
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Mathematical and Statistical Sciences Faculty
Publications and Presentations College of Sciences

10-2022

A mesh-free method using piecewise deep neural network for A mesh-free method using piecewise deep neural network for

elliptic interface problems elliptic interface problems

Cuiyu He
The University of Texas Rio Grande Valley

Xiaozhe Hu

Lin Mu

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
He, Cuiyu, Xiaozhe Hu, and Lin Mu. "A mesh-free method using piecewise deep neural network for elliptic
interface problems." Journal of Computational and Applied Mathematics 412 (2022): 114358.
https://doi.org/10.1016/j.cam.2022.114358

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has
been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an
authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu,
william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/mss_fac?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

A Mesh-free Method Using Piecewise Deep Neural Network for Elliptic

Interface Problems

Cuiyu He1, Xiaozhe Hu2, Lin Mu1

Abstract

In this paper, we propose a novel mesh-free numerical method for solving the elliptic interface

problems based on deep learning. We approximate the solution by the neural networks and, since

the solution may change dramatically across the interface, we employ different neural networks

in different sub-domains. By reformulating the interface problem as a least-squares problem, we

discretize the objective function using mean squared error via sampling and solve the proposed

deep least-squares method by standard training algorithms such as stochastic gradient descent. The

discretized objective function utilizes only the point-wise information on the sampling points and

thus no underlying mesh is required. Doing this circumvents the challenging meshing procedure

as well as the numerical integration on the complex interface. To improve the computational

efficiency for more challenging problems, we further design an adaptive sampling strategy based

on the residual of the least-squares function and propose an adaptive algorithm. Finally, we present

several numerical experiments in both 2D and 3D to show the flexibility, effectiveness, and accuracy

of the proposed deep least-square method for solving interface problems.

Keywords: Neural networks, DNN, interface problems, least-square method, mesh-free; adaptive

method

1. Introduction

Partial differential equations (PDEs) model a variety of physical and chemical phenomena

such as diffusion, electrostatics, heat transfer, fluid dynamics, elasticity, and multi-phase flow in

porous media. Due to the complex nature of the PDEs, numerical simulations are oftentimes the

only possible way for scientific discovery. During the past century, many numerical methods have

been developed to numerically solve the PDEs, for example, finite difference method [21], finite

element method [4], finite volume method [36], spectral method [38], and mesh-free method [24].

Email addresses: cuiyu.he@uga.edu (Cuiyu He), Xiaozhe.Hu@tufts.edu (Xiaozhe Hu), linmu@uga.edu
(Lin Mu)

1Department of Mathematics, University of Georgia, Athens, GA 30602
2Department of Mathematics, Tufts University, Medford, MA 02155

Preprint submitted to Elsevier May 12, 2020

ar
X

iv
:2

00
5.

04
84

7v
1

 [
m

at
h.

N
A

]
 1

1
M

ay
 2

02
0

Moreover, the numerical solutions for PDEs have been widely used in many application fields,

e.g., biology, petroleum engineering, meteorology, etc., and have achieved great success in the past

several decades.

However, there are still many challenging PDEs require the development of advanced numerical

methods, e.g., turbulence flow, high-dimensional PDEs, interface problems, etc.. In this paper, we

focus on the second-order elliptic interface problem, which captures many fundamental physical

phenomena [17, 22, 23, 27, 29, 40]. There are mainly two categories of numerical methods, i.e.,

interface-fitted and -unfitted approaches. The first type uses interface-fitted meshes and such ap-

proach includes classical finite element and finite volume methods [2, 3], discontinuous Galerkin

method [26, 7], virtual element methods [8]. The second type uses interface-unfitted meshes, for

example, structured uniform meshes. Such an approach draws increasing attention during the

past decade because it is difficult, if not impossible, to generate interface-fitted meshes, especially

when the interface is geometrically complicated and/or time-dependent. Typical methods of this

type include immersed boundary methods [29], immersed interface methods [22], matched inter-

face and boundary method [40], ghost fluid method [25], extended finite element method [14], cut

finite element methods [5], multi-scale FEM [13], and immersed FEM [23]. Although both types

of methods have been successful for solving interface problems to a certain extent, the implemen-

tation of those numerical schemes is not a straightforward task due to the jump conditions on

the interface. In practice, interface problems remain quite hard due to the complicated geometry

of the interfaces, which oftentimes are dynamically changing, and the singularities introduced by

the interface conditions. Furthermore, neither type of method yields satisfactory results for the

high dimensional interface problems, the non-linear interface problems, and other general interface

problems.

On the other hand, the neural network models have shown remarkable success in computer

vision [16], pattern recognition [28], natural language processing [9], and many other artificial

intelligence tasks. Despite being an old idea, the deep neural network (DNN) model also has

great potential in nonlinear approximation, especially in modeling complicated data sets. The

astonishing success of the DNN models in machine learning encourages wide applications to other

fields, including recent studies of using the DNN models to numerically solve PDEs, especially those

challenging ones which cannot be handled by existing numerical methods robustly and efficiently,

e,g., [6, 11, 12, 15, 19, 32, 34, 35]. The approximation properties of the DNN models, however,

remain an active and open question. Mathematically, there is a universal approximation theory

about the single-layer neural network (see [30] and references therein), which leads to more recent

work [39, 33, 10]. In this paper, we focus on the numerical algorithm development and consider

the theoretical approximation analysis as future work.

In this work, we use deep learning methods to solve interface problems. Our work is based

2

on the recent work [12, 6, 37] by rewriting the second-order elliptic interface problem as a min-

imization problem. More precisely, we use the least-squares (LS) approach to reformulate the

interface problem and use the DNN model to approximate the solutions. However, instead of

using only one DNN structure to represent the numerical solution on the whole domain, we use

two DNN structures to approximate the solution when the interface divides the domain into two

sub-domains. This idea is based on the observation that the solution could undergo large jumps

in derivative(s) across the interface and, therefore, using one DNN structure could be inefficient

to capture the difference. The numerical test results show that the proposed method is able to

provide satisfactory approximations of the solutions that even have singularities on the interface.

Our approach can be considered as a piece-wise approximation and can be easily extended to more

complicated interface problems with multiple sub-domains in which case we can use a piece-wise

DNN structure in each sub-domain. To solve the LS problem using the piece-wise DNN, we firstly

sample some points and then define a discrete LS problem which can be solved by the stochastic

gradient descent (SGD) method [31]. The advantage of using our discrete LS problem circumvents

the meshing procedure that remains as a challenging task for problems with complex interfaces.

Furthermore, on the interface, only the location information of the sampling points are required

in the discretized formulation, the numerical integration on the entire interface is therefore allevi-

ated. For more challenging problems with singularities, we further design an adaptive procedure

that selects sampling points based on the point-wise value of the LS residual function. Numerical

results have shown great improvement comparing to the uniform sampling strategy.

The rest of the paper is organized as follows. The second-order elliptic interface problem

and its least-squares formulation are discussed in Section 2. In Section 3, we introduce our deep

least-squares method for solving the interface problem in detail. Numerical results are shown in

Section 4 to demonstrate the efficiency of the proposed method. Finally, we give some conclusions

in Section 5.

2. Problem Formulation

In this section, we introduce the model interface problem as well as its classical LS formulation.

For the sake of simplicity, we focus on the case that there is only one closed interface and the domain

is divide into two sub-domains. However, as noted our approach can be easily extended to more

general cases.

2.1. Interface Problem

Let Ω be a bounded domain in Rd, d = 2, 3, with Lipschitz boundary ∂Ω, and the interface

Γ is closed and divides Ω into two disjoint sub-domains Ω1 and Ω2. We assume the interface is

3

Lipschitz, however, our approach can handle more general interfaces in the same fashion. We

consider the following second-order scalar elliptic interface problem,

−∇ · (β(x)∇u) = f, in Ω1 ∪ Ω2, (1)

[[u]] = gj, on Γ, (2)

[[β(x)∇u · n]] = gf , on Γ, (3)

u = gD, on ∂Ω, (4)

where f ∈ L2(Ω), gD ∈ H1/2(∂Ω), and n is the unit outer normal vector to the interface Γ. The

diffusion coefficient β(x) ≥ β0 > 0 is a piece-wise constant function, i.e.,

β(x) =

β1, if x ∈ Ω1,

β2, if x ∈ Ω2,

which has a finite jump of function value across the interface Γ. The notation [[·]] denotes the

jump across the interface Γ and is defined as follows,

[[u(x)]]|Γ = u1(x)|Γ − u2(x)|Γ,

where

u(x) =

u1(x), if x ∈ Ω1,

u2(x), if x ∈ Ω2.

For convenience, we refer Ω1 and Ω2 as the interior and exterior sub-domains, respectively.

2.2. The Classical Least-squares Formulation

Throughout this paper, we shall use the standard notation and definitions for the Sobolev

spaces Hs(Ω) and Hs(∂Ω). The standard associated inner products are denoted by (·, ·)s,Ω and

(·, ·)s,Γ in Ω ∈ Rd and on Γ ∈ Rd−1, respectively. And the standard induced norms are denoted by

‖ · ‖s,Ω and ‖ · ‖s,Γ. When s = 0, H0(Ω) coincides with L2(Ω). When there is no ambiguity, the

subscript Ω in the designation of norms will be suppressed.

To take advantage of the deep neural network, it is natural to consider LS formulation. There

are many different LS formulations for the interface problem (1)-(4). One approach is to use

the underlying minimization principle for elliptic interface problems. However, such an approach

is limited to problems that have underlying minimization principle. In this work, we adopt the

simple LS principle proposed in [11] and propose a LS functional that incorporates the interface

conditions (2) and (3) and the boundary condition (4) naturally. The LS functional is defined as

follows,

J (v; gj, gf , gD, f) = ‖ − ∇ · β(x)∇v − f‖2
0,Ω + βj‖[[v]]− gj‖2

0,Γ

+βf‖[[β(x)∇v · n]]− gf‖2
0,Γ + α‖v − gD‖2

0,∂Ω, (5)

4

for all v ∈ H1(Ω), where βj, βf and α are constants to be determined and, for the sake of simplicity,

it may be chosen to be one. The corresponding LS solution is then to find u ∈ H1(Ω) such that

J (u; gj, gf , gD, f) = min
v∈H1(Ω)

J (v; gj, gf , gD, f). (6)

Remark 2.1. By the Sobolev trace theorem, the interior and boundary terms in the functional J
are not on the same scale. As suggested in [6], ‖ · ‖3/2,∂Ω can be used on the boundary to obtain
a balanced LS functional. Similarly, ‖ · ‖3/2,Γ can be used for the interface term. In this work, we
simply use the L2 norm for both the boundary and interface terms and remark that our numeric
experiments produce similar results.

3. Mesh-free Method Using DNN for interface problems

In this section, we discuss how to use DNN to numerically solve the interface problem based

on the LS formulation (6). The main idea of our new method is to use two neural networks to

approximate the solution on two sub-domains, i.e., Ω1 and Ω2. This allows us to handle complicated

interface problems by only looking at the location of the sampling points without the need for an

underlying mesh.

3.1. Deep Neural Network Structure

We first discuss the deep neural network structure used to approximate the solution u(x). A

DNN structure is the composition of multiple linear functions and nonlinear activation functions.

Specifically, the first component of DNN is a linear transformation T ` : Rn` → Rn`+1 , ` = 1, · · · , L,

defined as follows,

T `(x`) = W `x` + b`, for x` ∈ Rn` ,

where W ` = (w`
i,j) ∈ Rn`+1×n` and b` ∈ Rn`+1 are parameters in the DNN. The second component

is an activation function ψ : R → R to be chosen. Typical examples of the activation functions

are tanh, Sigmoid, and ReLU. Application of ψ to a vector x ∈ Rn is defined component-wisely,

i.e., ψ(x) = (ψ(xi)), i = 1, 2, · · · , n. Then, the `-th layer of the DNN can be represented as the

composition of the linear transform T ` and the nonlinear activation function ψ, i.e.,

N `(x`) = ψ(T `(x`)), l = 1, · · · , L.

Note N ` : Rn` 7→ Rn`+1 . A L-layer DNN is then defined as the composition of all N `, ` =

1, 2, · · · , L. In particular, for an input x ∈ Rn1 , a general L-layer DNN can be represented as

follows,

NN (x; Θ) = T L ◦ N L−1 ◦ · · · ◦ N 2 ◦ N 1(x), (7)

5

where Θ ∈ RN stands for all the parameters in the DNN, i.e.,

Θ = {W `, b`, ` = 1, · · · , L}.

For a fully connected DNN, we have N =
∑L

`=1 n`+1(n` + 1).

Our deep least squares approach uses the DNN structure (7) to approximation the solution u(x).

However, unlike traditional approaches [11, 6, 12, 37], which only uses one DNN to approximate the

solution u(x) on the whole domain Ω, we use two DNN structures to approximate u1(x) and u2(x)

on Ω1 and Ω2, respectively. In particular, for x ∈ Ωi, i = 1, 2, we use DNN (7) to approximation

ui(x), i = 1, 2, as follows,

ui(x) ≈ Ui,NN (x; Θi) := T L
i ◦ N L−1

i ◦ · · · ◦ N 2
i ◦ N 1

i (x), i = 1, 2, (8)

with the input x ∈ Rd, i.e., n1 = d and the output ui,NN ∈ R, i.e., nL = 1. Then, the overall

approximation of u(x) can be defined as follows,

u(x) ≈ UNN (x; Θ) =

U1,NN (x; Θ1), if x ∈ Ω1,

U2,NN (x; Θ2), if x ∈ Ω2.
(9)

where Θ = Θi if x ∈ Ωi, i = 1, 2.

The DNN structure of the approximation UNN (x; Θ) is shown in Figure 1 for the 2 hidden

layer case. As we can see, for a sampling point, we first classify the point by its location and then

determine which DNN structure to use. Such an approach gives us the freedom to approximate a

solution that has severe singularities along the interface.

With such a DNN structure, we can easily evaluate the jump along the interface as follows, for

a sample point xk ∈ Γ, we have

[[UNN (xk; Θ)]] = U1,NN (xk; Θ1)− U2,NN (xk; Θ2),

[[β(xk)∇UNN (xk; Θ) · n]] = β1∇U1,NN (xk; Θ1) · n− β2∇U2,NN (xk; Θ2) · n.

These will help us to handle the interface conditions (2) and (3) in the LS formulation when the

DNN structure UNN (x; Θ) is used.

3.2. Discrete Least-squares Formulations

Next we introduce the loss function used in our deep least-sqaures approach. Our choice is

based on the LS functional defined in (5). Replacing v(x) with its DNN approximation VNN (x; Θ)

defined similarly as in (8) and (9), we naturally have the following discrete LS functional,

J (VNN (x; Θ); gj, gf , gD, f) = ‖ − ∇ · β(x)∇VNN (x; Θ)− f‖2
0,Ω + βj‖[[VNN (x; Θ)]]− gj‖2

0,Γ

+ βf‖[[β(x)∇VNN (x; Θ) · n]]− gf‖2
0,Γ + α‖VNN (x; Θ)− gD‖2

0,∂Ω.

(10)

6

...

...

P
oi

nt
s

C
la

ss
ifi

ca
ti

on

Output U1,NN

Output U2,NN

Sampling

Points

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

x ∈ Ω1

x ∈ Ω2

Figure 1: Illustration of neural network architecture diagram

Based on the above discrete LS functional, the corresponding LS formulation is defined as follows,

min
Θ∈SN

J (VNN (x; Θ); gj, gf , gD, f), (11)

here SN := {Θ : Θ|Ωi
∈ RN , i = 1, 2}. Standard optimization algorithms can be applied to

solve the minimization problem (10) and (11), which gives a straightforward way to use the DNN

approximation to solve an interface problem. When only one DNN is used, this is basically the

DNN methods proposed in [37] to the interface problem (1)-(4).

However, one difficulty in the above LS formulation is the evaluation of the norms which involves

computing the integrals. In [6], an underlying mesh is used to aid the computation of the integrals.

But, due to the existence of the interface Γ, using a mesh to compute the norms, especially the

norms on the interface, is still challenging. Therefore, we adopt a Monte-Carlo type sampling

approach here and replace the discrete LS functional (10) by the mean squared error loss function

which not only helps us efficiently computing the integrals but also allows us to take advantage of

advanced optimization algorithms developed in the machine learning community such as the SGD

method and its variants [31, 18].

The basic idea of our approach is to sample some points in the domain Ω and use those sampled

points to mimic the LS functional and define the discrete loss function. In particular, we sample

Mi points {xΩi
k }

Mi
k=1 ∈ Ωi, i = 1, 2, and define the following loss function,

Li(Θ) :=
1

Mi

Mi∑
k=1

∣∣−∇ · βi∇Ui,NN (xΩi
k ; Θi)− f(xΩi

k)
∣∣2 ,

7

which approximates the first term on the right-hand side of (10). In the practical implementation,

the derivative can be replaced by backward/forward difference or performed by employing an

automatic differentiation package. We also sample M∂Ω points {x∂Ω
k }

M∂Ω
k=1 ⊂ ∂Ω and approximate

the boundary term (the last term) on the right hand side of (10) as follows,

L∂Ω(Θ) :=
α

M∂Ω

M∂Ω∑
k=1

∣∣UNN (x∂Ω
k ; Θ)− gD(x∂Ω

k)
∣∣2 .

Finally, to handle the interface condition, we sample MΓ points {xΓ
k}

MΓ
k=1 ⊂ Γ and define the

following discrete loss function on the interface,

LΓ(Θ) :=
βj
MΓ

MΓ∑
k=1

∣∣[[UNN (xΓ
k ; Θ)]]− gj(xΓ

k)
∣∣2 +

βf
MΓ

MΓ∑
k=1

∣∣[[β(xΓ
k)∇UNN (xΓ

k ; Θ) · n]]− gf (xΓ
k)
∣∣2 .

Now, we are ready to define the total loss function as follows,

Ltotal(Θ) := L1(Θ) + L2(Θ) + LΓ(Θ) + L∂Ω(Θ), (12)

and our deep least-squares methods for interface problem minimize the above discrete loss func-

tion (12) as follows,

min
Θ∈SN

Ltotal(Θ). (13)

Let Θ∗ denote the minimizer and the corresponding DNN approximation is given by UNN (x; Θ∗).

Remark 3.1. In the definition of the loss function, we could weight each loss functions differently.
However, for the sake of simplicity, we use the fixed weights here, i.e., βj = βf = 1 and α = 500,
and the numerical experiments show that this choice works well in practice.

4. Numerical Examples

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

Activation function: tanh

First order derivative

Second order derivative

Figure 2: Illustration of the activation function ψ = tanh.

8

In this section, we apply our algorithm using piecewise DNN structure based on the loss function

defined in (12) to solve the elliptic interface problem (1)-(4). Our numerical experiments are

implemented based on TensorFlow [1]. In all the examples, we choose the activation function to

be ψ = tanh (see Figure 2). Recall the convention that Ω1 is the interior sub-domain and Ω2 is

the exterior sub-domain, we shall set up two DNN structures U1,NN and U2,NN to approximate the

exact solution u1 and u2 in Ω1 and Ω2, respectively. These two DNN structures are independent

and can be set up and trained separately if needed. For the numerical experiments in this paper, we

use the same number of layered neural network for both U1,NN and U2,NN . In each DNN structure,

a fully connected DNN is implemented. All parameters of the DNNs are trained simultaneously

with the single discrete loss function defined in (12). We choose α = 500 in all the experiments

and each layer of the DNN contains 64 neurons. In the training process, a variant of the stochastic

gradient descent method, ADAM [20], is applied with an initial learning rate of 0.001 and 2× 105

epochs.

4.1. Example 1. Sunflower Shape Interface

In this example, we consider a sunflower-shaped interface Γ that has parametric form as follows,x(t) = r(θ) cos(θ) + xc,

y(t) = r(θ) sin(θ) + yc,

where r(θ) = r0 + r1 sin(ωθ), 0 ≤ θ < 2π. The level set function is described as follows:

(x− xc)2 + (y − yc)2 = r(θ)2.

We choose r0 = 0.4, r1 = 0.2, ω = 20, and xc = yc = 0.02
√

5 in our experiments. The coefficient

β is a piece-wise constant with β1 = 1 in Ω1 and β2 = 10 in Ω2. The exact solution is chosen as

u(x) =


r2

β1

, if x ∈ Ω1,

r4 − 0.1 ln(2r)

β2

, if x ∈ Ω2.

The jump conditions gj and gf are then computed by the exact solution and β.

We fix the neural network with 8 layers. The numerical solution is calculated on the uniform

sampled points with M1 = 51 on the domain Ω1, M2 = 349 on the domain Ω2 and MΓ = 160 on

the interface Γ, and M∂Ω = 80 on the boundary ∂Ω, see Figure 3a.

9

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) (b) (c)

Figure 3: Example 4.1. (a) 20× 20 grid; (b). Numerical solution UNN ; (c). Error of u− UNN

The neural network approximation UNN is plotted in Figure 3(b) and the error u − UNN , is

shown in Figure 3(c). The relative error for this case is
‖u− UNN‖0,Ω

‖u‖0,Ω

= 5.3183E − 2. This

example shows that our neural network algorithm is able to provide satisfactory approximations

for interface problems with complex interface even on uniformly sampled points.

4.2. Example 2. Sphere Shape Interface

Figure 4: Example 4.2. Sphere-shaped interface.

In this example, we test our algorithm for a three-dimensional problem. Let Ω = [−1, 1]3 and

the interface is defined as the zero level set of the following level set function,

φ(x, y, z) = 0.52 − x2 + y2 + z2.

10

The solution in two different subdomains is chosen as

u1(x, y, z) = cos(x) cos(y) cos(z) and u2(x, y, z) = 0.

The discontinuous coefficients are given by β1 = 10 in Ω1 and β2 = 1 in Ω2. We test our algorithm

with 4 hidden layers. The number of uniformly sampled points are M1 = 56, M2 = 944, MΓ = 100

on the interface, and 80 points on each face of the boundary, i.e. M∂Ω = 480, as shown in Figure 4.2.

(a) (b) (c)

Figure 5: Example 4.2. Sampling points in (a) Ω1; (b) Ω2; (c) Γ.

(a) (b)

Figure 6: Example 4.2. (a) Plot of UNN on the interface Γ; (b) Plot of error, u− UNN , on the interface Γ.

The numerical solution and the error,u−UNN , on the interface are plotted in Figure 6(a) and

Figure 6(b), respectively. The relative error in the L2 norm is
‖u− UNN‖0,Ω

‖u‖0,Ω

= 5.4508E-5. This

example shows that our algorithm also works reasonably well for three-dimensional problems on

the uniformly sampled points.

11

4.3. Example 3. Heart Shape Interface

Figure 7: Example 4.3. The heart interface (14).

In this test, we test a more complicated three-dimensional interface problem with a heart shape

interface, see Figure 7. Let the domain Ω = [−1.5, 1.5]3 and the interface is described as the zero

level set of the following level set function,

φ(x, y, z) =

(
x2 +

9

4
y2 + z2 − 1

)3

− x2z3 − 9

80
y2z3. (14)

The exact solutions are chosen as

u1 = y2, and u2 = cos(x) cos(y) cos(z), (15)

and the diffusion coefficients are chosen as β1 = 8 in Ω1 and β2 = 1 in Ω2. We test our algorithm

with 8 hidden layers. The number of uniformly sampled points are M1 = 956, M2 = 908, MΓ = 676

on the interface, and 80 points on each face of the boundary (again M∂Ω = 480), as shown in

Figure 8. The approximation UNN and the error, u−UNN , on the interface are plotted in Figure 9.

The relative error in the L2 norm is
‖u− UNN‖0,Ω

‖u‖0,Ω

= 1.1520E − 2. This shows the capability of

our algorithm to tackle three-dimensional interface problems with complex interfaces reasonably

well on uniformly sampled points.

12

(a) (b) (c)

Figure 8: Example 4.3. Sampling points in (a) Ω1; (b) Ω2; (c) Γ.

(a) (b)

Figure 9: Example 4.3. (a) Plot of UNN on the interface Γ; (b) Plot error of u− UNN on the interface Γ.

4.4. Example 5. Circle Interface with High Contrast Coefficients

In this example, we consider the interface problem with high contrast diffusion coefficients in

(1)-(4) with homogeneous jump conditions. The exact solution is

u(x) =


u1(x) =

r3

β1

, if x ∈ Ω1

u2(x) =
r3

β2

+ (
1

β1

− 1

β2

)r3
0, if x ∈ Ω2,

(16)

where Ω1 = {x | |x| < 0.5}, Ω2 = Ω\Ω1, Ω = [−1, 1] × [−1, 1], and r =
√
x2

1 + x2
2. The exact

interface is the zero level set of the following level set function

φ(x) = x2
1 + x2

2 − (0.5)2.

13

(a) (b)

Figure 10: Example 4.4. Plots of exact solutions for (a) β1 = 1000 and β2 = 1; (b) β1 = 1 and β2 = 1000.

(a) (b) (c)

Figure 11: Example 4.4. Error profiles of β1 = 1000, β2 = 1 on sampling size (a) 16× 16; (b) 32× 32; (c) 64× 64.

Figures 10(a) and 10(b) show the exact solutions when β1 = 1000, β2 = 1 and β1 = 1, β2 = 1000,

respectively. We note that the solutions exhibit singularities (large jump in the derivative) across

the interface. Moreover, Figure 11 shows that the error profiles on the uniformly sampled points

of sizes 16 × 16, 32 × 32 and 64 × 64 with 10 hidden layers for the case β1 = 1000 and β2 = 1.

It is obvious that the errors are dominant near the interface. Based on this, it is then natural

to sample the points adaptively based on the error. Inspired by the standard adaptive least-

squares methods, we use the computable residual error, i.e, Ltotal (12), as the a posterior error

indicator and investigate adaptive sampling techniques for effectively handling the solutions with

singularities.

4.4.1. Case with β1 = 1000 and β2 = 1

In this example, we compare the approximations based on uniform sampling and adaptive

sampling strategies. The adaptive sampled points are obtained based on the residual error. More

14

precisely, we start with uniformly sampled 10 × 10 points and solve the interface problem. Then

we uniformly sample more points (in our experiments, we sample 5 times more points in each

direction for the next level) and compute the error indicator, i.e., the loss function Ltotal (12), on

those points. Finally, we ranked the points according to the error indicator and add those ranked

top 10% to form the next adaptively refined level. This procedure is then repeated to generate

more adaptively refined levels.

Figure 12 plots the sampling points for the first three refinements as the blue dots denoting

the newly added points and red dots denoting the existing sampling points. It can be seen that

relatively more points are added near the interface, which captures the singularities of the solution.

In Table 1, we quantify and compare the performances in terms of the relative error in the L2

norm between the uniform sampling and adaptive sampling strategies. Two different number of

hidden layers, i.e., 4 and 6, are used in the DNN structure. As we can see, the errors decrease

effectively as we adaptive sample points. Furthermore, with only three refinements, the errors on

the third adaptive refinements are comparable to that of 50× 50 uniformly sampled points. Note

that the number of points in the adaptive setting is about 60%−70% less than that of the uniform

case.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) (b) (c)

Figure 12: Example 4.4.1 with β1 = 1000 and β2 = 1. Refinement (a) level 1; (b) level 2; (c) level 3.

15

Table 1: Example 4.4.1.
‖u− UNN ‖Ω
‖u‖Ω

with β1 = 1000 and β2 = 1.

4 Layers 6 Layers

Grids M1 M2 MΓ Error M1 M2 MΓ 6 Layers

Uniform 10× 10 16 84 32 5.4484e-03 16 84 32 1.3514e-02

Refined Level 1 304 86 32 1.4922e-03 303 87 32 4.4854e-03

Refined Level 2 405 202 37 1.1534e-03 375 266 47 9.4701e-04

Refined Level 3 450 251 59 1.0530e-03 406 477 53 8.5256e-04

Uniform 50× 50 484 2016 160 2.4664e-03 484 2016 160 8.3150e-04

4.4.2. Case with β1 = 1 and β2 = 1000

We now consider the case that β1 = 1 and β2 = 1000. The adaptive sampled points for the

first three refinements are given in Figure 13 and the comparison of the errors is listed in Table 2.

Similar conclusions as in Section 4.4.1 can be drawn.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) (b) (c)

Figure 13: Example 4.4.2 with β1 = 1 and β2 = 1000. Refinement (a) level 1;(b) level 2; (c) level 3.

Table 2: Example 4.4.2.
‖u− UNN ‖Ω
‖u‖Ω

with β1 = 1 and β2 = 1000.

4 Layers 6 Layers

Grids M1 M2 MΓ Error M1 M2 MΓ Error

Uniform 10× 10 16 84 32 5.0393e-02 16 84 32 1.4533e-02

Refined Level 1 304 86 32 2.7827e-02 304 86 32 6.1598e-03

Refined Level 2 414 119 106 3.2294e-03 352 232 102 3.8287e-03

Refined Level 3 440 266 130 3.1326e-03 361 449 115 1.6241e-03

Uniform 50× 50 484 2016 160 3.1357e-03 484 2016 160 1.6239e-03

16

4.5. Example 6. Flower Shape Interface

In this example, we consider a more complicated interface, i.e., the flower-shaped interface prob-

lem (1)-(4) with non-homogeneous jump condition to test our algorithm with adaptive sampling.

The interface Γ is given by the following equation,

r =
1

2
+

sin(5θ)

7
.

The exact solution is chosen as (see Figure 15),

u(x) =

exp(x2 + y2), if x ∈ Ω1,

0.1(x2 + y2)2 − 0.01 ln(2
√
x2 + y2), if x ∈ Ω2,

(17)

and β1 = 10 and β2 = 1. The jump conditions gj and gf are then computed by the exact solution

and β. Note that the coefficient contrast is mild in this case.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) (b) (c) (d)

Figure 14: Example 4.5. Refinement (a) level 0; (b) level 1; (c) level 2; (d) level 3.

(a) (b)

Figure 15: Example 4.5. (a) plot of exact solution; (c) plot of numerical solution.

17

Figure 14 provides the adaptive sampled points of the first three refinements. Again, red dots

denoting the exiting sampling points, and blue dots denoting the newly added points. The errors

corresponding to each adaptive step are plotted in Figure 16 (4 hidden layers are used in the DNN

structure). As we can see, our adaptive sampling strategy accurately captures the singularities

and added more sampling points near the interface. Figure 15 compares the exact solution and

the DNN approximation. In Table 3, we quantify and compare the performances between the

uniform sampling and adaptive sampling strategies. Again, the adaptive sampling approach uses

about 70% fewer points to achieve comparative error. Therefore, we conclude that using adaptive

sampling based on the residual of the loss function Ltotal is effective for solutions with singularities.

(a) (b) (c) (d)

Figure 16: Example 4.5. Plot of errors on (a) uniform 10 × 10 grid; (b) adaptive refinement 1; (c) adaptive

refinement 2; (d) adaptive refinement 3.

Table 3: Example 4.5.
‖u− UNN ‖Ω
‖u‖Ω

.

4 Layers 6 Layers

Grids M1 M2 MΓ Error M1 M2 MΓ Error

Uniform 10× 10 16 84 50 1.8407e-03 16 84 50 5.5350e-02

Refined Level 1 201 96 52 6.0430e-04 164 133 53 4.7112e-03

Refined Level 2 235 219 52 1.3021e-03 164 290 53 3.7275e-04

Refined Level 3 332 266 124 4.9604e-03 249 358 122 3.7275e-04

Uniform 50× 50 484 2016 160 7.9539e-03 484 2016 160 2.3428e-03

5. Conclusion

In this paper, we investigate a new deep least-squares method to solve the elliptic interface

problem with complicated interface geometries and conditions. Due to the geometry complexity

and/or singularities near the interfaces, classical numerical methods needs special treatment for

either meshing technique or modifying the basis functions. Different from previous work, we

propose to approximate the solution by deep neural networks and, observing that the solutions

18

might have large jumps in the derivative across the interfaces, we propose to use different DNN

structure in each sub-domain. We then rewrite the interface problem, including the interface and

boundary conditions, in the least-squares formulation and the mean squared error loss functions

are used on the discrete level so that it can be efficiently trained by the SGD method or its variants.

To capture the singularities, we use the residual error of the loss function as the a posterior error

estimator and design an adaptive sampling algorithm. The proposed deep least-squares method is

easy to implement and can handle complicated interfaces efficiently. Our numerical experiments

show that the proposed deep least-squares method is quite effective for the interface problem and

the adaptive sampling strategy improves accuracy while reducing the overall cost for challenging

interface problems.

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., et al., 2016. Tensorflow: A system for large-scale machine learning,

in: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16), pp. 265–283.

[2] Babuška, I., 1970. The finite element method for elliptic equations with discontinuous coeffi-

cients. Computing 5, 207–213.

[3] Bramble, J.H., King, J.T., 1996. A finite element method for interface problems in domains

with smooth boundaries and interfaces. Advances in Computational Mathematics 6, 109–138.

[4] Brenner, S., Scott, R., 2007. The mathematical theory of finite element methods. volume 15.

Springer Science & Business Media.

[5] Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A., 2015. Cutfem: discretizing

geometry and partial differential equations. International Journal for Numerical Methods in

Engineering 104, 472–501.

[6] Cai, Z., Chen, J., Liu, M., Liu, X., 2019. Deep least-squares methods: An unsupervised

learning-based numerical method for solving elliptic PDEs. arXiv:1911.02109 [physics, stat]

arXiv:1911.02109.

[7] Cai, Z., Ye, X., Zhang, S., 2011. Discontinuous galerkin finite element methods for interface

problems: a priori and a posteriori error estimations. SIAM Journal on Numerical Analysis

49, 1761–1787.

19

http://arxiv.org/abs/1911.02109

[8] Chen, L., Wei, H., Wen, M., 2017. An interface-fitted mesh generator and virtual element

methods for elliptic interface problems. Journal of Computational Physics 334, 327–348.

[9] Collobert, R., Weston, J., 2008. A unified architecture for natural language processing: Deep

neural networks with multitask learning, in: Proceedings of the 25th international conference

on Machine learning, pp. 160–167.

[10] Daubechies, I., DeVore, R., Foucart, S., Hanin, B., Petrova, G., 2019. Nonlinear Approxima-

tion and (Deep) ReLU Networks. arXiv:1905.02199 [cs] arXiv:1905.02199.

[11] Dissanayake, M.W.M.G., Phan-Thien, N., 1994. Neural-network-based approxi-

mations for solving partial differential equations. Communications in Numeri-

cal Methods in Engineering 10, 195–201. doi:10.1002/cnm.1640100303. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303.

[12] E, W., Yu, B., 2017. The Deep Ritz method: A deep learning-based numerical algorithm for

solving variational problems. arXiv:1710.00211 [cs, stat] arXiv:1710.00211.

[13] Efendiev, Y., Hou, T.Y., 2009. Multiscale finite element methods: theory and applications.

volume 4. Springer Science & Business Media.

[14] Fries, T.P., Belytschko, T., 2010. The extended/generalized finite element method: an

overview of the method and its applications. International journal for numerical methods

in engineering 84, 253–304.

[15] Han, J., Jentzen, A., E, W., 2018. Solving high-dimensional partial differential equations using

deep learning. Proceedings of the National Academy of Sciences 115, 8505–8510. doi:10.1073/

pnas.1718942115.

[16] Handa, A., Bloesch, M., Pătrăucean, V., Stent, S., McCormac, J., Davison, A., 2016. gvnn:

Neural network library for geometric computer vision, in: European Conference on Computer

Vision, Springer. pp. 67–82.

[17] Hansbo, A., Hansbo, P., 2002. An unfitted finite element method, based on nitsche’s method,

for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 191,

5537 – 5552.

[18] Hardt, M., Recht, B., Singer, Y., 2015. Train faster, generalize better: Stability of stochastic

gradient descent. arXiv preprint arXiv:1509.01240 .

[19] He, J., Li, L., Xu, J., Zheng, C., 2018. ReLU Deep Neural Networks and Linear Finite

Elements. arXiv:1807.03973 [math] doi:10.4208/jcm.1901-m2018-0160, arXiv:1807.03973.

20

http://arxiv.org/abs/1905.02199
http://dx.doi.org/10.1002/cnm.1640100303
http://arxiv.org/abs/1710.00211
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.4208/jcm.1901-m2018-0160
http://arxiv.org/abs/1807.03973

[20] Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980

[cs] arXiv:1412.6980.

[21] LeVeque, R.J., 2007. Finite difference methods for ordinary and partial differential equations:

steady-state and time-dependent problems. volume 98. Siam.

[22] LeVeque, R.J., Li, Z., 1994. The immersed interface method for elliptic equations with discon-

tinuous coefficients and singular sources. SIAM Journal on Numerical Analysis 31, 1019–1044.

[23] Lin, T., Lin, Y., Zhang, X., 2015. Partially penalized immersed finite element methods for

elliptic interface problems. SIAM Journal on Numerical Analysis 53, 1121–1144.

[24] Liu, G.R., 2009. Meshfree methods: moving beyond the finite element method. Taylor &

Francis.

[25] Liu, X.D., Fedkiw, R.P., Kang, M., 2000. A boundary condition capturing method for pois-

son’s equation on irregular domains. Journal of computational Physics 160, 151–178.

[26] Massjung, R., 2012. An unfitted discontinuous galerkin method applied to elliptic interface

problems. SIAM Journal on Numerical Analysis 50, 3134–3162.

[27] Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S., 2013. Weak galerkin methods for second order

elliptic interface problems. Journal of Computational Physics 250, 106 – 125.

[28] Pao, Y., 1989. Adaptive pattern recognition and neural networks .

[29] Peskin, C.S., 2002. The immersed boundary method. Acta Numerica 11, 479–517. doi:10.

1017/S0962492902000077.

[30] Pinkus, A., 1999. Approximation theory of the MLP model in neural networks. Acta Numerica

8, 143–195. doi:10.1017/S0962492900002919.

[31] Robbins, H., Monro, S., 1951. A Stochastic Approximation Method. Annals of Mathematical

Statistics 22, 400–407. doi:10.1214/aoms/1177729586.

[32] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K.,

Zhuang, X., Rabczuk, T., 2020. An energy approach to the solution of partial differential

equations in computational mechanics via machine learning: Concepts, implementation and

applications. Computer Methods in Applied Mechanics and Engineering 362, 112790. doi:10.

1016/j.cma.2019.112790.

21

http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1017/S0962492900002919
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1016/j.cma.2019.112790
http://dx.doi.org/10.1016/j.cma.2019.112790

[33] Siegel, J.W., Xu, J., 2020. Approximation Rates for Neural Networks with General Activation

Functions. arXiv:1904.02311 [cs, math] arXiv:1904.02311.

[34] Sirignano, J., Spiliopoulos, K., 2018. DGM: A deep learning algorithm for solving partial

differential equations. Journal of Computational Physics 375, 1339–1364. doi:10.1016/j.

jcp.2018.08.029, arXiv:1708.07469.

[35] Tran, T., Hamilton, A., McKay, M.B., Quiring, B., Vassilevski, P.S., 2019. DNN Approxima-

tion of Nonlinear Finite Element Equations. arXiv:1911.05240 [cs, math] arXiv:1911.05240.

[36] Versteeg, H.K., Malalasekera, W., 2007. An introduction to computational fluid dynamics:

the finite volume method. Pearson education.

[37] Wang, Z., Zhang, Z., 2020. A mesh-free method for interface problems using the deep learning

approach. Journal of Computational Physics 400, 108963. doi:10.1016/j.jcp.2019.108963.

[38] Xiu, D., 2010. Numerical methods for stochastic computations: a spectral method approach.

Princeton university press.

[39] Zhou, D.X., 2018. Deep distributed convolutional neural networks: Universality. Analysis

and Applications 16, 895–919. doi:10.1142/S0219530518500124.

[40] Zhou, Y., Zhao, S., Feig, M., Wei, G., 2006. High order matched interface and boundary

method for elliptic equations with discontinuous coefficients and singular sources. Journal of

Computational Physics 213, 1 – 30.

22

http://arxiv.org/abs/1904.02311
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://arxiv.org/abs/1708.07469
http://arxiv.org/abs/1911.05240
http://dx.doi.org/10.1016/j.jcp.2019.108963
http://dx.doi.org/10.1142/S0219530518500124

	A mesh-free method using piecewise deep neural network for elliptic interface problems
	Recommended Citation

	1 Introduction
	2 Problem Formulation
	2.1 Interface Problem
	2.2 The Classical Least-squares Formulation

	3 Mesh-free Method Using DNN for interface problems
	3.1 Deep Neural Network Structure
	3.2 Discrete Least-squares Formulations

	4 Numerical Examples
	4.1 Example 1. Sunflower Shape Interface
	4.2 Example 2. Sphere Shape Interface
	4.3 Example 3. Heart Shape Interface
	4.4 Example 5. Circle Interface with High Contrast Coefficients
	4.4.1 Case with 1 = 1000 and 2 = 1
	4.4.2 Case with 1 = 1 and 2 = 1000

	4.5 Example 6. Flower Shape Interface

	5 Conclusion

