SNVs detected by low-pass
genome sequencing in the 2,538 individuals with data for all three experimental platforms.
For exome sequence allele counts <1,000, we merged adjacent allele count bins until the
number of alleles was >1,000. We estimated the sensitivity of low-pass genome sequencing
to detect common, low-frequency, and rare SNV as 99.8%, 99.0%, and 48.2%, respectively.
Similarly, we estimated the sensitivity of low-pass genome sequence to detect true short
indels by calculating the proportion of exome sequencing-detected short indels detected by
low-pass genome sequencing. Sensitivity estimates were >99.9%, 93.8%, and 17.9% for
common, low-frequency, and rare short indels, respectively.

To estimate the sensitivity of the combined low-pass genome and exome sequence data, we
focused on coding SNVs and calculated the proportion of HumanOmni2.5 SNVs detected by
either sequencing platform. Because HumanOmni2.5 SNVs are enriched for common
variants, we calculated a weighted averaged sensitivity at each allele count, weighted by the
number of exome-detected variants given the allele count. Sensitivity estimates were 99.9%,
99.7%, and 83.9% for common, low-frequency, and rare variants.

1.1.11. GoT2D integrated panel evaluation of genotype accuracy—To evaluate
genotype accuracy for SNVs, we focused on chromosome 20, and compared the
concordance of low-pass whole-genome-sequence-based genotypes with those based on
exome sequence. Overall genotype concordance was 99.86%. Homozygous reference,
heterozygous, and homozygous non-reference concordances were 99.97%, 98.34%, and
99.72%. We also compared genotype concordance between exome sequence and
HumanOmni2.5 genotypes. Overall concordance was 99.4%. When the HumanOmni2.5
genotypes were homozygous reference, heterozygous, and homozygous non-reference,
concordances were 99.97%, 99.69%, and 99.88%. We evaluated genotype accuracy of indels
for the 210 chromosome 20 indels that overlapped between those discovered by exome and
genome sequencing. Overall genotype concordance was 99.4%. When the exome genotypes
were homozygous reference, heterozygous, and homozygous non-reference, concordances
were 99.8%, 95.8%, and 98.6%.

To evaluate the genotype accuracy of our low-pass genome sequence data to detect true
structural variants, we took advantage of the 181 individuals in our study previously
included in the WTCCC array-CGH based structural variant detection experiment®L. Taking
the WTCCC data as gold standard, we estimated genotype accuracy across 1,047
overlapping structural variants (with reciprocal overlap>0.8) genome-wide. The overall
genotype concordance was 99.8%. When the WTCCC genotypes were homozygous
reference, heterozygous, and homozygous non-reference, concordances were 99.9%, 99.6%,
and 99.7%.
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1.2. GoT2D+T2D-GENES multiethnic exome panel generation and QC

1.2.1. Samples—We considered 6,504 T2D cases and 6,436 controls from 14 studies of
African American, East Asian, South Asian, Hispanic, and European ancestry. In contrast to
the GoT2D whole-genome integrated panel, this data set also includes GoT2D individuals
for whom whole genome data were not available. Sample characteristics are provided in
Extended Data Table 2 and Supplementary 4. Sequence reads were processed and aligned
to the reference genome (hg19) with Picard (http://picard.sourceforge.net). Polymorphic
sites and genotypes were called with GATK, with filtering of sites performed using Variant
Quality Score Recalibration (VSQR) for SNVs, and hard filters for indels. Genotype
likelihoods were computed controlling for contamination.

Hard calls (the GATK-called genotypes but set as missing at a genotype quality (GQ)<20
threshold®2) and dosages (the expected value of the genotype, defined as Pr(RX|data)
+2Pr(XX|data), where X is the alternative allele) were computed for each sample at each
variant site. Hard calls were used only for quality control, while dosages were used in all
downstream association analyses. Multi-allelic SNVs and indels were dichotomized by
collapsing alternate alleles into one category because downstream association analyses
required bi-allelic variants.

Individuals were excluded from analysis if they were outliers on one of multiple metrics:
poor array genotype concordance (where available), high number of variant alleles or
singletons, high or low allele balance (average proportion of non-reference alleles at
heterozygous sites), or excess mean heterozygosity or ratio of heterozygous to homozygous
genotypes.

Within this reduced set of individuals, we then performed extended QC using ethnicity and
T2D status to provide high-quality genotype data for downstream association analyses.
Within each ethnicity, we excluded variants based on hard call rate (<90% in any cohort),
deviation from Hardy-Weinberg equilibrium (<1076 in any ancestry group), or differential
call rate between T2D cases and controls (<10~ in any ancestry group). We then
considered autosomal variants that passed extended QC and with MAF>1% in all ancestry
groups for trans-ethnic kinship analyses. We calculated identity-by-state (IBS) between each
pair of samples based on independent variants (trans-ethnic /2<0.05) and constructed axes of
genetic variation through PCA implemented in EIGENSTRAT®? to identify ethnic outliers
(Supplementary 29). We also identified duplicates based on IBS, and excluded the sample
from each pair with lowest call rate and/or mismatch with external information. The
extended QC excluded 68 individuals, and 9.9% of SNVs and 90.8% of indels from the
clean dataset.

2. Association analysis

2.1.1. Power calculation

We used the genetic power calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/) to
estimate power to detect T2D association assuming 8% prevalence. For the T2D-GENES
+GoT2D exome sequence data set we assumed: (i) a fixed-effect across all five ancestry
groups (12,940 individuals); and (ii) an effect specific to one group (2,000 individuals)
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(Extended Data Figure 4). We repeated our calculations for combined exome sequence and
exome array data, assuming a fixed effect across all ethnicities, for an effective total sample
size of 82,758 individuals (Extended Data Figure 4).

For the GoT2D integrated panel we allowed for incomplete variant detection by multiplying
power by the estimated sensitivity to detect the variant as a function of MAF. For imputed
variants, we first multiplied the sample size by the median imputation quality (rsq_hat)
obtained from MaCH/Thunder or minimac83 for the corresponding MAF bin across the
analyzed cohorts, and then multiplied the estimated power by the fraction of variants that
passed the imputation quality cutoff for that MAF bin.

For gene-based tests in the T2D-GENES+GoT2D data, we made use of a Bonferroni
correction for 20,000 genes, corresponding to p<2.5x1076. We used a simulated haplotype
dataset from the SKAT package (http://cran.r-project.org/web/packages/SKAT/vignettes/
SKAT.pdf) and estimated the power of SKAT-O to detect association of variants within a
gene at this threshold as a function of the phenotypic variance (1%) in a liability scale
explained by additive genetic effects and the percentage of variants that were causal (50%
and 100%). As for single-variant power calculations, we considered: (i) a fixed-effect across
all ethnicities (12,940 individuals); and (ii) an effect specific to one ancestry group (2,000
individuals) (Extended Data Figure 4).

2.2. GoT2D integrated panel association analysis

2.2.1. Single-variant association analysis—We tested for T2D association in a
logistic regression framework assuming an additive genetic model. We used the Firth bias-
corrected likelihood ratio test®465 as our primary analysis strategy; we repeated association
analysis using the score test for inclusion in sample-size-weighted meta-analysis
(Supplementary 2). Tests were adjusted for sex, the first two genotype-based PCs to
account for population stratification, and an indicator function for observed temporal
stratification based on sequencing date and center. PCs were calculated using linkage-
disequilibrium (LD) pruned (r2<0.20) HumanOmni2.5M array variants with MAF>1% after
removing large high-LD regions®9-60,

2.2.2. Aggregate association analysis—To test for aggregate association within
coding regions of the genome, we used the approach described in 2.3.6. For every gene and
mask tested, p-values were greater than 2.5 x 1074, We also tested for aggregate association
among variants in non-coding regions of the genome. We aggregated variants in individual
pancreatic islet enhancer elements (see 6.1), as these elements collectively demonstrated
strongest genome-wide enrichment of T2D association. We performed both the burden and
SKAT tests using genotypes from the integrated panel on variants with MAF<5% in each
islet enhancer element. We used a Bonferroni threshold p<1.68x10~7 based on a nominal
significance level of a=0.05 corrected for 298,240 elements with at least one variant. All
elements tested in this manner had p-value greater than 2.5 x 1075.
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2.3. GoT2D+T2D-GENES multiethnic association analysis

2.3.1. Kinship analysis—Within each ancestry group, we considered autosomal variants
that passed QC with MAF>1% for ethnic-specific kinship analyses. We calculated IBS
between each pair of samples in the ancestry group based on independent variants (ethnic-
specific r2<0.05) and constructed a kinship matrix to account for intra-ethnic population
structure and relatedness in downstream mixed-model (EMMAX) based association
analyses’8. We also used IBS to identify pairs of related individuals within each ancestry
group (defined by pi-hat>0.3). We then defined intra-ethnic related exclusion lists for
downstream non-EMMAX association analyses using the following steps: (i) remove the
control from each T2D-status discordant pair; and (ii) remove the sample with lowest call
rate from each T2D-status concordant pair. We also constructed intra-ethnic axes of genetic
variation through PCA implemented in EIGENSTRAT®2, We identified axes of genetic
variation in each ancestry group for inclusion as covariates in downstream non-EMMAX
association analyses to account for intra-ethnic population structure that: (i) explain at least
0.5% genotypic variation; and/or (ii) demonstrate nominal association (p<0.05) with T2D in
logistic regression analysis.

2.3.2. Single-variant association analysis—Within each ancestry group, we
performed a score test of T2D association with each variant passing ethnic-specific QC in a
linear regression framework under an additive model in EMMAX16. We also performed a
Wald test of T2D association with each variant passing ethnic-specific QC in a logistic
regression framework under an additive model with adjustment for ethnic-specific axes of
genetic variation after exclusion of related samples (Supplementary 30). Within each
ancestry group, we calculated genomic control inflation factors (score EMMAX and Wald)
based on independent variants used for the ethnic-specific kinship analyses and corrected
association summary statistics (p-value and SE) to account for residual population structure.

Subsequently, we performed trans-ethnic fixed-effects meta-analysis of ancestry-specific
association summary statistics at each variant based on: (i) sample size weighting of score
EMMAX directed p-values; and (ii) inverse-variance weighting of Wald beta/SE (to obtain
unbiased estimates of allelic odds ratios and confidence intervals that cannot be constructed
from EMMAX effect estimates). We also performed trans-ethnic meta-analysis of ancestry-
specific association summary statistics (score EMMAX beta/SE) at each variant using
MANTRAS8, using pair-wise mean allele frequency differences at the subset of independent
variants used for trans-ethnic kinship analyses as a prior for relatedness between ancestry
groups.

2.3.3. Validation of PAX4 association signal in additional East Asian studies—
We validated the PAX4 Arg192His (rs2233580) association signal in an additional 1,789
T2D cases and 1,509 controls of East Asian ancestry from Hong Kong, Korea, and
Singapore (Supplementary 9). Within each study, we tested for association with T2D in a
logistic regression model, and combined association summary statistics across studies
through fixed-effects meta-analysis (Supplementary 9). Among T2D cases, we also tested
for association with age of diagnosis in a linear regression model, and combined association
summary statistics across studies through fixed-effects meta-analysis (Supplementary 9).
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2.3.4. Admixture analysis—Admixed populations can offer greater statistical power to
detect association because diverse ancestry increases genetic variation. However, admixture
can also introduce false-positive signals due to population stratification and heterogeneity of
effects because of differential LDS7. To assess the contribution of ancestral background in
the two admixed groups (African American and Hispanic), we inferred local ancestry based
on SNVs in available GWAS data using two approaches. For African Americans, we ran
HAPMIX58 using CEU and YRI haplotypes from HapMap as reference, and estimated the
proportion of European ancestry at each genomic position. For Hispanics, we ran
Multimix89 using European, West African, and Native American haplotypes from HapMap
as reference, and estimated the proportion of European ancestry at each genomic position,
since we observe only a very low West African contribution (1.1-3.2%, Supplementary 31).
We then repeated our intra-ethnic EMMAX-based analyses within African American and
Hispanic ancestry groups, this time adjusting for local ancestry by including the estimated
proportion of European ancestry at each variant as a covariate. Adjustment for local ancestry
resulted in numerically similar association statistics as those from unadjusted analyses in the
African American and Hispanic samples.

2.3.5. Gene-based analysis—We generated four variant lists (‘masks’) based on MAF
and functional annotation. We mapped variants to transcripts in Ensembl 66 (GRCh37.66).
Using annotations from CHA0S v0.6.3, SnpEFF v3.1, and VEP v2.7, we identified variants
predicted to be protein-truncating (e.g. nonsense, frameshift, essential splice site) denoted
PTV-only or ‘Mask 1’; or protein-altering (e.g. missense, in-frame indel, non-essential splice
site) in at least one mapped transcript (by at least one of the three algorithms) with
MAF<1%, denoted PTV+missense or ‘Mask 2°. We additionally used the procedure
described by Purcell et al.”? to identify subsets of missense variants with MAF<1% meeting
‘strict” or ‘broad’ criteria for being deleterious, using annotation predictions from
Polyphen2-HumDiv, PolyPhen2-HumVar, LRT, Mutation Taster, and SIFT; variants
predicted deleterious by all five algorithms or by at least one algorithm were denoted PTV
+NSgtrict OF ‘Mask 3’ and PTV+NSy,0qq OF ‘“Mask 4, respectively. Indels predicted by
CHAO0S, SnpEFF, or VEP to introduce frameshifts were included in the “strict’ category. We
calculated MAFs for each ancestry using high-quality genotype calls (GQ>20) for all
samples passing extended QC. We considered a variant to have MAF<1% if MAF estimates
for every ancestry group were <1%.

We used the MetaSKAT R package (v0.32)1° with the SKAT v0.93 library to perform
SKAT-01 analysis within each ancestry, and in meta-analysis. Within each ancestry group,
we analyzed genotype dosages with adjustment for ethnic-specific axes of genetic variation
after exclusion of 96 related individuals. We assumed homogenous allele frequencies and
genetic affects for all studies within an ancestry group. We performed meta-analysis using
genotype-level data, allowing for heterogeneity of allele frequencies and genetic effects
between (but homogeneity within) ancestry groups. All analyses were completed using the
recommended rho vector for SKAT-O: (0, 0.12, 0.22, 0.32, 0.52, 0.5, 1).
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2.4. Imputed data

2.4.1. Samples—We carried out genotype imputation into 44,414 individuals (11,645 T2D
cases and 32,769 controls) from 13 studies using the GoT2D integrated haplotypes as
reference panel. Characteristics of the imputed studies are provided in Extended Data Table
2 and Supplementary 3.

2.4.2. Single-variant association meta-analysis—The one sequenced and thirteen
imputed studies totaled 12,971 T2D cases and 34,100 controls. Each study performed its
own sample- and variant-based QC. In each study, SNVs with minor allele count (MAC)=1
passing QC were tested for T2D association assuming an additive genetic model adjusting
for study-specific covariates. Association testing was performed using logistic regression
Firth bias-corrected, likelihood ratio, or score tests as implemented in EPACTS
(genome.sph.umich.edu/wiki/EPACTS) or SNPTEST?2. To account for related samples in
the Framingham Heart Study, generalized estimating equations (GEE) were used, as
implemented in R. Residual population stratification for each study was accounted for using
genomic control”3. We then carried out fixed-effects sample-size weighted meta-analysis as
implemented in METAL'4,

2.4.3. Conditional analyses in established GWAS loci—We compiled a list of 143
previously-reported genome-wide significant SNVs in 81 T2D autosomal loci (a) from
Morris et al.2 and Voight et al.4; (b) from papers they referenced; and (c) from references in
the NHGRI GWAS catalog’>. We LD pruned these SNVs (r<0.95), yielding a list of 129
SNVs. We deleted the C/LPZlocus (and two SNVs) from subsequent whole-genome
analyses owing to large regions in which no variants passed QC, resulting in a list of 127
index SNVs at 80 autosomal loci. To identify additional T2D-associated variants within
these 80 T2D autosomal loci in the genome-wide data, we repeated GWA analysis for 12 of
the 13 studies (conditional analysis results for FHS were unavailable), conditioning on the
127 index SNVs. We performed fixed-effects inverse-variance meta-analysis to combine
conditional analysis results from the studies totaling 12,298 cases and 26,440 controls. For
each known locus, we analyzed all SNVs within 500kb of the known index SNVs; if there
were multiple known index SNVs, we analyzed all SNVs within 500kb of the most proximal
and distal index SNVs. We imposed a conditional-analysis significance threshold of
a=1.8x1075 based on a proportional number of multiple tests for ~83Mb of the ~3000Mb
genome.

2.5. Exome array data

2.5.1. Samples—We considered 28,305 T2D cases and 51,549 controls from 13 studies of
European ancestry, genotyped with the Illumina exome array. Characteristics of the studies
are provided in Extended Data Table 2 and Supplementary 15.

2.5.2. Overlap of exome sequence variation with exome array—We assessed
overlap of variants present on the exome array with those observed in our trans-ethnic
exome-sequence data. Since exome array primarily contains SNVs that are predicted to be
protein altering, we focused on nonsense, essential splice site, and missense variants. Only
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variants passing QC in both sequence and array data were included in our overlap
assessment.

2.5.3. Data processing, QC, and kinship analysis—Within each study, exome array
genotypes were initially called using GenCall (https://support.illumina.com/downloads/
gencall_software.html) and Birdseed’8. Sample and variant QC was then undertaken within
each study based on several quality control filters. Criteria for sample exclusion included
low call rate (<99%), mean heterozygosity, high singleton counts, non-European ancestry,
sex discrepancy, GWAS discordance (where data were available), genotyping platform
fingerprint discordance, and duplicate discordance. Variants were excluded based on call
rate (<99%), deviation from Hardy-Weinberg equilibrium (p<107%), duplicate, chromosome
or allele mismatch, GenTrain score <0.6, Cluster separation score <0.4, and manual cluster
checks. Missing genotypes were subsequently re-called using zCall, with a second round of
QC to exclude poor quality samples (call rate <99% and mean heterozygosity) and variants
(call rate <99%). Within each study, we considered independent autosomal variants that
passed QC with MAF>1% for kinship analyses, and calculated IBS between each pair of
samples. We used these statistics to: (i) identify non-European ancestry samples to be
excluded from all downstream analyses; (ii) construct a kinship matrix to account for fine-
scale population structure and relatedness in downstream EMMAX-based association
analyses; (iii) identify related samples to be excluded from downstream non-EMMAX
association analyses; and (iv) calculate axes of genetic variation for inclusion as covariates
in downstream non-EMMAX association analyses to account for fine-scale population
structure (if required).

2.5.4. Single-variant association analysis—Within each study, we performed a score
test of T2D association with each variant passing QC in a mixed-model regression
framework under an additive model in EMMAX8. We also performed a Wald test of T2D
association with each variant in a logistic regression framework under an additive model
with adjustment for axes of genetic variation after exclusion of related samples. For each
test, we corrected SE and p-value for the genomic control inflation factor (if >1) calculated
based on the independent autosomal variants used for kinship analysis.

Across studies, we performed fixed-effects meta-analysis of association summary statistics
at each variant based on: (i) inverse-variance weighting of score EMMAX beta/SE; (ii)
sample size weighting of score EMMAX directed p-values; and (iii) inverse-variance
weighting of Wald beta/SE. For each of these meta-analyses, we applied a second round of
correction of SE and p-value by genomic control, again calculated based on the independent
autosomal SNVs used for kinship analyses.

2.5.5. Combined exome sequence and exome array single-variant analysis—
We considered variants that were represented both in the exome sequence and on the exome
chip. We began by performing fixed-effects meta-analysis of association summary statistics
(after correction for genomic control, as described above) from the exome-chip meta-
analysis and the European ancestry sequenced samples using: (i) inverse-variance weighting
of score EMMAX beta/SE; (ii) sample size weighting of score EMMAX directed p-values;
and (iii) inverse-variance weighting of Wald beta/SE. Subsequently, we performed trans-
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ethnic fixed-effects meta-analysis of ancestry-specific association summary statistics (after

correction for genomic control, as described above) at each variant based on: (i) sample size
weighting of score EMMAX directed p-values; and (ii) inverse-variance weighting of Wald

beta/SE.

2.5.6. Gene-based analyses—We made use of the four variant masks defined for exome
sequence gene-based analyses, but with MAF calculated across all exome array studies.
Within each study, we performed SKAT-O analyses’?, with adjustment for axes of genetic
variation after exclusion of related samples. We combined p-values for association across
studies via meta-analysis with Stouffer's method’’.

2.5.7. Evaluating relationships between association signals for coding
variants and previously reported lead SNVs at established GWAS loci—For
coding variants mapping to established T2D susceptibility loci and achieving genome-wide
significance in combined exome sequence and/or exome array analysis, we used
complementary approaches with a range of available genetic data resources to evaluate their
contribution to the association signals of previously reported lead SNVs. If the previously
reported lead SNV (or a good proxy, /2=0.8) was genotyped on the exome array, we
performed reciprocal conditional analyses with the available exome array data. Within each
study, we repeated EMMAX analyses in GWAS loci, including additively coded genotypes
at the previously reported? lead SNV or genome-wide significant coding variant as an
additional covariate in the regression model. Across studies, we performed fixed-effects
meta-analysis of association summary statistics at each variant based on: (i) inverse-variance
weighting of score EMMAX beta/SE; (ii) sample size weighting of score EMMAX directed
p-values. If the previously reported lead SNV (or a good proxy) was not genotyped on the
exome array, we performed approximate reciprocal conditional analysis, implemented in
GCTA'8, using genome-wide meta-analysis association summary statistics from 12,971 T2D
cases and 34,100 controls from the combined GoT2D integrated panel and imputed data.
Patterns of LD between variants were estimated using a subset of the GoT2D integrated
panel, restricted to 2,389 individuals with pairwise genetic relationship <0.025, as defined
by the GCTA A statistic’®. Finally, we interrogated 99% credible sets of variants at each
GWAS locus, which together represent =99% of the probability of driving each association
signal. We determined whether the coding variant at each locus was included in the credible
set for the association signal for the previously reported lead SNV, and recorded its rank.

3. Enrichment of exome association signals in GWAS

To define T2D-associated intervals, we first identified all SNVs associated with T2D in
published genome-wide association studies (GWAS) by searching literature and the NHGRI
GWAS catalog (see also 2.4.3). We identified 143 autosomal SNVs, with some associated in
more than one ancestry (167 SNV-ancestry pairs). For each SNV-ancestry pair, we identified
the most distant pair of SNVs with /2>0.5 in 1000 Genomes Phase | data, using the
appropriate continental subset of 1000 Genomes samples (EUR, AMR, or ASN). We used
1000 Genomes data, rather than our own exome sequence data, because most reported
associations for T2D are with common, intergenic SNVs. We then extended each region of
interest by moving out 0.02 cM from those two SNVs (to encompass nearby recombination
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hotspots), and added an additional 300kb upstream and downstream. We merged
overlapping intervals, yielding 81 unique associated regions, and identified 634 genes
completely or partially included within associated regions. In single-variant analyses, we
analyzed 3,147 non-synonymous variants within these genes in the combined exome
sequence and exome array datasets, using a Bonferroni corrected significance threshold of
a=0.05/3,147=1.6x107°. We considered gene-level association statistics from exome
sequence for these 634 genes using a Bonferroni-corrected significance threshold of
a=0.05/634=7.9x107°.

We note that by reducing the stringency of the significance threshold for variants within
GWAS loci, we increase the ‘experiment-wise’ type | error rate across the entire exome.
Assuming that 3% of 100,000 coding variants interrogated in this study map to T2D GWAS
loci, as defined above, we would need to change the threshold of significance outside of
these regions to p<2.1x1078 to maintain an ‘experiment-wise’ type | error rate of 5%.

4. Testing for ‘synthetic associations’ at T2D loci in GoT2D genome

sequence data

To identify low-frequency or rare variants that could potentially define synthetic
associations, we analyzed the ten T2D loci at which a previously-reported tag SNV achieved
p<0.001 in our single-variant analysis of the genome sequence dataset. We defined as
candidates at each locus all low-frequency or rare variants (excluding singletons) within a
5Mb window (centered on the prior GWAS signals) and tested for synthetic associations
caused by either (1) a single low-frequency or rare variant or (2) multiple low-frequency or
rare variants on a common haplotype.

To identify synthetic associations driven by a single low-frequency or rare variant at each of
the ten loci, we performed a series of conditional analyses in which we tested for association
between gene dosage at the previously reported GWAS index SNV and T2D risk via logistic
regression, while including each candidate low-frequency or rare SNV (excluding
singletons) as an additional covariate, one-by-one. If inclusion of the low-frequency or rare
variant resulted in a conditional association £>0.05 for the tag SNV, we considered the
common-variant association signal a potential synthetic association.

To identify synthetic associations based on sets of low-frequency or rare variants, we
extended this approach. We (1) defined common haplotypes segregating at each T2D locus;
(2) identified all low-frequency or rare (excluding singletons) variants occurring on T2D-
associated haplotypes (haplotypes on which the T2D-associated GWAS index SNV minor
allele is present); and (3) asked whether any combination of these low-frequency or rare
variants could explain the effect observed at the T2D GWAS index SNV. We carried out
these analyses restricting attention to protein-coding variants within the window and then
again for all low-frequency and rare SNVs in the 5Mb window.

To define common haplotypes at each locus, we used the phased whole-genome sequence
data. We first employed the phased genotypes for common (MAF>5%) variants segregating
in the interval between recombination hotspots at the locus (to minimize the number of
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recombinant haplotypes identified). We next identified the haplotypes on which the T2D-
associated (risk or protective) GWAS index SNV minor allele was present. We then
assembled the set of low-frequency and rare variants from across the 5Mb interval which
occurred on the background of these T2D-associated common-variant haplotypes. Due to
recombination and imperfect phasing, low-frequency or rare (excluding singletons) variants
are often observed on more than one haplotype background. We included all low-frequency
or rare variants that occurred more frequently on a T2D-associated haplotype than on other
haplotypes.

From this pool of low-frequency and rare variants, we considered only variants with the
same direction of effect as the common GWAS index SNV minor allele, as required by the
synthetic association hypothesis, which posits that low-frequency or rare variants of larger
effect than the common SNV could induce a weaker association signal. We then used a
greedy algorithm to select the low-frequency or rare variant which, when added to the index
GWAS SNV's dosage in a logistic regression, most reduced the residual effect remaining at
the index SNV, as measured by estimated conditional odds ratio. We repeated this process,
adding variants to the model, until the estimated effect at the index SNV genotype or gene
dosage changed sign, representing no residual effect of the index SNV. At each locus, we
also counted the number of variants required to increase the association p-value at the
GWAS index SNV beyond the nominal p=0.05 significance threshold (Extended Data
Table 8).

5. Credible set analysis of GoT2D genome sequence data

At 78 of the 80 T2D GWAS loci (2.4.3), the previously reported index SNV had MAF>1%
in our GoT2D genome-sequenced sample. At these 78 loci, we constructed credible sets of
common variants that, with some minimum specified probability (e.g. 299%), contain the
variant causal for the corresponding association signal. Our analysis assumes a single causal
SNV per signal and that the SNV was genotyped30:31, We constructed credible sets for up to
two independent association signals at each locus; at 5 loci with multiple independent
(r2<0.10) GWAS index SNVs, we constructed two distinct credible sets.

For each GWAS index SNV, we identified the set of common variants with r2=0.10 with the
index SNV within a 5Mb window centered on the index SNV. For each variant in this set, we
calculated the posterior probability of being causal3L. We first calculated an approximate
Bayes’ factor (ABF) for each variant as:

ABF=\1—re*/?

where r=0.04/[SE2+0.04], z=p/SE, and p and SE are the estimated effect size (log odds
ratio) and its standard error from logistic regression. We then calculated the posterior
probability for each variant as ABF/T, where T is the sum of the ABF values over all
candidate variants across the interval. This calculation assumes a Gaussian prior with mean
0 and variance 0.04 for B, the same prior employed in the commonly used single-variant
association program SNPTEST’2,
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We based the analysis on the genome-wide meta-analysis results, since most common
variants were included in this analysis, and sample sizes were significantly larger than for
the genome sequence data alone.

We calculated the effective imputed sample size for each variant in the meta-analysis data as

N\ 2 eff . . . . eff - . .
Neff—zj:fj ”; , Where rjz- is the imputation quality and nj?ff is the effective sample size

for imputation cohort/. To ensure approximately uniform sample size across variants, we
considered to be well-imputed only those variants with effective imputed sample size (N
280% of the maximum observed across all variants in the window.

Indels were not imputed or meta-analyzed in this study, and <2% of common SNVs were
not well-imputed by the above effective sample size criterion. To include these common
variants while using the most precise estimates available, we calculated posterior
probabilities separately from each genome-wide data source. Where an indel from the
sequence dataset had a SNV proxy in high LD (r2>0.80) in the meta-analysis dataset, we
used the proxy's information instead. Where a common SNV that was poorly imputed had
high-quality association data from the genome sequence data alone, the posterior probability
from the genome sequence dataset was used instead. In each case, the final posterior
probabilities for all SNVs were re-scaled such that their sum across a locus equaled one.

We used these final posterior probabilities to rank variants in decreasing order. To define
credible sets of a specified level (e.g. 99%), we included variants with highest final posterior
probabilities until their sum reached or exceeded that level (Supplementary 28).

6. Genome enrichment analyses of the GoT2D genome sequence data

6.1. Genomic annotation

We collected genome annotation data from several sources. First, we obtained gene
transcript information from GENCODEV1480. For protein-coding genes, we included
transcripts with a protein-coding tag that either were present in the conserved coding DNA
sequence (CCDS) database or had experimentally confirmed mRNA start and end; we then
included 5" UTR, exon, and 3" UTR regions from the resulting transcripts. For non-coding
genes, we included transcripts with a INcRNA, miRNA, snoRNA, or snRNA tag.

Second, we defined regulatory chromatin states in 12 cell types. We collected sequence
reads generated for the following assays: H3K4mel, H3K4me3, H3K27ac, H3K27me3,
H3K36me3, and CTCF ChlIP, in 9 ENCODE cell types (GM12878, K562, HepG2, Hsmm,
HUVEC, NHEK, NHLF, hESC, HMEC)32, pancreatic islets3°, and hASC (adipose stromal
cell) pre- and mature adipocytes33. We mapped reads to hg19 using BWA5! and used the
resulting mapped reads for all cell types to call regulatory states using ChromHMM®1,
assuming ten states. We then assigned names to the resulting state definitions: (1)
H3K4me3, H3K27ac (active promoter); (2) H3K4me3, H3K27ac, H3K4mel (active
enhancer 1); (3) H3K27ac, H3K4mel (active enhancer 2); (4) H3K4mel (weak enhancer);
(5) H3K27me3, H3K4me3, H3K4mel (poised promoter); (6) H3K27me3 (repressed); (7)
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low/no signal 1; (8) CTCF (insulator); (9) low/no signal 2; and (10) H3K36me3
(transcription).

Third, we obtained transcription factor binding ChlIP sites from three sources: 141 proteins
from ENCODE?32, 5 from Pasquali et al.3%, and 1 from Mikkelsen et al.33,

From gene transcript data we defined CDS (protein coding transcript exons); ncRNA (non-
coding RNA transcripts); and 3° and 5 UTR (UTR regions of coding transcripts). From
chromatin state data for each of the 12 cell types we identified active enhancers (pooled
active enhancer 1 and 2 elements); weak enhancers; and active promoters. From
transcription factor binding sites we defined transcription factor binding sites (TFBS) (sites
pooled across all factors). This resulted in a total of 41 annotation categories (Extended
Data Figure 10).

6.2. Enrichment of genome annotation

We jointly modeled variants in credible sets using T2D association and the functional
annotation classes using the method described by Pickrell38. First, we tested each annotation
individually and identified the annotation that most improved the model likelihood. We then
iteratively added annotations in this manner until the likelihood did not increase further.
Using this set of annotations, we tested a range of penalized likelihoods (from 0-1 in .01
increments) using 10-fold cross-validation, and identified the penalty that gave the best
cross-validation likelihood. Using this penalty, we then iteratively dropped annotations to
identify the model with the maximal cross-validation likelihood. The resulting model
included coding exons, TFBS, hASC mature adipose active enhancers and promoters,
pancreatic islet active and weak enhancers and active promoters, hASC pre-adipose active
and weak enhancers, NHEK active enhancers, NHLF active enhancers, K562 weak
enhancers, HMEC weak enhancers and active promoters, H1-hESC active promoters,
ncRNA, and 5’ and 3" UTR (Extended Data Figure 10). Finally, we used this model to
update posterior probabilities for each variant and re-calculate 99% credible sets.

7. Gene enrichment analyses in the GoT2D+T2D-GENES exome sequence

data

We first used the SMP (statistics/matrix/permutation) gene-set enrichment procedure
implemented in the PLINK/Seq package (http://atgu.mgh.harvard.edu/plinkseq/). This
approach calculates enrichment statistics for large sets of genes to establish whether case-
enrichment of rare variants is preferentially concentrated in a particular set of genes,
controlling for any exome-wide/baseline difference in case and control rates. The procedure
uses gene-based association statistics, and forms sums of these statistics over all genes in a
set, the significance of which is evaluated by permutation. We considered the relative
enrichment statistic, SSET/SEXOME, with significance evaluated empirically (10,000
replicates) based on the null distribution of this ratio. The reported effect sizes from the
gene-set enrichment analysis are estimates of the unconditional odds ratio that do not take
exome-wide differences in case/control rates into account’®, We selected 18 ‘premium’ sets
of genes (Supplementary 32) that reflect the current knowledge of pathways (N=15)
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involved in type 2 diabetes and the three sets of genes involved in monogenic form of
diabetes defined above: ‘Monogenic All’ (N=81); ‘Monogenic Primary’ (N=28); and
‘Monogenic OMIM’ (N=13). We restricted these analyses to singleton and ultra-rare

(MAF<0.1%) protein-truncating variants.

We then used biological knowledge to test for enrichment of association signal across
established sets of genes from Gene Ontology, KEGG, Reactome, and Biocarta collections
from MSigDB (version 4.0) as well as a number of hand-curated gene-sets (Supplementary
32) that had been generated for the SMP analyses. These analyses calculated measures of
gene-set enrichment from gene-level association results (i.e. from SKAT-O) by means of a
pre-ranked GSEA82 method (version 2.0.13), which consists of a weighted Kolmogorov-
Smirnov (random bridge) statistic. In our analysis we performed 10,000 permutations on
gene-set sizes from 5 to 5,000 genes.

8. Investigation of genes implicated in Mendelian forms of diabetes in the

exome data

We first curated a list of 81 genes termed the “Monogenic All’ gene-set (Supplementary
22), consisting of genes with pathogenic mutations reported to co-segregate with diabetes or
a syndrome associated with an increased prevalence of diabetes. Two subsets of the
‘Monogenic All” gene-set were then additionally defined: the “Monogenic Primary’ gene-set
(N=28), consisting of genes with mutations leading to diabetes as a primary feature, and the
‘Monogenic OMIM’ gene-set (N=13), consisting of genes linked to Maturity Onset Diabetes
of the Young (MODY) or Neonatal Diabetes in the OMIM catalog (entry #606391 and
#606176). In addition to examining the significance of single-variant and gene-based tests
within these gene-sets, we also performed an aggregate analysis of all variants in the gene-
set. For each of the three gene-sets, we constructed five variant lists by applying the same
four masks as in the exome-wide gene-level analysis (PTV-only, PTV+missense, PTV
+NSproag and PTV+NSgyict), as well as an additional mask containing all variants reported
as ‘high confidence’ and ‘disease-causing’ in the Human Gene Mutation Database (HGMD),
annotated using Biobase ‘GenomeTrax’ software (http://www.biobase-international.com/
product/genome-trax). We then analyzed each of the fifteen variant lists with the SKAT-O
test, using the same meta-analysis procedure and covariates as in the exome-wide gene-
based analysis. To obtain effect-size estimates, for each variant list we applied a collapsing
burden test, in which logistic regression of T2D status was performed on individual
genotypes encoded as 0 (if they carried no variants in the list) or 1 (if they carried at least
one variant in the list). Effect size estimates and standard errors were determined using the
Firth penalized likelihood method. Analysis in the exome array dataset was performed by
first generating fifteen variant lists based on the content of the exome array, computing the
collapsing burden test for each cohort, and then combining associations and effect size
estimates using an inverse variance weighted meta-analysis. To compare the age of diagnosis
of variant carriers to those of non-carriers, we used a two-sided t-test.
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9. Protein-protein interaction analyses in the exome data

We performed data-driven extraction of association signal enriched sub-networks (rather
than relying on pre-defined gene-sets) from protein-protein interaction (PPI) data. We used
two different approaches, both run using the curated PP1 database InWeb383,

The first approach consists of two steps. First, the entire human PPI network was searched
for protein complexes (clusters) using the algorithm implemented in clusterONE®4, which
identifies protein complexes with high cohesiveness. The method was run with default
parameter settings (0.3 as density threshold, 0.8 as merging threshold, and 2 as the penalty-
value node), and with the --fluff option activated, which allows the addition of highly
connected boundary nodes to the cluster. Second, gene-based association p-values derived
from SKAT-O analyses of the 12,940 multiethnic exome sequences were aggregated, using
Fisher's method, for the genes encoding each of the proteins within a cluster to generate a
‘cluster association’ statistic.

An empirical p-value for the significance of these aggregated cluster association statistics
was derived by comparing each cluster to a large number of complexes of the same
topology, but composed of randomly sampled proteins. Specifically, a background
distribution was obtained for each protein complex as follows: each protein in the cluster
was randomly substituted by a different protein represented in the InWeb3 database,
matched for number of minor allele carriers in the data set. SKAT-O p-values were assigned
to each protein from the exome sequencing results, and an aggregated p-value was obtained
for each pseudo-complex using Fisher's method, as above. This process was repeated
100,000 times, and the empirical p-value for each complex was calculated as the proportion
of the iterations for which the Fisher's p-value of the observed complex was more significant
than that of p-values for the pseudo-complexes. This procedure was repeated for all gene-
level masks (PTV-only, PTV+missense, PTV+NSgjict and PTV+NSp0aq)-

To test the study-wide significance of apparently associated clusters, we used two
permutation designs. In the first design, we generated 100,000 pseudo-complexes for each
cluster, replacing each protein within each cluster with one protein from InWeb3, matched
for the number of minor allele carriers in the data set. We calculated the number of permuted
datasets which generated any ‘pseudocluster’ association p-value more significant than our
most enriched cluster. In the second design, we used a Monte-Carlo algorithm to generate
10,000 random PPI networks, with the same degree as observed in the InWeb3 database, ran
clusterONE on each, and once again compared the distribution of “best’ cluster association
p-value with that observed in the real data.

The second approach uses the dense module searching algorithm (a heuristic ‘greedy’
method) described in dmGWAS83, where a module is defined as a sub-network within the
whole network if it contains a locally increased proportion of low p-value genes. This
method differs from the earlier method in using the association p-values, in combination
with the PPI data, to construct the networks. The module is grown for each protein in the
PPI by adding the neighboring nodes within a pre-defined distance (d=2) that can yield a

maximum increment of the module score () —¥:7; /,/k for module /m, where kis the
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number of genes in the module and Z; is calculated from the p-value of exome gene-based
tests using an inverse normal distribution function. The addition of neighborhood nodes is
stopped when the increment is less than 10% of Z(K,, (that is, Z&*D < +z®), x 0.1). As
with the clusterONE approach, this procedure was conducted for all four exome gene-based
level masks.

To evaluate whether the top ranked-modules are significantly associated with T2D, we
permuted case-control status across the 12,940 exomes (maintaining ethnic strata) 10,000
times and generated 10,000 SKAT-O gene-based association tests on all genes in the top 15
modules (once for each gene-based variant mask, 40,000 in total). During each permutation,
Zm was re-calculated for each module, and a set of empirical p-values was obtained by
comparing the p-value of the original module to these modules with the SKAT-O results
from the swapped labels. Following the above procedure, all 15 top modules were found
significantly enriched for the PTV+NSgjict and PTV+NSy,0aq gene-based variant masks
(p<1074, after the 10,000 case-control permutations).

10. Modelling disease architecture

10.1. T2D liability risk and architecture bounding in the exome array data

We used a Bayesian framework implemented in R to compute the probability that each
variant explains more than a defined amount of the T2D-risk liability-scale variance (LVE).
The joint distribution in the MAF-OR space is computed by assuming a T2D prevalence of
8% and beta and normal distributions for the MAF and the odds ratio (OR) respectively. The
OR is calculated with reference to the minor allele. The MAF is adjusted to take account of
apparent allele frequency heterogeneity between cohorts (subjects from missing cohorts are
excluded from calculations). Analyses are restricted to variants with MAF>0.1% since the
representation of variants with MAF below this threshold on the exome array is poor. The
probability is obtained by numerically integrating over the joint distribution for MAF-OR
combinations that explain more than the defined amount of liability-scale variance. For
bounding the maximum number of variants that could contribute to T2D risk variance, we
performed a sensitivity analysis on the 88 known T2D index SNVs present on the exome
array to define the thresholded variance explained and the probability: this analysis shows
that for a probability of >0.8 to explain 0.01% of the T2D risk variance, we were able to
identify 91% of these known T2D SNVs. Ranges of OR and MAF consistent with 80%
power to detect single-variant association in this dataset (for exome-wide significance,
p<5x10~7) were calculated to reflect the fact that differences in sample size for individual
variants (due to differences in allele frequency distribution and genotyping QC) also
influence power. The relationship between power and LVE differs for risk and protective
alleles because of unequal numbers of cases and controls.

10.2. Genetic architecture simulations based on GoT2D data and results

10.2.1. Range of simulated disease models—Following our previously published
framework49, we conducted population genetic simulations of T2D architecture using the
forward simulation program ForSim86. We assumed T2D prevalence 8% and heritability
~45%, and chose the mutation rate, recombination rate, a gamma distribution of selection
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coefficients, and other parameters of demographic history by fitting the simulated site
frequency spectrum to empirical high coverage exome sequence data from GoT2D.

We then considered a wide range of disease models by varying two parameters: coupling
parameter t© which regulates how strongly selection against a disease-causing allele depends
on the per-allele disease risk8; and target size T, the summed lengths of the genomic regions
within which mutations can influence T2D risk. Specifically, a variant's additive contribution
to disease risk g is given by g=st(1+e) where s is the selection coefficient under which the
variant evolves and e is drawn from a normal distribution“?.

By varying T and T, we generated a wide range of joint distributions for allele frequency and
effect size. In total, we evaluated 12 models: ©=0, 0.1, 0.3, and 0.5 crossed with T=750kb,
2.0Mb, and 3.75Mb. Under models with higher selection against strongly deleterious alleles
(larger <), rare variants explain the bulk of heritability and can have large effects, while
under models with weak dependence (smaller ©), common variants explain the bulk of
heritability and rare variants collectively have weaker effects. Although we had previously
excluded many models as producing predictions inconsistent with observed sibling relative
risk, GWAS, and linkage results, prior work showed that models varying widely in the
proportion of total heritability attributable to rare versus common variation were still
plausible88. In this study, we explored whether the space of plausible disease models could
be further constrained using whole genome sequence, imputation, and meta-analysis results.

10.2.2. Simulation procedure—ForSim enables simulation of variants across user-
specified loci in large populations. Inputs include a demographic history (trained on
European sequence data) and a gamma distribution of selection coefficients for a subset of
variants under natural selection. We simulated genotypes for a current population of
effective size 500,000 individuals*® and selected potential disease risk variants from those
under selection appropriate to the intended target size. Each risk variant received a disease-
specific effect size depending on the selection coefficient under which it evolved and the
assumed degree of dependence between selection and effect size. Each individual was then
designated as case or control depending on his/her cumulative genetic risk score plus a
random environmental risk component chosen to achieve the estimated T2D heritability of
~45%. From this population simulated with both phenotypes and genotypes, we selected
appropriate numbers of cases and controls and conducted single-variant association tests in
order to compare the distribution of p-values from simulation to that observed in the current
study. Results shown are the average of 25 independent simulation replicates for each
disease model.

10.2.3. Comparison of simulated outcomes to empirical T2D results—We
focused on comparing simulated outcomes under three disease models, each of which were
previously found to be consistent with sibling relative risk, GWAS, and linkage results for
T2D, but vary widely in causal variant properties (Fig. 3): a rare-variant model in which rare
variants explain ~75% of T2D heritability (small target size T=750kb and moderate
dependence between effect size and selection ©=0.5), an intermediate model in which rare,
low-frequency, and common variants all contribute significantly to T2D heritability
(T=2.0Mb and t=0.3), and a common polygenic model in which common variants explain
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~75% of T2D heritability (T=3.75Mb and weak dependence ©=0.1). We first compared the
simulated outcomes of a whole-genome sequencing study in ~3K samples under each
model. All three models predicted similar distributions of variant association test statistics
using the sequenced individuals alone (data not shown).

However, the predictions began to diverge when we simulated imputation into GWAS
samples and studied the distribution of test statistics after meta-analysis. For each simulated
model, we sampled 14,175 cases and 14,175 controls (to match the effective sample size of
the actual imputation cohorts used for meta-analysis). Because genotyping accuracy in
simulated samples is perfect (unlike in imputation), we calculated average imputation
quality as a function of MAC in the empirical data (using the r? value reported by the
imputation software that was used in each cohort). We then corrected, for each variant, the
association test statistic in simulated data by multiplying the chi-squared value by the
average imputation r2 for the variant MAC. We then re-computed association p-values from
the corrected chi-squared statistics to compare p-value distributions in simulated versus
empirical data. We plotted the distribution of association p-values for variants of different
frequency classes in a quantile-quantile (QQ) plot, and compare these curves to the
empirical T2D results (Fig. 3). Focusing on low-frequency variants, we also asked how
many unique low-frequency signals achieved significant association to T2D risk under each
simulated model, and compared these quantities to empirical observation (Fig. 3). These
analyses demonstrate that the intermediate and rare-variant models produce an excess of
association signal among low-frequency variants compared to observation, whereas the
common polygenic model is consistent with the genome-wide distribution of association
signals observed.
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Extended Data Figure 1. Summary of samplesand quality control procedures

Page 30

This figure summarises data generation for whole genome sequencing (GoT2D), exome

sequencing (GoT2D and T2D-GENES) and exome array genotyping (DIAGRAM). In

addition, GoT2D whole genome sequence data was imputed into GWAS data from 44,414

subjects of European descent.
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Extended Data Figure 4. Power for single and aggregate variant association
a-g. Power to detect single-variant association (a=5x108) at varying minor allele frequency

(x-axis) and allelic odds-ratio (y-axis) for seven effective sample size (Neff) scenarios
relevant to the genomes (a-c) and exomes (dg) component of this project. a. variant
observed in 2,657 samples (the effective size of the GoT2D integrated panel); b. variant
observed in 28,350 samples (the effective size of the imputed data set); c. variant observed in
the GoT2D integrated panel and the imputed data set (effective sample size 31,007); d.
ancestry-specific variant in 2,000 samples (the size of each of the non-European exome
sequence data sets); e. European specific variant in 5,000 samples (the combined size of the
European exome sequence data sets); f. variant observed with shared frequency across all
ancestry groups in 12,940 samples (the size of the combined exome sequence data set); and
0. variant observed in the combined exome array and sequencing data set (effective sample
size 82,758). h-i. Power for gene based test of association (SKAT-0O) according to liability
variance explained. In h, 50% of the variants contribute to disease risk while the remaining
50% have no effect on disease risk; in i., 100% of the variants contribute to disease risk. For
each, sample sizes considered are 2,000 (ancestry-specific effects; green) and 12,940
(ancestry-shared effects; blue). Power is shown for two levels of significance (a=2.5x1076
and a=0.001). From these simulation studies, it is clear that under the optimistic model,
where effects are shared across all ethnicities (blue line) and all variants contribute, power is
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>60% for 1% variance explained and a=2.5x107%. However, power declines rapidly if either
criterion is relaxed.
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Extended Data Figure 6. Single variant analyses
Manhattan plot of single-variant analyses generated from a. exome sequence data in 6,504

cases and 6,436 controls of African American, East Asian, European, Hispanic, and South
Asian ancestry; b. exome array genotypes in 28,305 cases and 51,549 controls of European
ancestry; and c. combined meta-analysis of exome array and exome sequence samples.
Coding variants are categorized according to their relationships to the previously reported
lead variant from GWAS region. Loci achieving genome-wide significance only in the
combined analysis are highlighted in bold. The HNF1A variant reaching genome-wide
significance in the combined analysis is a synonymous variant (Thr515Thr). The dashed
horizontal line in each panel designates the threshold for genome-wide significance
(p<5x1078).
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Extended Data Figure 7. Classification of coding variants according to their relationship to
reported lead variants for each GWASregion

The ideogram shows the location of 25 coding variant associations at 16 loci described in the
text. The number in each circle corresponds to the number of associated variants at each
locus. Variants are grouped into five categories based on inferred relationship with the
GWAS lead variant. For some of these categories, the figure includes representative regional
association plots based on exome array meta-analysis data from 28,305 cases and 51,549
controls. The locus displayed for each category is designated in bold. The first plot in each
panel shows the unconditional association results; middle plot the association results after
conditioning on the non-coding GWAS SNP; and the last plot the results after conditioning
on the most significantly associated coding variant. Each point represents a SNP in the
exome array meta-analysis, plotted with their p-value (on a —logyg scale) as a function of the
genomic position (hg19). In each panel, the lead coding variant is represented by the purple
symbol. The color-coding of all other SNPs indicates LD with the lead SNP (estimated by
European r2 from 1000 Genomes March 2012 reference panel: red r2>0.8; gold 0.6<r2<0.8;
green 0.4<r2<0.6; cyan 0.2<r2<0.4; blue r2<0.2; grey r2unknown). Gene annotations are
taken from the University of California Santa Cruz genome browser. GWS: genome-wide
significance. *Seven variants, three at ASCCZ, and one each at THADA, TSPANS, FES and
HNF4A did not achieve genome-wide significance themselves, but are included because
they fall into genes and/or regions with other significant association signals (see text).
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Extended Data Figure 9. Exclusion of synthetic associations and construction of credible causal
variant setsat T2D GWAS loci

Ten T2D GWAS loci were selected for synthetic association testing (p<0.001; Methods). a,
The effect size observed at the GWAS index SNV (sequence data) before (navy blue) and
after (light blue, grey) conditioning on candidate rare and low-frequency (MAF<5%)
variants which could produce synthetic association. b, Example of synthetic association
exclusion at the 7CF7L2locus. c, Credible sets for T2D GWAS loci where credible set
consisted of <80 variants displaying the proportion of credible set variants present in the
HapMap and 1000G catalogs.
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Genome enrichment analysisin GoT2D whole genome sequence data (n=2,657) a,
Functional annotation categories were defined using transcription, chromatin state and
transcription factor binding data from GENCODE, ENCODE and other studies. b, T2D
association statistics for variants at each T2D locus were jointly modelled with functional
annotation using fgwas. In the resulting model we identified enrichment of coding exons
(CDS), transcription factor binding sites (TFBS), mature adipose active enhancers and
promoters (hASC-t4 EnhA, TssA), pancreatic islet active and weak enhancers (HI EnhA,
EnhWKk), pre-adipose active and weak enhancers (hASC-t1 EnhA, EnhWKk), embryonic stem
cell active promoters (H1-hESC TssA) and 5° UTR. Dots represent enrichment estimates
and horizontal lines the 95% confidence intervals. ¢, At the CCNDZ2 locus, three variants not
present in HapMap2 have a combined 90% posterior probability of being causal (rs4238013,
rs3217801, rs73040004). One of these variants, rs3217801, is a 2-bp indel that overlaps an
islet enhancer element.
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Extended Data Figure 11. Low frequency variantsin exome array data
Results from meta-analysis of 43,045 low-frequency and common coding variants on the

exome array (assayed in 79,854 European subjects). a. Observed allelic ORs as a property of
allele MAF. Variants missing in >8 cohorts or polymorphic in only one cohort were
excluded. Colored lines represent contours for liability variance explained. Regions shaded
grey denote ranges of OR and MAF consistent with 80% power (in this case, at a=5x10"")
to detect single-variant associations in this data set (given the observed range of missing
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data). Variants with a black collar are those highlighted by a bounding analysis as having a
probability>0.8 of having LVE>0.1%; b. Distribution of each variant in the MAF/OR space
was computed by assuming T2D prevalence of 8% and a beta and normal distribution for
MAF and OR respectively. Probability is obtained by integrating the joint MAF-OR
distributions over ranges of LVE; c. Single variant association, liability and bounding results
for the known T2D GWAS variants on the exome array (M ethods).

Extended Data Table 2

Summary information for samples sets used in the association analyses.

Ancestry Study Countriesof Origin Num. of Num. of Effective Sample Size

Cases (% Controls
female) (% female)

Whole Genome Sequencing Studies

European Finland-United States Finland 493 (41.5) 486 (45.2) 979
Investigation of NIDDM
Genetics (FUSION) Study
European Kooperative Germany 101 (44.5) 104 (66.3) 205
Gesundheitsforschung in
der Region Augsburg
(KORA)
European Malmo-Botnia Study Finland, Sweden 410 (51.5) 419 (44.1) 829
European UK Type 2 Diabetes UK 322 (46.2) 322 (82.2) 644
Genetics Consortium
(UKT2D)
Total Whole Genome 1,326 1,331 2,657
Sequence
Genome-Wide Array Studies
European INTERACT France, Germany, Italy, 4624 (51.8) 4668 (64.2) 9292
Netherlands, Spain,
Sweden, UK
European Wellcome Trust Case UK 1586 (40.9) 2938 (50.8) 4120
Control Consortium
(WTCCC)
European Kooperative Germany 993 (45.1) 2985 (52.2) 2980
Gesundheitsforschung in
der Region Augsburg
(KORA)
European Framingham Heart Study us 673 (42.6) 7660 (55.1) 2475
(FHS)
European Finland-United States Finland 1060 (43.1) 1090 (51.3) 2150
Investigation of NIDDM
Genetics (FUSION) Study
European Diabetes Genetics Initiative Finland, Sweden 899 (46.6) 1057 (49.6) 1943
(DGI)
European Estonian Genome Center, Estonia 389 (58.6) 6013 (54.2) 1461
University of Tartu
(EGCUT-OMNI)
European Diabetes Gene Discovery France, Canada 677 (39.3) 697 (59.7) 1374
Group (DGDG)
European Mt Sinai BioMe Biobank us 255 (29.0) 1647 (51.4) 883
Platform (BioMe
(Illumina))
European Uppsala Longitudinal Study Sweden 166 (0) 953 (0) 565

of Adult Men (ULSAM)
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Ancestry Study Countriesof Origin Num. of Num. of Effective Sample Size
Cases (% Controls
female) (% female)
European Mt Sinai BioMe Biobank us 132 (26.5) 455 (34.7) 409
Platform (BioMe)
European Prospective Investigation of Sweden 111 (41.4) 838 (51.2) 392
the Vasculature in Uppsala
Seniors (PIVUS)
European Estonian Genome Center, Estonia 80 (48.8) 1768 (51) 306
University of Tartu
(EGCUT-370)
Total Genome-Wide Array 11,645 32,769 28,350
Total Whole Genome 12,971 34,100 31,007
Sequence + Genome-Wide
Array
Whole Exome Sequencing Studies
African American Jackson Heart Study us 500 (66.6) 526 (63.3) 1,026
African American Wake Forest School of us 518 (59.5) 530 (56.0) 1,048
Medicine Study
East Asian Korea Association Research Korea 526 (45.6) 561 (58.5) 1,086
Project
East Asian Singapore Diabetes Cohort Singapore (Chinese) 486 (52.1) 592 (61.3) 1,068
Study; Singapore
Prospective Study Program
European Ashkenazi US, Israel 506 (47.0) 355 (56.9) 834
European Metabolic Syndrome in Finland 484 (0) 498 (0) 982
Men Study (METSIM)
European Finland-United States Finland 472 (42.6) 476 (45.0) 948
Investigation of NIDDM
Genetics (FUSION) Study
European Kooperative Germany 97 (44.3) 90 (63.3) 186
Gesundheitsforschung in
der Region Augsburg
(KORA)
European UK Type 2 Diabetes UK 322 (45.7) 320 (82.8) 642
Genetics Consortium
(UKT2D)
European Malmo-Botnia Study Finland, Sweden 478 (54.8) 443 (43.8) 920
Hispanic San Antonio Family Heart us 272 (58.8) 218 (58.7) 484
Study, San Antonio Family
Diabetes/Gallbladder Study,
Veterans Administration
Genetic Epidemiology
Study, and the Investigation
of Nephropathy and
Diabetes Study Family
Component
Hispanic Starr County, Texas us 749 (59.7) 704 (71.9) 1,452
South Asian London Life Sciences UK (Indian Asian) 531 (14.1) 538 (15.8) 1,068
Population Study
(LOLIPOP)
South Asian Singapore Indian Eye Study  Singapore (Indian Asian) 563 (44.4) 585 (49.2) 1,148
Total Whole Exome 6,504 6,436 12,892

Sequence

Exome Array Studies
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Ancestry Study

Num. of
Cases (%
female)

Countriesof Origin

Num. of
Controls
(% female)

Effective Sample Size

ADDITION; Steno Diabetes
Centre (SDC); Health06;
Health08; Vejle Biobank;

Inter99

European

Wellcome Trust Case
Control Consortium (UK
Type 2 Diabetes
Consortium); Young
Diabetics Study (YDX);
Genetics of Diabetes and
Audit Research Tayside
Study (GoDARTS); Oxford
Biobank; TwinsUK; 1958
Birth Cohort (BC58)

Finland-United States
Investigation of NIDDM
Genetics (FUSION) Study;
Finrisk2007; Metabolic
Syndrome in Men Study
(METSIM); Dose-
Responses to Exercise
Training (DR'SEXTRA);
D2D2007

European

European

Malmo Diabetes Cohort
(MDC); All New Diabetics
in Skane (ANDIS)

European

Prevalence, Prediction and
Prevention of Diabetes
(PPP); Diabetes Register in
Vaasa (DIREVA)

Nurses’ Health Study
(NHS)

European

European

Health Professionals
Follow-up Study (HPFS)

European

European The Exeter Family Study of

Child Health (EFSOCH)

European Kooperative
Gesundheitsforschung in
der Region Augsburg

(KORA)

Estonian Genome Center at
the University of Tartu
(EGCUT)

European

European Gene-Lifestyle Interactions
and Complex Traits
Involved in Elevated

Disease Risk (GLACIER)

Fenland cohort of the
European Prospective
Investigation of Cancer
(Fen-EPIC)

European

European The Prospective
Investigation of the
Vasculature in Uppsala
Seniors (PIVUS); Uppsala
Longitudinal Study of Adult
Men (ULSAM)

Denmark 5813 (40.0)

UK 3576 (51.7)

Finland 3593 (33.4)

Sweden 4633(41.0)

Finland 2910 (43.7)

us 1413 (100.0)

us 1184 (0.0)

UK 1446 (39.0)

Germany 933 (45.3)

Estonia 882 (43.7)

Sweden

960 (47.6)

UK 691(47.0)

Sweden 271(16.9)

7987 (54.4)

12675 (41.2)

8222 (26.0)

5404 (59.5)

4596 (53.7)

1695 (100.0)

1287 (0.0)

1567 (52.0)

2705 (51.7)

1506 (44.2)

957 (54.5)

1157 (54.5)

1791 (23.9)

13,458

11,156

10,001

9,978

7,127

3,082

2,467

3,008

2,775

2,225

1,917

1,730

942

Total Exome Array

28,305

51,549

69,866
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Ancestry Study Countriesof Origin Num. of Num. of Effective Sample Size
Cases (% Controls
female) (% female)
Total Whole Exome 34,809 57,985 82,758

Sequence + Exome Array

Extended Data Table 3
Countsand properties of variantsidentified in

sequenced subjects

a. Variant numbers for the 2,657 individuals with whole genome sequence data passing QC
and included in the association analysis data set; b. Variant numbers are provided for the
13,008 individuals passing initial rounds of QC from which further QC defined the 12,940
subjects included in the association analysis data set. Private refers to variants seen in only a
single ancestral group; cosmopolitan to variants seen in all five major ancestral groups.

a

Genomes integrated pand

SNV Indel sV
Variant Type 25.2M (94%) 1.50M (5.6%) 8,876 (0.03%)
N (%total)
Coding Non-coding
Function 888K (3.3%) 25.8M (97%)

N (%total)

Rare (MAF<0.5%) Low frequency (0.5<MAF<5%) Common (MAF>5%)

Frequency spectrum 6.26M (23%) 4.16M (16%) 16.3M (61%)
N (%total)

b137 Novel
dbSNV 14.6M (55%) 12.1M (45%)

N (%total)

b
Exome sequence data
All samples  African-American East-Asian European  Hispanic  South-Asian
Samples: 13,008 2,086 2,165 4,579 1,959 2,219
T2D cases 6,504 1,018 1,012 2,359 1,021 1,004
T2D controls 6,436 1,056 1,153 2,182 922 1,123
Excluded from association analysis 68 12 0 38 16 2
Coverage:
Coding:
Mean (Mc) per gene 81.7 +23.7 83.2+24.0 84.6+23.8 78.6+23.3 83.8+24.1  78.2+232
# of genes with Mc <20 368 302 302 351 269 325
Non-coding:
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b
Exome sequence data
All samples  African-American East-Asian European  Hispanic  South-Asian
Mean per gene 59.0 +21.0 60.9 +21.5 62.2+21.6 57.5%20.6 59.2+21.2 55.4 +20.3
# of genes with Mc <20 1,150 738 731 1,102 804 945
Variant annotations:
Synonymous SNV 627,630 237,430 178,232 192,282 156,231 211,218
Missense SNV 1,110,897 354,797 296,707 327,049 231,351 344,191
Start SNV 2,055 593 523 639 384 583
Nonsense SNV 26,321 7,188 6,668 8,030 4,660 7,339
Frameshift INDEL 26,901 6,605 6,159 7,515 4,155 6,609
Inframe INDEL 11,090 3,471 2,963 3,145 2,068 3,165
3’UTR SNV, INDEL 65,013 24,583 19,149 21,102 16,959 22,177
5'UTR SNV, INDEL 43,965 16,920 13,520 15,562 11,634 15,595
Intron SNV, INDEL 931,449 352,398 270,564 296,970 243,139 314,810
Essential splicing SNV, INDEL 14,286 3,648 3,454 4,108 2,301 3,744
Other splicing SNV, INDEL 128,644 45,876 35,413 38,263 30,301 41,122
Non-coding RNA SNV, INDEL 18,113 7,247 5,996 6,715 5,084 6,706
Intergenic SNV, INDEL 37,345 14,335 11,498 13,614 10,700 12,937
All 3,043,709 1,075,091 850,846 934,994 718,967 990,196
Coding frequency spectrum:
Rare (MAF<0.5%) 95.79% 83.30% 90.06% 89.19% 84.56% 89.89%
private 77.93% 53.79% 65.47% 51.80% 37.26% 61.55%
cosmopolitan 0.35% 1.80% 3.02% 1.88% 2.24% 1.73%
Low frequency (0.5<MAF<5%) 2.57% 10.36% 4.61% 5.52% 8.21% 5.10%
private 0.17% 1.43% 1.10% 0.26% 0.52% 1.02%
cosmopolitan 0.60% 1.50% 1.54% 1.94% 2.74% 1.62%
Common (MAF>5%) 1.65% 6.35% 5.33% 5.29% 7.23% 5.00%
private 0.09% 0.00% 0.00% 0.00% 0.01% 0.00%
cosmopolitan 1.50% 4.35% 5.17% 4.97% 6.88% 4.86%
Intron/UTR freguency spectrum:
Rare (MAF<0.5%) 94.09% 78.68% 86.91% 86.17% 81.43% 86.68%
private 74.76% 49.81% 61.36% 45.26% 31.03% 56.96%
cosmopolitan 0.46% 2.07% 3.98% 2.49% 2.66% 2.19%
Low frequency (0.5<MAF<5%) 3.52% 12.57% 5.63% 6.51% 9.43% 6.32%
private 0.25% 1.74% 1.25% 0.29% 047% 1.18%
cosmopolitan 0.80% 1.81% 2.11% 2.53% 3.30% 2.17%
Common (MAF>5%) 2.39% 8.76% 7.46% 7.32% 9.14% 7.00%
private 0.15% 0.00% 0.00% 0.01% 0.00% 0.00%
cosmopolitan 217% 5.94% 7.26% 6.93% 8.77% 6.81%
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Figure 1. Ascertainment of variants and single-variant results
a, Sensitivity of low-coverage genome sequence data to detect SNVs in the deep exome

sequence data, relative to other variant catalogs. Points represent results for a specific minor
allele count. All results assume OR=1 for all variants, unless stated otherwise. Manhattan
plots of single-variant association analyses for: b, sequence data alone (1,326 cases and
1,331 controls) and ¢, meta-analysis of sequence and imputed data (total of 14,297 cases and

32,774 controls).
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Figure 2. Association between T2D and variantsin genesfor Mendelian forms of diabetes
a, p-values of aggregate association for variants from 6,504 T2D cases and 6,436 controls in

three sets of Mendelian diabetes genes, for five variant “masks” (M ethods). Dotted line:
p=0.05. b, Estimated T2D odds ratio (OR) for carriers of variants in each gene-set and mask.
Error bars: one standard error. ¢, Estimated ORs (bars, left axis) and p-values (dots, right
axis) for carriers of variants in the PTV+NSgict mask for each gene. Error bars: one
standard error. Red: OR > 1; blue: OR < 1; dotted line: p=0.05.
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Figure 3. Empirical T2D association results compared to resultsunder different simulated
disease models

Observed number of rare and low-frequency (MAF<5%) genetic association signals for T2D
detected genome-wide after imputation compared to the numbers seen under three simulated
disease models for T2D which were plausible given results (T2D recurrence risks, GWAS,
linkage) prior to large-scale sequencing. Simulated models were defined by two parameters:
disease target size 7and degree of coupling t between the causal effects of variants and the
selective pressure against them0. Simulated data were generated to match GoT2D
imputation quality as a function of MAF (M ethods).
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